151
|
Bruggemann J, Lander GC, Su AI. Exploring applications of crowdsourcing to cryo-EM. J Struct Biol 2018; 203:37-45. [PMID: 29486249 PMCID: PMC6086358 DOI: 10.1016/j.jsb.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
Abstract
Extraction of particles from cryo-electron microscopy (cryo-EM) micrographs is a crucial step in processing single-particle datasets. Although algorithms have been developed for automatic particle picking, these algorithms generally rely on two-dimensional templates for particle identification, which may exhibit biases that can propagate artifacts through the reconstruction pipeline. Manual picking is viewed as a gold-standard solution for particle selection, but it is too time-consuming to perform on data sets of thousands of images. In recent years, crowdsourcing has proven effective at leveraging the open web to manually curate datasets. In particular, citizen science projects such as Galaxy Zoo have shown the power of appealing to users’ scientific interests to process enormous amounts of data. To this end, we explored the possible applications of crowdsourcing in cryo-EM particle picking, presenting a variety of novel experiments including the production of a fully annotated particle set from untrained citizen scientists. We show the possibilities and limitations of crowdsourcing particle selection tasks, and explore further options for crowdsourcing cryo-EM data processing.
Collapse
Affiliation(s)
- Jacob Bruggemann
- Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Gabriel C Lander
- Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Andrew I Su
- Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| |
Collapse
|
152
|
Vennekens R, Mesuere M, Philippaert K. TRPM5 in the battle against diabetes and obesity. Acta Physiol (Oxf) 2018; 222. [PMID: 28834354 DOI: 10.1111/apha.12949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
Abstract
TRPM5 is a non-selective monovalent cation channel activated by increases in intracellular Ca2+ . It has a distinct expression pattern: expression is detected in chemosensitive tissues from solitary chemosensory cells to the taste receptor cells and in pancreatic β-cells. The role of TRPM5 has been investigated with the use of knockout mouse models. Trpm5-/- mice have a lack of type II taste perception and show reduced glucose-induced insulin secretion. Expression levels of TRPM5 are reduced in obese, leptin-signalling-deficient mice, and mutations in TRPM5 have been associated with type II diabetes and metabolic syndrome. In this review, we aim to give an overview of the activation, selectivity, modulation and physiological roles of TRPM5.
Collapse
Affiliation(s)
- R. Vennekens
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| | - M. Mesuere
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| | - K. Philippaert
- VIB Center for Brain & Disease Research; Leuven Belgium
- Laboratory of Ion Channel Research; TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine; KU Leuven, Leuven Belgium
| |
Collapse
|
153
|
Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Thermally activated TRP channels: molecular sensors for temperature detection. Phys Biol 2018; 15:021001. [PMID: 29135465 DOI: 10.1088/1478-3975/aa9a6f] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.
Collapse
Affiliation(s)
- Karen Castillo
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile. www.cinv.cl
| | | | | | | | | |
Collapse
|
154
|
Zimova L, Sinica V, Kadkova A, Vyklicka L, Zima V, Barvik I, Vlachova V. Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel. Sci Signal 2018; 11:11/514/eaan8621. [PMID: 29363587 DOI: 10.1126/scisignal.aan8621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a temperature-sensitive ion channel activated by various pungent and irritant compounds that can produce pain in humans. Its activation involves an allosteric mechanism whereby electrophilic agonists evoke interactions within cytosolic domains and open the channel pore through an integrated nexus formed by intracellular membrane proximal regions that are densely packed beneath the lower segment of the S1-S4 sensor domain. Studies indicate that this part of the channel may contain residues that form a water-accessible cavity that undergoes changes in solvation during channel gating. We identified conserved polar residues facing the putative lower crevice of the sensor domain that were crucial determinants of the electrophilic, voltage, and calcium sensitivity of the TRPA1 channel. This part of the sensor may also comprise a domain capable of binding to membrane phosphoinositides through which gating of the channel is regulated in a state-dependent manner.
Collapse
Affiliation(s)
- Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Anna Kadkova
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Lenka Vyklicka
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Vlastimil Zima
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences, 14220 Prague, Czech Republic.
| |
Collapse
|
155
|
Madej MG, Ziegler CM. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch 2018; 470:213-225. [PMID: 29344776 DOI: 10.1007/s00424-018-2107-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022]
Abstract
Cryo-electron microscopy (cryo-EM) permits the determination of atomic protein structures by averaging large numbers of individual projection images recorded at cryogenic temperatures-a method termed single-particle analysis. The cryo-preservation traps proteins within a thin glass-like ice layer, making literally a freeze image of proteins in solution. Projections of randomly adopted orientations are merged to reconstruct a 3D density map. While atomic resolution for highly symmetric viruses was achieved already in 2009, the development of new sensitive and fast electron detectors has enabled cryo-EM for smaller and asymmetrical proteins including fragile membrane proteins. As one of the most important structural biology methods at present, cryo-EM was awarded in October 2017 with the Nobel Prize in Chemistry. The molecular understanding of Transient-Receptor-Potential (TRP) channels has been boosted tremendously by cryo-EM single-particle analysis. Several near-atomic and atomic structures gave important mechanistic insights, e.g., into ion permeation and selectivity, gating, as well as into the activation of this enigmatic and medically important membrane protein family by various chemical and physical stimuli. Lastly, these structures have set the starting point for the rational design of TRP channel-targeted therapeutics to counteract life-threatening channelopathies. Here, we attempt a brief introduction to the method, review the latest advances in cryo-EM structure determination of TRP channels, and discuss molecular insights into the channel function based on the wealth of TRP channel cryo-EM structures.
Collapse
Affiliation(s)
- M Gregor Madej
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053, Regensburg, Germany
| | - Christine M Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053, Regensburg, Germany.
| |
Collapse
|
156
|
|
157
|
Zheng W, Hu R, Cai R, Hofmann L, Hu Q, Fatehi M, Long W, Kong T, Tang J, Light P, Flockerzi V, Cao Y, Chen X. Identification and characterization of hydrophobic gate residues in TRP channels. FASEB J 2018; 32:639-653. [DOI: 10.1096/fj.201700599rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wang Zheng
- Institute of Biomedical and Pharmaceutical SciencesKey Laboratory of Fermentation Engineering of Ministry of EducationCollege of BioengineeringHubei University of TechnologyWuhanChina
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Ruikun Hu
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ruiqi Cai
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und ToxikologieUniversität des SaarlandesHomburgGermany
| | - Qiaolin Hu
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Mohammad Fatehi
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Wentong Long
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Tim Kong
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Jingfeng Tang
- Institute of Biomedical and Pharmaceutical SciencesKey Laboratory of Fermentation Engineering of Ministry of EducationCollege of BioengineeringHubei University of TechnologyWuhanChina
| | - Peter Light
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und ToxikologieUniversität des SaarlandesHomburgGermany
| | - Ying Cao
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xing‐Zhen Chen
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| |
Collapse
|
158
|
Hughes TET, Lodowski DT, Huynh KW, Yazici A, Del Rosario J, Kapoor A, Basak S, Samanta A, Han X, Chakrapani S, Zhou ZH, Filizola M, Rohacs T, Han S, Moiseenkova-Bell VY. Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat Struct Mol Biol 2018; 25:53-60. [PMID: 29323279 PMCID: PMC5951624 DOI: 10.1038/s41594-017-0009-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
The transient receptor potential vanilloid 5 (TRPV5) channel is a member of the transient receptor potential (TRP) channel family, which is highly selective for Ca2+, that is present primarily at the apical membrane of distal tubule epithelial cells in the kidney and plays a key role in Ca2+ reabsorption. Here we present the structure of the full-length rabbit TRPV5 channel as determined using cryo-EM in complex with its inhibitor econazole. This structure reveals that econazole resides in a hydrophobic pocket analogous to that occupied by phosphatidylinositides and vanilloids in TRPV1, thus suggesting conserved mechanisms for ligand recognition and lipid binding among TRPV channels. The econazole-bound TRPV5 structure adopts a closed conformation with a distinct lower gate that occludes Ca2+ permeation through the channel. Structural comparisons between TRPV5 and other TRPV channels, complemented with molecular dynamics (MD) simulations of the econazole-bound TRPV5 structure, allowed us to gain mechanistic insight into TRPV5 channel inhibition by small molecules.
Collapse
Affiliation(s)
- Taylor E T Hughes
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David T Lodowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kevin W Huynh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aysenur Yazici
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - John Del Rosario
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandip Basak
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Amrita Samanta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xu Han
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sudha Chakrapani
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Seungil Han
- Pfizer Research and Development, Groton, CT, USA
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Physiology and Biophysics School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
159
|
Bousova K, Herman P, Vecer J, Bednarova L, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J. Shared CaM‐ and S100A1‐binding epitopes in the distal
TRPM
4 N terminus. FEBS J 2017; 285:599-613. [DOI: 10.1111/febs.14362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Kristyna Bousova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Jaroslav Vecer
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Jan Teisinger
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
160
|
McGoldrick LL, Singh AK, Saotome K, Yelshanskaya MV, Twomey EC, Grassucci RA, Sobolevsky AI. Opening of the human epithelial calcium channel TRPV6. Nature 2017; 553:233-237. [PMID: 29258289 PMCID: PMC5854407 DOI: 10.1038/nature25182] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Ca2+-selective transient receptor potential vanilloid subfamily member 6 (TRPV6) channels play a critical role in calcium uptake in epithelial tissues1–4. Altered TRPV6 expression is associated with a variety of human diseases5, including cancers6. TRPV6 channels are constitutively active1,7,8 and their open probability depends on the lipidic composition of the membrane, increasing significantly in the presence of phosphatidylinositol 4,5-bisphosphate (PIP2)7,9. We previously solved crystal structures of detergent-solubilized rat TRPV6 in the closed state10,11. Corroborating previous electrophysiological studies3, these structures demonstrated that the Ca2+ selectivity of TRPV6 arises from a ring of aspartate side chains in the selectivity filter that tightly binds Ca2+. However, it has remained unknown how TRPV6 channels open and close their pores for ion permeation. Here we present cryo-EM structures of human TRPV6 in the open and closed states. The channel selectivity filter adopts similar conformations in both states, consistent with its explicit role in ion permeation. The iris-like channel opening is accompanied by an α-to-π helical transition in the pore-lining S6 helices at an alanine hinge just below the selectivity filter. As a result of this transition, the S6 helices bend and rotate, exposing different residues to the ion channel pore in the open and closed states. This novel gating mechanism, which defines the constitutive activity of TRPV6, is unique for tetrameric ion channels and provides new structural insights for understanding their diverse roles in physiology and disease.
Collapse
Affiliation(s)
- Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA.,Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Kei Saotome
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Edward C Twomey
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA.,Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Robert A Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| |
Collapse
|
161
|
Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY. Structure of the cold- and menthol-sensing ion channel TRPM8. Science 2017; 359:237-241. [PMID: 29217583 DOI: 10.1126/science.aan4325] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Transient receptor potential melastatin (TRPM) cation channels are polymodal sensors that are involved in a variety of physiological processes. Within the TRPM family, member 8 (TRPM8) is the primary cold and menthol sensor in humans. We determined the cryo-electron microscopy structure of the full-length TRPM8 from the collared flycatcher at an overall resolution of ~4.1 ångstroms. Our TRPM8 structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor-like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lejla Zubcevic
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - William F Borschel
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
162
|
Wyatt A, Wartenberg P, Candlish M, Krasteva-Christ G, Flockerzi V, Boehm U. Genetic strategies to analyze primary TRP channel-expressing cells in mice. Cell Calcium 2017; 67:91-104. [DOI: 10.1016/j.ceca.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/26/2022]
|
163
|
Schmiege P, Fine M, Blobel G, Li X. Human TRPML1 channel structures in open and closed conformations. Nature 2017; 550:366-370. [PMID: 29019983 DOI: 10.1038/nature24036] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-releasing cation channel that mediates the calcium signalling and homeostasis of lysosomes. Mutations in TRPML1 lead to mucolipidosis type IV, a severe lysosomal storage disorder. Here we report two electron cryo-microscopy structures of full-length human TRPML1: a 3.72-Å apo structure at pH 7.0 in the closed state, and a 3.49-Å agonist-bound structure at pH 6.0 in an open state. Several aromatic and hydrophobic residues in pore helix 1, helices S5 and S6, and helix S6 of a neighbouring subunit, form a hydrophobic cavity to house the agonist, suggesting a distinct agonist-binding site from that found in TRPV1, a TRP channel from a different subfamily. The opening of TRPML1 is associated with distinct dilations of its lower gate together with a slight structural movement of pore helix 1. Our work reveals the regulatory mechanism of TRPML channels, facilitates better understanding of TRP channel activation, and provides insights into the molecular basis of mucolipidosis type IV pathogenesis.
Collapse
Affiliation(s)
- Philip Schmiege
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Xiaochun Li
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
164
|
Hirschi M, Herzik MA, Wie J, Suo Y, Borschel WF, Ren D, Lander GC, Lee SY. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature 2017; 550:411-414. [PMID: 29019979 PMCID: PMC5762132 DOI: 10.1038/nature24055] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/01/2017] [Indexed: 01/09/2023]
Abstract
The modulation of ion channel activity by lipids is increasingly recognized as a fundamental component of cellular signalling. The transient receptor potential mucolipin (TRPML) channel family belongs to the TRP superfamily and is composed of three members: TRPML1-TRPML3. TRPMLs are the major Ca2+-permeable channels on late endosomes and lysosomes (LEL). They regulate the release of Ca2+ from organelles, which is important for various physiological processes, including organelle trafficking and fusion. Loss-of-function mutations in the MCOLN1 gene, which encodes TRPML1, cause the neurodegenerative lysosomal storage disorder mucolipidosis type IV, and a gain-of-function mutation (Ala419Pro) in TRPML3 gives rise to the varitint-waddler (Va) mouse phenotype. Notably, TRPML channels are activated by the low-abundance and LEL-enriched signalling lipid phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), whereas other phosphoinositides such as PtdIns(4,5)P2, which is enriched in plasma membranes, inhibit TRPMLs. Conserved basic residues at the N terminus of the channel are important for activation by PtdIns(3,5)P2 and inhibition by PtdIns(4,5)P2. However, owing to a lack of structural information, the mechanism by which TRPML channels recognize PtdIns(3,5)P2 and increase their Ca2+ conductance remains unclear. Here we present the cryo-electron microscopy (cryo-EM) structure of a full-length TRPML3 channel from the common marmoset (Callithrix jacchus) at an overall resolution of 2.9 Å. Our structure reveals not only the molecular basis of ion conduction but also the unique architecture of TRPMLs, wherein the voltage sensor-like domain is linked to the pore via a cytosolic domain that we term the mucolipin domain. Combined with functional studies, these data suggest that the mucolipin domain is responsible for PtdIns(3,5)P2 binding and subsequent channel activation, and that it acts as a 'gating pulley' for lipid-dependent TRPML gating.
Collapse
Affiliation(s)
- Marscha Hirschi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Mark A Herzik
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - William F Borschel
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
165
|
Baker MR, Fan G, Serysheva II. Structure of IP 3R channel: high-resolution insights from cryo-EM. Curr Opin Struct Biol 2017; 46:38-47. [PMID: 28618351 PMCID: PMC5683905 DOI: 10.1016/j.sbi.2017.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 01/19/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular Ca2+ channels and the major mediators of cellular Ca2+ signals generated by the release of Ca2+ ions from intracellular stores in response to a variety of extracellular stimuli. Despite established physiological significance and proven involvements of IP3R channels in many human diseases, detailed structural basis for signal detection by these ion channels and their gating remain obscure. Recently, single particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provided exciting mechanistic insights into the molecular assembly of IP3R, revealing the pronounced structural conservation of Ca2+ release channels and raising many fundamental and controversial questions on their activation and gating. Here we summarize the major technological advances that propelled our cryo-EM analysis of IP3R to near-atomic resolution and discuss what the future holds for structural biology of Ca2+ release channels.
Collapse
Affiliation(s)
- Mariah R Baker
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Irina I Serysheva
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
166
|
Earl LA, Falconieri V, Milne JL, Subramaniam S. Cryo-EM: beyond the microscope. Curr Opin Struct Biol 2017; 46:71-78. [PMID: 28646653 PMCID: PMC5683925 DOI: 10.1016/j.sbi.2017.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Abstract
The pace at which cryo-EM is being adopted as a mainstream tool in structural biology has continued unabated over the past year. Initial successes in obtaining near-atomic resolution structures with cryo-EM were enabled to a large extent by advances in microscope and detector technology. Here, we review some of the complementary technical improvements that are helping sustain the cryo-EM revolution. We highlight advances in image processing that permit high resolution structure determination even in the presence of structural and conformational heterogeneity. We also review selected examples where biochemical strategies for membrane protein stabilization facilitate cryo-EM structure determination, and discuss emerging approaches for further improving the preparation of reliable plunge-frozen specimens.
Collapse
Affiliation(s)
- Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline Ls Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
167
|
A binding-block ion selective mechanism revealed by a Na/K selective channel. Protein Cell 2017; 9:629-639. [PMID: 28921397 PMCID: PMC6019658 DOI: 10.1007/s13238-017-0465-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive (MS) channels are extensively studied membrane protein for maintaining intracellular homeostasis through translocating solutes and ions across the membrane, but its mechanisms of channel gating and ion selectivity are largely unknown. Here, we identified the YnaI channel as the Na+/K+ cation-selective MS channel and solved its structure at 3.8 Å by cryo-EM single-particle method. YnaI exhibits low conductance among the family of MS channels in E. coli, and shares a similar overall heptamer structure fold with previously studied MscS channels. By combining structural based mutagenesis, quantum mechanical and electrophysiological characterizations, we revealed that ion selective filter formed by seven hydrophobic methionine (YnaIMet158) in the transmembrane pore determined ion selectivity, and both ion selectivity and gating of YnaI channel were affected by accompanying anions in solution. Further quantum simulation and functional validation support that the distinct binding energies with various anions to YnaIMet158 facilitate Na+/K+ pass through, which was defined as binding-block mechanism. Our structural and functional studies provided a new perspective for understanding the mechanism of how MS channels select ions driven by mechanical force.
Collapse
|
168
|
Swapping of transmembrane domains in the epithelial calcium channel TRPV6. Sci Rep 2017; 7:10669. [PMID: 28878326 PMCID: PMC5587609 DOI: 10.1038/s41598-017-10993-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
Tetrameric ion channels have either swapped or non-swapped arrangements of the S1–S4 and pore domains. Here we show that mutations in the transmembrane domain of TRPV6 can result in conversion from a domain-swapped to non-swapped fold. These results reveal structural determinants of domain swapping and raise the possibility that a single ion channel subtype can fold into either arrangement in vivo, affecting its function in normal or disease states.
Collapse
|
169
|
Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 2017; 7:10522. [PMID: 28874838 PMCID: PMC5585255 DOI: 10.1038/s41598-017-11274-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022] Open
Abstract
TRPV4 cation channel activation by cytochrome P450-mediated derivatives of arachidonic acid (AA), epoxyeicosatrienoic acids (EETs), constitute a major mechanisms of endothelium-derived vasodilatation. Besides, TRPV4 mechano/osmosensitivity depends on phospholipase A2 (PLA2) activation and subsequent production of AA and EETs. However, the lack of evidence for a direct interaction of EETs with TRPV4 together with claims of EET-independent mechanical activation of TRPV4 has cast doubts on the validity of this mechanism. We now report: 1) The identification of an EET-binding pocket that specifically mediates TRPV4 activation by 5',6'-EET, AA and hypotonic cell swelling, thereby suggesting that all these stimuli shared a common structural target within the TRPV4 channel; and 2) A structural insight into the gating of TRPV4 by a natural agonist (5',6'-EET) in which K535 plays a crucial role, as mutant TRPV4-K535A losses binding of and gating by EET, without affecting GSK1016790A, 4α-phorbol 12,13-didecanoate and heat mediated channel activation. Together, our data demonstrates that the mechano- and osmotransducing messenger EET gates TRPV4 by a direct action on a site formed by residues from the S2-S3 linker, S4 and S4-S5 linker.
Collapse
|
170
|
Zhao YW, Su ZD, Yang W, Lin H, Chen W, Tang H. IonchanPred 2.0: A Tool to Predict Ion Channels and Their Types. Int J Mol Sci 2017; 18:ijms18091838. [PMID: 28837067 PMCID: PMC5618487 DOI: 10.3390/ijms18091838] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
Ion channels (IC) are ion-permeable protein pores located in the lipid membranes of all cells. Different ion channels have unique functions in different biological processes. Due to the rapid development of high-throughput mass spectrometry, proteomic data are rapidly accumulating and provide us an opportunity to systematically investigate and predict ion channels and their types. In this paper, we constructed a support vector machine (SVM)-based model to quickly predict ion channels and their types. By considering the residue sequence information and their physicochemical properties, a novel feature-extracted method which combined dipeptide composition with the physicochemical correlation between two residues was employed. A feature selection strategy was used to improve the performance of the model. Comparison results of in jackknife cross-validation demonstrated that our method was superior to other methods for predicting ion channels and their types. Based on the model, we built a web server called IonchanPred which can be freely accessed from http://lin.uestc.edu.cn/server/IonchanPredv2.0.
Collapse
Affiliation(s)
- Ya-Wei Zhao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhen-Dong Su
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wuritu Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Development and Planning Department, Inner Mongolia University, Hohhot 010021, China.
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China.
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
171
|
Jorgensen C, Furini S, Domene C. Energetics of Ion Permeation in an Open-Activated TRPV1 Channel. Biophys J 2017; 111:1214-1222. [PMID: 27653480 DOI: 10.1016/j.bpj.2016.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023] Open
Abstract
Ion channels enable diffusion of ions down physiological electrochemical gradients. Modulation of ion permeation is crucial for the physiological functioning of cells, and misregulation of ion channels is linked to a myriad of channelopathies. The ion permeation mechanism in the transient receptor potential (TRP) ion channel family is currently not understood at an atomistic level. In this work, we employed a simulation strategy for ion permeation (molecular-dynamics simulations with bias-exchange metadynamics) to study and compare monovalent (Na(+), K(+)) ion permeation in the open-activated TRP vanniloid-1 (TRPV1) ion channel. Using ∼3.6 μs of simulation trajectories, we obtained atomistic evidence for the nonselective nature of TRPV1. Our analysis shows that solvated monovalent ions permeate through the selectivity filter with comparable energetic barriers via a two-site mechanism. Finally, we confirmed that an intracellular binding site is located between the intracellular gate residues I679 and E684.
Collapse
Affiliation(s)
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Carmen Domene
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
172
|
Abeyrathne PD, Grigorieff N. Expression, purification, and contaminant detection for structural studies of Ralstonia metallidurance ClC protein rm1. PLoS One 2017; 12:e0180163. [PMID: 28692650 PMCID: PMC5503242 DOI: 10.1371/journal.pone.0180163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/09/2017] [Indexed: 11/19/2022] Open
Abstract
Single-particle electron cryo-microscopy (cryo-EM) has become a popular method for high-resolution study of the structural and functional properties of proteins. However, sufficient expression and purification of membrane proteins holds many challenges. We describe methods to overcome these obstacles using ClC-rm1, a prokaryotic chloride channel (ClC) family protein from Ralstonia metallidurans, overexpressed in Escherichia coli (E. coli) BL21(DE3) strain. Mass spectrometry and electron microscopy analyses of purified samples revealed multiple contaminants that can obfuscate results of subsequent high-resolution structural analysis. Here we describe the systematic optimization of sample preparation procedures, including expression systems, solubilization techniques, purification protocols, and contamination detection. We found that expressing ClC-rm1 in E. coli BL21(DE3) and using n-dodecyl-β-D-maltopyranoside as a detergent for solubilization and purification steps resulted in the highest quality samples of those we tested. However, although protein yield, sample stability, and the resolution of structural detail were improved following these changes, we still detected contaminants including Acriflavine resistant protein AcrB. AcrB was particularly difficult to remove as it co-purified with ClC-rm1 due to four intrinsic histidine residues at its C-terminus that bind to affinity resins. We were able to obtain properly folded pure ClC-rm1 by adding eGFP to the C-terminus and overexpressing the protein in the ΔacrB variant of the JW0451-2 E. coli strain.
Collapse
Affiliation(s)
- Priyanka D. Abeyrathne
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA, United States of America
| | - Nikolaus Grigorieff
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA, United States of America
| |
Collapse
|
173
|
Abstract
To study integral membrane proteins, one has to extract them from the membrane—the step that is typically achieved by the application of detergents. In this mini-review, we summarize the top 10 detergents used for the structural analysis of membrane proteins based on the published results. The aim of this study is to provide the reader with an overview of the main properties of available detergents (critical micelle concentration (CMC) value, micelle size, etc.) and provide an idea of what detergents to may merit further study. Furthermore, we briefly discuss alternative solubilization and stabilization agents, such as polymers.
Collapse
|
174
|
van der Cruijsen EAW, Prokofyev AV, Pongs O, Baldus M. Probing Conformational Changes during the Gating Cycle of a Potassium Channel in Lipid Bilayers. Biophys J 2017; 112:99-108. [PMID: 28076820 DOI: 10.1016/j.bpj.2016.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Ion conduction across the cellular membrane requires the simultaneous opening of activation and inactivation gates of the K+ channel pore. The bacterial KcsA channel has served as a powerful system for dissecting the structural changes that are related to four major functional states associated with K+ gating. Yet, the direct observation of the full gating cycle of KcsA has remained structurally elusive, and crystal structures mimicking these gating events require mutations in or stabilization of functionally relevant channel segments. Here, we found that changes in lipid composition strongly increased the KcsA open probability. This enabled us to probe all four major gating states in native-like membranes by combining electrophysiological and solid-state NMR experiments. In contrast to previous crystallographic views, we found that the selectivity filter and turret region, coupled to the surrounding bilayer, were actively involved in channel gating. The increase in overall steady-state open probability was accompanied by a reduction in activation-gate opening, underscoring the important role of the surrounding lipid bilayer in the delicate conformational coupling of the inactivation and activation gates.
Collapse
Affiliation(s)
- Elwin A W van der Cruijsen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Alexander V Prokofyev
- Department of Physiology, Institute of Cellular Neurophysiology, University of the Saarland, Homburg, Germany
| | - Olaf Pongs
- Department of Physiology, Institute of Cellular Neurophysiology, University of the Saarland, Homburg, Germany.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
175
|
Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 2017; 547:118-122. [PMID: 28658211 DOI: 10.1038/nature22981] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Mechanosensory transduction for senses such as proprioception, touch, balance, acceleration, hearing and pain relies on mechanotransduction channels, which convert mechanical stimuli into electrical signals in specialized sensory cells. How force gates mechanotransduction channels is a central question in the field, for which there are two major models. One is the membrane-tension model: force applied to the membrane generates a change in membrane tension that is sufficient to gate the channel, as in the bacterial MscL channel and certain eukaryotic potassium channels. The other is the tether model: force is transmitted via a tether to gate the channel. The transient receptor potential (TRP) channel NOMPC is important for mechanosensation-related behaviours such as locomotion, touch and sound sensation across different species including Caenorhabditis elegans, Drosophila and zebrafish. NOMPC is the founding member of the TRPN subfamily, and is thought to be gated by tethering of its ankyrin repeat domain to microtubules of the cytoskeleton. Thus, a goal of studying NOMPC is to reveal the underlying mechanism of force-induced gating, which could serve as a paradigm of the tether model. NOMPC fulfils all the criteria that apply to mechanotransduction channels and has 29 ankyrin repeats, the largest number among TRP channels. A key question is how the long ankyrin repeat domain is organized as a tether that can trigger channel gating. Here we present a de novo atomic structure of Drosophila NOMPC determined by single-particle electron cryo-microscopy. Structural analysis suggests that the ankyrin repeat domain of NOMPC resembles a helical spring, suggesting its role of linking mechanical displacement of the cytoskeleton to the opening of the channel. The NOMPC architecture underscores the basis of translating mechanical force into an electrical signal within a cell.
Collapse
|
176
|
Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects. Pflugers Arch 2017; 469:1313-1323. [PMID: 28612138 DOI: 10.1007/s00424-017-1998-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
The sensation of itching can be defined as "an unpleasant cutaneous sensation that provokes a desire to scratch." The perception of itching is not critical for the maintenance of life, but persistent itching can be extremely irritating and decreases the quality of life. Crotamiton (N-ethyl-o-crotonotoluidide) has been used as an anti-itch agent for humans for around 70 years. In spite of the long use of crotamiton, its mechanism of action remains unknown. We hypothesized that crotamiton might have effects on transient receptor potential (TRP) channels expressed in the peripheral nervous system and the skin. We first examined the effects of crotamiton on TRP channels by whole-cell patch-clamp recordings. We found that crotamiton strongly inhibited TRPV (vanilloid) 4 channels followed by large currents after crotamiton washout. In mice, crotamiton inhibited itch-related behaviors induced by a TRPV4-selective agonist (GSK1016790A). We biophysically investigated the large TRPV4 currents after crotamiton washout. Comparing single-channel open probabilities and current amplitudes of TRPV4, increases in both parameters were found to contribute to the large washout currents of TRPV4. Because the change in current amplitudes suggested pore dilation of TRPV4, we examined this possibility with cation replacement experiments and by measuring changes in reversal potentials. Greater cation influxes and changes in reversal potentials upon crotamiton washout were observed, suggesting that the TRPV4 pore dilated in its uninhibited state. From these results, we identified the molecular target of crotamiton as TRPV4 and demonstrated pore dilation of TRPV4 upon crotamiton washout.
Collapse
|
177
|
Busch T, Köttgen M, Hofherr A. TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease. Cell Calcium 2017; 66:25-32. [PMID: 28807147 DOI: 10.1016/j.ceca.2017.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Ion channels control the membrane potential and mediate transport of ions across membranes. Archetypical physiological functions of ion channels include processes such as regulation of neuronal excitability, muscle contraction, or transepithelial ion transport. In that regard, transient receptor potential ion channel polycystin 2 (TRPP2) is remarkable, because it controls complex morphogenetic processes such as the establishment of properly shaped epithelial tubules and left-right-asymmetry of organs. The fascinating question of how an ion channel regulates morphogenesis has since captivated the attention of scientists in different disciplines. Four loosely connected key insights on different levels of biological complexity ranging from protein to whole organism have framed our understanding of TRPP2 physiology: 1) TRPP2 is a non-selective cation channel; 2) TRPP2 is part of a receptor-ion channel complex; 3) TRPP2 localizes to primary cilia; and 4) TRPP2 is required for organ morphogenesis. In this review, we will discuss the current knowledge in these key areas and highlight some of the challenges ahead.
Collapse
Affiliation(s)
- Tilman Busch
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
178
|
Abstract
Calcium signals control a plethora of essential cellular functions ranging from secretion and contraction to gene expression and sensory signaling cascades. An essential part of intracellular calcium signals originates from the transmembrane flux of calcium ions, which is mainly mediated through different calcium-permeable cation channels with variable calcium selectivity. Opening of individual calcium permeable channels induces a local cytosolic calcium rise that can be highly restricted in time and space. Here, we provide a short overview of the current knowledge about calcium permeation and localized calcium signals in transient receptor potential (TRP) channels. We also present a brief survey of some fundamental theoretical aspects of the local calcium signals generated upon opening of single calcium-permeable channels, and compare theoretical predictions with published experimental data on TRP channel-mediated local calcium signals.
Collapse
|
179
|
Proteoglycans, ion channels and cell-matrix adhesion. Biochem J 2017; 474:1965-1979. [PMID: 28546458 DOI: 10.1042/bcj20160747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
Cell surface proteoglycans comprise a transmembrane or membrane-associated core protein to which one or more glycosaminoglycan chains are covalently attached. They are ubiquitous receptors on nearly all animal cell surfaces. In mammals, the cell surface proteoglycans include the six glypicans, CD44, NG2 (CSPG4), neuropilin-1 and four syndecans. A single syndecan is present in invertebrates such as nematodes and insects. Uniquely, syndecans are receptors for many classes of proteins that can bind to the heparan sulphate chains present on syndecan core proteins. These range from cytokines, chemokines, growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens. Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein. This places syndecans at the nexus of many cellular responses to extracellular cues in development, maintenance, repair and disease. The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins. All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration. Recent data now suggest that syndecans can regulate stretch-activated ion channels. The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion. This area sheds new light on the syndecans, not least since evidence suggests that this is an evolutionarily conserved relationship that is also potentially important in the progression of some common diseases where syndecans are implicated.
Collapse
|
180
|
A conserved gating element in TRPV6 channels. Cell Calcium 2017; 63:24-28. [DOI: 10.1016/j.ceca.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023]
|
181
|
Ciardo MG, Ferrer-Montiel A. Lipids as central modulators of sensory TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1615-1628. [PMID: 28432033 DOI: 10.1016/j.bbamem.2017.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/13/2022]
Abstract
The transient receptor potential (TRP) ion channel family is involved in a diversity of physiological processes including sensory and homeostatic functions, as well as muscle contraction and vasomotor control. Their dysfunction contributes to the etiology of several diseases, being validated as therapeutic targets. These ion channels may be activated by physical or chemical stimuli and their function is highly influenced by signaling molecules activated by extracellular signals. Notably, as integral membrane proteins, lipid molecules also modulate their membrane location and function either by direct interaction with the channel structure or by modulating the physico-chemical properties of the cellular membrane. This lipid-based modulatory effect is being considered an alternative and promising approach to regulate TRP channel dysfunction in diseases. Here, we review the current progress in this exciting field highlighting a complex channel regulation by a large diversity of lipid molecules and suggesting some diseases that may benefit from a membrane lipid therapy. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av. De la Universidad s/n, Elche, Spain.
| |
Collapse
|
182
|
Hofmann L, Wang H, Zheng W, Philipp SE, Hidalgo P, Cavalié A, Chen XZ, Beck A, Flockerzi V. The S4---S5 linker - gearbox of TRP channel gating. Cell Calcium 2017; 67:156-165. [PMID: 28416203 DOI: 10.1016/j.ceca.2017.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels which participate in a wide variety of physiological processes in organisms ranging from fungi to humans. They fulfill roles in body homeostasis, are sensors for noxious chemicals and temperature in the mammalian somatosensory system and are activated by light stimulated phospholipase C activity in Drosophila or by hypertonicity in yeast. The transmembrane topology of TRP channels is similar to that of voltage-gated cation channels. TRP proteins assemble as tetramers with each subunit containing six transmembrane helices (S1-S6) and intracellular N- and C-termini. Here we focus on the emerging functions of the cytosolic S4-S5 linker on TRP channel gating. Most of this knowledge comes from pathogenic mutations within the S4-S5 linker that alter TRP channel activities. This knowledge has stimulated forward genetic approaches to identify additional residues around this region which are essential for channel gating and is supported, in part, by recent structures obtained for TRPV1, TRPV2, TRPV6, TRPA1, and TRPP2.
Collapse
Affiliation(s)
- Laura Hofmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Hongmei Wang
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Wang Zheng
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
| | - Stephan E Philipp
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Patricia Hidalgo
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Adolfo Cavalié
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
| | - Andreas Beck
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
183
|
A Gate Hinge Controls the Epithelial Calcium Channel TRPV5. Sci Rep 2017; 7:45489. [PMID: 28374795 PMCID: PMC5379628 DOI: 10.1038/srep45489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/27/2017] [Indexed: 12/03/2022] Open
Abstract
TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonstrates that W583 is part of the gate for Ca2+ permeation. The W583 mutants show increased cell death due to profoundly enhanced Ca2+ influx, resulting from altered channel function. A glycine residue above W583 might act as flexible linker to rearrange the tryptophan gate. Furthermore, we hypothesize functional crosstalk between the pore region and carboxy terminus, involved in Ca2+-calmodulin-mediated inactivation. This study proposes a unique channel gating mechanism and delivers detailed molecular insight into the Ca2+ permeation pathway that can be extrapolated to other Ca2+-selective channels.
Collapse
|
184
|
Sosa-Pagán JO, Iversen ES, Grandl J. TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity. Sci Rep 2017; 7:549. [PMID: 28373693 PMCID: PMC5428820 DOI: 10.1038/s41598-017-00636-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Several transient receptor potential (TRP) ion channels can be directly activated by hot or cold temperature with high sensitivity. However, the structures and molecular mechanism giving rise to their high temperature sensitivity are not fully understood. One hypothesized mechanism assumes that temperature activation is driven by the exposure of hydrophobic residues to solvent. This mechanism further predicts that residues are exposed to solvent in a coordinated fashion, but without necessarily being located in close proximity to each other. However, there is little experimental evidence supporting this mechanism in TRP channels. Here, we combined high-throughput mutagenesis, functional screening, and deep sequencing to identify mutations from a total of ~7,300 TRPV1 random mutant clones. We found that strong decreases in hydrophobicity of amino acids are better tolerated for activation by capsaicin than for activation by hot temperature, suggesting that strong hydrophobicity might be specifically required for temperature activation. Altogether, our work provides initial correlative support for a previously hypothesized temperature mechanism in TRP ion channels.
Collapse
Affiliation(s)
- Jason O Sosa-Pagán
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
185
|
Phan K, Ng CA, David E, Shishmarev D, Kuchel PW, Vandenberg JI, Perry MD. The S1 helix critically regulates the finely tuned gating of Kv11.1 channels. J Biol Chem 2017; 292:7688-7705. [PMID: 28280240 DOI: 10.1074/jbc.m117.779298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/26/2017] [Indexed: 11/06/2022] Open
Abstract
Congenital mutations in the cardiac Kv11.1 channel can cause long QT syndrome type 2 (LQTS2), a heart rhythm disorder associated with sudden cardiac death. Mutations act either by reducing protein expression at the membrane and/or by perturbing the intricate gating properties of Kv11.1 channels. A number of clinical LQTS2-associated mutations have been reported in the first transmembrane segment (S1) of Kv11.1 channels, but the role of this region of the channel is largely unexplored. In part, this is due to problems defining the extent of the S1 helix, as a consequence of its low sequence homology with other Kv family members. Here, we used NMR spectroscopy and electrophysiological characterization to show that the S1 of Kv11.1 channels extends seven helical turns, from Pro-405 to Phe-431, and is flanked by unstructured loops. Functional analysis suggests that pre-S1 loop residues His-402 and Tyr-403 play an important role in regulating the kinetics and voltage dependence of channel activation and deactivation. Multiple residues within the S1 helix also play an important role in fine-tuning the voltage dependence of activation, regulating slow deactivation, and modulating C-type inactivation of Kv11.1 channels. Analyses of LQTS2-associated mutations in the pre-S1 loop or S1 helix of Kv11.1 channels demonstrate perturbations to both protein expression and most gating transitions. Thus, S1 region mutations would reduce both the action potential repolarizing current passed by Kv11.1 channels in cardiac myocytes, as well as the current passed in response to premature depolarizations that normally helps protect against the formation of ectopic beats.
Collapse
Affiliation(s)
- Kevin Phan
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010.,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| | - Chai Ann Ng
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010.,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| | - Erikka David
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010
| | - Dmitry Shishmarev
- the School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip W Kuchel
- the School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jamie I Vandenberg
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010.,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| | - Matthew D Perry
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, .,the St. Vincent's Clinical School, University of New South Wales, New South Wales 2052, and
| |
Collapse
|
186
|
Merino F, Raunser S. Kryo-Elektronenmikroskopie als Methode für die strukturbasierte Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Felipe Merino
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| | - Stefan Raunser
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| |
Collapse
|
187
|
Merino F, Raunser S. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Angew Chem Int Ed Engl 2017; 56:2846-2860. [PMID: 27860084 DOI: 10.1002/anie.201608432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/15/2022]
Abstract
For decades, X-ray crystallography and NMR have been the most important techniques for studying the atomic structure of macromolecules. However, as a result of size, instability, low yield, and other factors, many macromolecules are difficult to crystallize or unsuitable for NMR studies. Electron cryo-microscopy (cryo-EM) does not depend on crystals and has therefore been the method of choice for many macromolecular complexes that cannot be crystallized, but atomic resolution has mostly been beyond its reach. A new generation of detectors that are capable of sensing directly the incident electrons has recently revolutionized the field, with structures of macromolecules now routinely being solved to near-atomic resolution. In this review, we summarize some of the most recent examples of high-resolution cryo-EM structures. We put particular emphasis on proteins with pharmacological relevance that have traditionally been inaccessible to crystallography. Furthermore, we discuss examples where interactions with small molecules have been fully characterized at atomic resolution. Finally, we stress the current limits of cryo-EM, and methodological issues related to its usage as a tool for drug development.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| |
Collapse
|
188
|
Romero-Romero S, Gomez Lagunas F, Balleza D. Side chain flexibility and coupling between the S4-S5 linker and the TRP domain in thermo-sensitive TRP channels: Insights from protein modeling. Proteins 2017; 85:630-646. [PMID: 28066924 DOI: 10.1002/prot.25243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 11/11/2022]
Abstract
The transient receptor potential (TRP) superfamily is subdivided into several subfamilies on the basis of sequence similarity, which is highly heterogeneous but shows a molecular architecture that resembles the one present in members of the Kv channel superfamily. Because of this diversity, they produce a large variety of channels with different gating and permeability properties. Elucidation of these particular features necessarily requires comparative studies based on structural and functional data. The present study aims to compilate, analyze, and determine, in a coherent way, the relationship between intrinsic side-chain flexibility and the allosteric coupling in members of the TRPV, TRPM, and TRPC families. Based on the recently determined structures of TRPV1 and TRPV2, we have generated protein models for single subunits of TRPV5, TRPM8, and TRPC5 channels. With these models, we focused our attention on the apparently crucial role of the GP dipeptide at the center of the S4-S5 linker and discussed its role in the interaction with the TRP domain, specifically with the highly-conserved Trp during this coupling. Our analysis suggests an important role of the S4-S5L flexibility in the thermosensitivity, where heat-activated channels possess rigid S4-S5 linkers, whereas cold-activated channels have flexible ones. Finally, we also present evidence of the key interaction between the conserved Trp residue of the TRP box and of several residues in the S4-S5L, importantly the central Pro. Proteins 2017; 85:630-646. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico city, MEXICO
| | - Froylan Gomez Lagunas
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico city, MEXICO
| | - Daniel Balleza
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico city, MEXICO
| |
Collapse
|
189
|
Marsakova L, Barvik I, Zima V, Zimova L, Vlachova V. The First Extracellular Linker Is Important for Several Aspects of the Gating Mechanism of Human TRPA1 Channel. Front Mol Neurosci 2017; 10:16. [PMID: 28197074 PMCID: PMC5281607 DOI: 10.3389/fnmol.2017.00016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is an excitatory ion channel involved in pain, inflammation and itching. This channel gates in response to many irritant and proalgesic agents, and can be modulated by calcium and depolarizing voltage. While the closed-state structure of TRPA1 has been recently resolved, also having its open state is essential for understanding how this channel works. Here we use molecular dynamics simulations combined with electrophysiological measurements and systematic mutagenesis to predict and explore the conformational changes coupled to the expansion of the presumptive channel's lower gate. We show that, upon opening, the upper part of the sensor module approaches the pore domain of an adjacent subunit and the conformational dynamics of the first extracellular flexible loop may govern the voltage-dependence of multimodal gating, thereby serving to stabilize the open state of the channel. These results are generally important in understanding the structure and function of TRPA1 and offer new insights into the gating mechanism of TRPA1 and related channels.
Collapse
Affiliation(s)
- Lenka Marsakova
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences Prague, Czechia
| | - Ivan Barvik
- Division of Biomolecular Physics, Faculty of Mathematics and Physics, Institute of Physics, Charles University Prague, Czechia
| | - Vlastimil Zima
- Division of Biomolecular Physics, Faculty of Mathematics and Physics, Institute of Physics, Charles University Prague, Czechia
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences Prague, Czechia
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology Czech Academy of Sciences Prague, Czechia
| |
Collapse
|
190
|
Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 2017; 8:169-177. [PMID: 28044278 PMCID: PMC5326624 DOI: 10.1007/s13238-016-0353-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel’s transmembrane segments, where it takes a “tail-up, head-down” configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by “pull-and-contact” with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.
Collapse
|
191
|
Abstract
TRPC channels are the first identified members in the TRP family. They function as either homo- or heterotetramers regulating intracellular Ca2+ concentration in response to numerous physiological or pathological stimuli. TRPC channels are nonselective cation channels permeable to Ca2+. The properties and the functional domains of TRPC channels have been identified by electrophysiological and biochemical methods. However, due to the large size, instability, and flexibility of their complexes, the structures of the members in TRPC family remain unrevealed. More efforts should be made on structure analysis and generating good tools, including specific antibodies, agonist, and antagonist.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
192
|
|
193
|
Maity S, Marchesi A, Torre V, Mazzolini M. Structural Heterogeneity of CNGA1 Channels Revealed by Electrophysiology and Single-Molecule Force Spectroscopy. ACS OMEGA 2016; 1:1205-1219. [PMID: 31457189 PMCID: PMC6640748 DOI: 10.1021/acsomega.6b00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 06/10/2023]
Abstract
The determination at atomic resolution of the three-dimensional molecular structure of membrane proteins such as receptors and several ion channels has been a major breakthrough in structural biology. The molecular structure of several members of the superfamily of voltage-gated ionic channels such as K+ and Na+ is now available. However, despite several attempts, the molecular structure at atomic resolution of the full cyclic nucleotide-gated (CNG) ion channel, although a member of the same superfamily of voltage-gated ion channels, has not been obtained yet, neither by X-ray crystallography nor by electron cryomicroscopy (cryo-EM). It is possible that CNG channels have a high structural heterogeneity, making difficult crystallization and single-particle analysis. To address this issue, we have combined single-molecule force spectroscopy (SMFS) and electrophysiological experiments to characterize the structural heterogeneity of CNGA1 channels expressed in Xenopus laevis oocytes. The unfolding of the cytoplasmic domain had force peaks, occurring with a probability from 0.2 to 0.96. Force peaks during the unfolding of the transmembrane domain had a probability close to 1, but the distribution of the increase in contour length between two successive force peaks had multiple maxima differing by tens of nanometers. Concomitant electrophysiological experiments showed that the rundown in mutant channels S399C is highly variable and that the effect of thiol reagents when specific residues were mutated was consistent with a dynamic structural heterogeneity. These results show that CNGA1 channels have a wide spectrum of native conformations that are difficult to detect with X-ray crystallography and cryo-EM.
Collapse
|
194
|
Sugio S, Nagasawa M, Kojima I, Ishizaki Y, Shibasaki K. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility. FASEB J 2016; 31:1368-1381. [PMID: 28007781 DOI: 10.1096/fj.201600686rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 12/12/2016] [Indexed: 11/11/2022]
Abstract
We have previously reported that transient receptor potential vanilloid 2 (TRPV2) can be activated by mechanical stimulation, which enhances axonal outgrowth in developing neurons; however, the molecular mechanisms that govern the contribution of TRPV2 activation to axonal outgrowth remain unclear. In the present study, we examined this mechanism by using PC12 cells as a neuronal model. Overexpression of TRPV2 enhanced axonal outgrowth in a mechanical stimulus-dependent manner. Accumulation of TRPV2 at the cell surface was 4-fold greater in the growth cone compared with the soma. In the growth cone, TRPV2 is not static, but dynamically accumulates (within ∼100 ms) to the site of mechanical stimulation. The dynamic and acute clustering of TRPV2 can enhance very weak mechanical stimuli via focal accumulation of TRPV2. Focal application of mechanical stimuli dramatically increased growth cone motility and caused actin reorganization via activation of TRPV2. We also found that TRPV2 physically interacts with actin and that changes in the actin cytoskeleton are required for its activation. Here, we demonstrated for the first time to our knowledge that TRPV2 clustering is induced by mechanical stimulation generated by axonal outgrowth and that TRPV2 activation is triggered by actin rearrangements that result from mechanical stimulation. Moreover, TRPV2 activation enhances growth cone motility and actin accumulation to promote axonal outgrowth. Sugio, S., Nagasawa, M., Kojima, I., Ishizaki, Y., Shibasaki, K. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility.
Collapse
Affiliation(s)
- Shouta Sugio
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masami Nagasawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan;
| |
Collapse
|
195
|
Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat Struct Mol Biol 2016; 24:114-122. [PMID: 27991905 DOI: 10.1038/nsmb.3343] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Mutations in either polycystin-1 (PC1 or PKD1) or polycystin-2 (PC2, PKD2 or TRPP1) cause autosomal-dominant polycystic kidney disease (ADPKD) through unknown mechanisms. Here we present the structure of human PC2 in a closed conformation, solved by electron cryomicroscopy at 4.2-Å resolution. The structure reveals a novel polycystin-specific 'tetragonal opening for polycystins' (TOP) domain tightly bound to the top of a classic transient receptor potential (TRP) channel structure. The TOP domain is formed from two extensions to the voltage-sensor-like domain (VSLD); it covers the channel's endoplasmic reticulum lumen or extracellular surface and encloses an upper vestibule, above the pore filter, without blocking the ion-conduction pathway. The TOP-domain fold is conserved among the polycystins, including the homologous channel-like region of PC1, and is the site of a cluster of ADPKD-associated missense variants. Extensive contacts among the TOP-domain subunits, the pore and the VSLD provide ample scope for regulation through physical and chemical stimuli.
Collapse
|
196
|
The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 2016; 167:763-773.e11. [PMID: 27768895 DOI: 10.1016/j.cell.2016.09.048] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 11/23/2022]
Abstract
The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.
Collapse
|
197
|
TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel) 2016; 9:ph9040077. [PMID: 27983625 PMCID: PMC5198052 DOI: 10.3390/ph9040077] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
Ion channels of the Transient Receptor Potential (TRP) family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis. In addition, there is a growing body of evidence implicating abnormal TRP channel function, as a product of excessive or deficient channel activity, in pathological skin conditions such as chronic pain and itch, dermatitis, vitiligo, alopecia, wound healing, skin carcinogenesis, and skin barrier compromise. These diverse functions, coupled with the fact that many TRP channels possess pharmacologically accessible sites, make this family of proteins appealing therapeutic targets for skin disorders.
Collapse
|
198
|
van Goor MKC, Hoenderop JGJ, van der Wijst J. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:883-893. [PMID: 27913205 DOI: 10.1016/j.bbamcr.2016.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport.
Collapse
Affiliation(s)
- Mark K C van Goor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
199
|
Wen H, Qin F, Zheng W. Toward elucidating the heat activation mechanism of the TRPV1 channel gating by molecular dynamics simulation. Proteins 2016; 84:1938-1949. [PMID: 27699868 DOI: 10.1002/prot.25177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/03/2016] [Accepted: 09/24/2016] [Indexed: 01/01/2023]
Abstract
As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state versus the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. Proteins 2016; 84:1938-1949. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, 14260
| | - Feng Qin
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York, 14260
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, 14260
| |
Collapse
|
200
|
Teng J, Loukin SH, Anishkin A, Kung C. A competing hydrophobic tug on L596 to the membrane core unlatches S4-S5 linker elbow from TRP helix and allows TRPV4 channel to open. Proc Natl Acad Sci U S A 2016; 113:11847-11852. [PMID: 27698146 PMCID: PMC5081603 DOI: 10.1073/pnas.1613523113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have some generalized physical understanding of how ion channels interact with surrounding lipids but few detailed descriptions on how interactions of particular amino acids with contacting lipids may regulate gating. Here we discovered a structure-specific interaction between an amino acid and inner-leaflet lipid that governs the gating transformations of TRPV4 (transient receptor potential vanilloid type 4). Many cation channels use a S4-S5 linker to transmit stimuli to the gate. At the start of TRPV4's linker helix is leucine 596. A hydrogen bond between the indole of W733 of the TRP helix and the backbone oxygen of L596 secures the helix/linker contact, which acts as a latch maintaining channel closure. The modeled side chain of L596 interacts with the inner lipid leaflet near the polar-nonpolar interface in our model-an interaction that we explored by mutagenesis. We examined the outward currents of TRPV4-expressing Xenopus oocyte upon depolarizations as well as phenotypes of expressing yeast cells. Making this residue less hydrophobic (L596A/G/W/Q/K) reduces open probability [Po; loss-of-function (LOF)], likely due to altered interactions at the polar-nonpolar interface. L596I raises Po [gain-of-function (GOF)], apparently by placing its methyl group further inward and receiving stronger water repulsion. Molecular dynamics simulations showed that the distance between the levels of α-carbons of H-bonded residues L596 and W733 is shortened in the LOFs and lengthened in the GOFs, strengthening or weakening the linker/TRP helix latch, respectively. These results highlight that L596 lipid attraction counteracts the latch bond in a tug-of-war to tune the Po of TRPV4.
Collapse
Affiliation(s)
- Jinfeng Teng
- Laboratory of Molecular and Cell Biology, University of Wisconsin, Madison, WI 53706; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Stephen H Loukin
- Laboratory of Molecular and Cell Biology, University of Wisconsin, Madison, WI 53706
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Ching Kung
- Laboratory of Molecular and Cell Biology, University of Wisconsin, Madison, WI 53706; Department of Genetics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|