151
|
Wang VYF, Jiao X, Kiledjian M, Tong L. Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes. Nucleic Acids Res 2015; 43:6596-606. [PMID: 26101253 PMCID: PMC4513879 DOI: 10.1093/nar/gkv620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/02/2015] [Indexed: 11/14/2022] Open
Abstract
Recent studies showed that Rai1 and its homologs are a crucial component of the mRNA 5'-end capping quality control mechanism. They can possess RNA 5'-end pyrophosphohydrolase (PPH), decapping, and 5'-3' exonuclease (toward 5' monophosphate RNA) activities, which help to degrade mRNAs with incomplete 5'-end capping. A single active site in the enzyme supports these apparently distinct activities. However, each Rai1 protein studied so far has a unique set of activities, and the molecular basis for these differences are not known. Here, we have characterized the highly diverse activity profiles of Rai1 homologs from a collection of fungal organisms and identified a new activity for these enzymes, 5'-end triphosphonucleotide hydrolase (TPH) instead of PPH activity. Crystal structures of two of these enzymes bound to RNA oligonucleotides reveal differences in the RNA binding modes. Structure-based mutations of these enzymes, changing residues that contact the RNA but are poorly conserved, have substantial effects on their activity, providing a framework to begin to understand the molecular basis for the different activity profiles.
Collapse
Affiliation(s)
- Vivien Ya-Fan Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
152
|
Ay A, Wilner N, Yildirim N. Mathematical modeling deciphers the benefits of alternatively-designed conserved activatory and inhibitory gene circuits. MOLECULAR BIOSYSTEMS 2015; 11:2017-30. [PMID: 25966646 DOI: 10.1039/c5mb00269a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cells employ a variety of mechanisms as a response to external signals to maintain cellular homeostasis. In this study, we examine four activatory and four inhibitory protein synthesis mechanisms at both population and single cell level that can be triggered by a transient external signal. Activation mechanisms result from the assumption that cells can employ four different modes to temporarily increase the levels of a protein: decreased mRNA degradation, increased mRNA synthesis, decreased protein degradation and increased protein synthesis. For the inhibition mechanisms it is assumed that a cell can reduce a protein's level through four ways: increased mRNA degradation, reduced mRNA synthesis, increased protein degradation and reduced protein synthesis. Deterministic and stochastic models were developed to analyze the dynamic responses of these eight mechanisms to a transient signal. Three different response metrics were used to measure different aspects of the response. These metrics are (i) mid-protein abundance (mP), (ii) time required for the protein to reach the mid-protein level (mT), and (iii) duration of response (D), which is defined as the total time for which the protein (P) abundance are above or below of mid-protein level. Our simulations show that of the activation mechanisms, the signal-dependent increase in mRNA synthesis and protein synthesis are more effective and faster, than the signal dependent decrease in mRNA and protein degradation. On the other hand, the mechanism involving signal dependent increase in protein synthesis is noisier than the signal dependent increase in mRNA synthesis in regard to all metrics used. Of the four inhibition mechanisms, the signal-dependent increase in the protein degradation is the most effective and fastest of the four inhibition mechanisms. It is also noisiest of the four inhibition mechanisms before the protein levels reach a steady state around 100 minutes.
Collapse
Affiliation(s)
- Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| | | | | |
Collapse
|
153
|
Polyuridylation in Eukaryotes: A 3'-End Modification Regulating RNA Life. BIOMED RESEARCH INTERNATIONAL 2015; 2015:968127. [PMID: 26078976 PMCID: PMC4442281 DOI: 10.1155/2015/968127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022]
Abstract
In eukaryotes, mRNA polyadenylation is a well-known modification that is essential for many aspects of the protein-coding RNAs life cycle. However, modification of the 3′ terminal nucleotide within various RNA molecules is a general and conserved process that broadly modulates RNA function in all kingdoms of life. Numerous types of modifications have been characterized, which are generally specific for a given type of RNA such as the CCA addition found in tRNAs. In recent years, the addition of nontemplated uridine nucleotides or uridylation has been shown to occur in various types of RNA molecules and in various cellular compartments with significantly different outcomes. Indeed, uridylation is able to alter RNA half-life both in positive and in negative ways, highlighting the importance of the enzymes in charge of performing this modification. The present review aims at summarizing the current knowledge on the various processes leading to RNA 3′-end uridylation and on their potential impacts in various diseases.
Collapse
|
154
|
The enzyme activities of Caf1 and Ccr4 are both required for deadenylation by the human Ccr4-Not nuclease module. Biochem J 2015; 469:169-76. [PMID: 25944446 PMCID: PMC4613498 DOI: 10.1042/bj20150304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/06/2015] [Indexed: 01/02/2023]
Abstract
In eukaryotic cells, the shortening and removal of the poly(A) tail (deadenylation) of cytoplasmic mRNA is a key event in regulated mRNA degradation. A major enzyme involved in deadenylation is the Ccr4-Not deadenylase complex, which can be recruited to its target mRNA by RNA-binding proteins or the miRNA repression complex. In addition to six non-catalytic components, the complex contains two enzymatic subunits with ribonuclease activity: Ccr4 and Caf1 (Pop2). In vertebrates, each deadenylase subunit is encoded by two paralogues: Caf1, which can interact with the anti-proliferative protein BTG2, is encoded by CNOT7 and CNOT8, whereas Ccr4 is encoded by the highly similar genes CNOT6 and CNOT6L. Currently, it is unclear whether the catalytic subunits work co-operatively or whether the nuclease components have unique roles in deadenylation. We therefore developed a method to express and purify a minimal human BTG2-Caf1-Ccr4 nuclease sub-complex from bacterial cells. By using chemical inhibition and well-characterized inactivating amino acid substitutions, we demonstrate that the enzyme activities of Caf1 and Ccr4 are both required for deadenylation in vitro. These results indicate that Caf1 and Ccr4 cooperate in mRNA deadenylation and suggest that the enzyme activities of Caf1 and Ccr4 are regulated via allosteric interactions within the nuclease module.
Collapse
|
155
|
General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in Drosophila Cells. Mol Cell Biol 2015; 35:2309-20. [PMID: 25918245 DOI: 10.1128/mcb.01346-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/19/2015] [Indexed: 01/08/2023] Open
Abstract
The translation and degradation of mRNAs are two key steps in gene expression that are highly regulated and targeted by many factors, including microRNAs (miRNAs). While it is well established that translation and mRNA degradation are tightly coupled, it is still not entirely clear where in the cell mRNA degradation takes place. In this study, we investigated the possibility of mRNA degradation on the ribosome in Drosophila cells. Using polysome profiles and ribosome affinity purification, we could demonstrate the copurification of various deadenylation and decapping factors with ribosome complexes. Also, AGO1 and GW182, two key factors in the miRNA-mediated mRNA degradation pathway, were associated with ribosome complexes. Their copurification was dependent on intact mRNAs, suggesting the association of these factors with the mRNA rather than the ribosome itself. Furthermore, we isolated decapped mRNA degradation intermediates from ribosome complexes and performed high-throughput sequencing analysis. Interestingly, 93% of the decapped mRNA fragments (approximately 12,000) could be detected at the same relative abundance on ribosome complexes and in cell lysates. In summary, our findings strongly indicate the association of the majority of bulk mRNAs as well as mRNAs targeted by miRNAs with the ribosome during their degradation.
Collapse
|
156
|
Tummala H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, Powell J, Cooper N, Foster A, Mohammed S, Plagnol V, Vulliamy T, Dokal I. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125:2151-60. [PMID: 25893599 DOI: 10.1172/jci78963] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.
Collapse
|
157
|
Khan D, Dai R, Ansar Ahmed S. Sex differences and estrogen regulation of miRNAs in lupus, a prototypical autoimmune disease. Cell Immunol 2015; 294:70-9. [DOI: 10.1016/j.cellimm.2015.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/12/2022]
|
158
|
Hausburg MA, Doles JD, Clement SL, Cadwallader AB, Hall MN, Blackshear PJ, Lykke-Andersen J, Olwin BB. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. eLife 2015; 4:e03390. [PMID: 25815583 PMCID: PMC4415119 DOI: 10.7554/elife.03390] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3′ untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis. DOI:http://dx.doi.org/10.7554/eLife.03390.001 When muscles are damaged, they can repair themselves to some extent by making new muscle cells. These develop from groups of cells called satellite cells, which are found near the surface of muscle fibers. Once the muscle is injured, the satellite cells are activated and can divide to form two cells with different properties. One remains a satellite cell, while the other forms a ‘myoblast’ that eventually fuses into a mature muscle fiber. Under normal conditions the satellite cells remain in a dormant state and do not divide, but it is not clear how they maintain this dormant state. To create a protein, the gene that encodes it is first ‘transcribed’ to produce a molecule called mRNA, which is then used as a template to build the protein. A protein called Tristetraprolin (TTP) can bind to mRNA molecules and cause them to break down or decay, and so TTP can prevent the mRNA from being used to make a protein. Hausburg, Doles et al. analyzed satellite cells from uninjured muscle and compared them with those from injured tissue. This revealed that when injured, the satellite cells reduced the abundance of several mRNAs, including TTP. Further investigation found that in satellite cells from uninjured tissue, TTP causes the decay of mRNA molecules that are used to produce a protein called MyoD. As MyoD helps the satellite cells to specialize, this decay therefore prevents the formation of myoblasts and keeps the satellite cells in a dormant state. In contrast, damage to the muscle tissue activates a signaling pathway that ultimately inactivates TTP. This enables more of the MyoD protein to be made and the myoblast population to expand. When Hausburg, Doles et al. experimentally reduced the levels of TTP inside satellite cells, the cells developed into myoblasts even when the tissue was uninjured. Thus, TTP is an important regulator that allows satellite cells to remain in a dormant state. In dormant adult stem cells, regulation of protein availability by RNA binding proteins, such as TTP, may co-ordinate rapid changes in metabolic state to promptly repair injured tissue. A major challenge will be to identify the group of proteins involved and determine the precise mechanisms involved in regulating their availability. DOI:http://dx.doi.org/10.7554/eLife.03390.002
Collapse
Affiliation(s)
- Melissa A Hausburg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jason D Doles
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Sandra L Clement
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Adam B Cadwallader
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Monica N Hall
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Perry J Blackshear
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jens Lykke-Andersen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
159
|
Dickey LL, Duncan JK, Hanley TM, Fearns R. Decapping protein 1 phosphorylation modulates IL-8 expression during respiratory syncytial virus infection. Virology 2015; 481:199-209. [PMID: 25796077 DOI: 10.1016/j.virol.2015.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Respiratory syncytial virus (RSV) is a negative-strand RNA virus that is an important cause of bronchiolitis and pneumonia. We investigated the effect of RSV infection on the expression patterns of cellular proteins involved in regulating mRNA translation and degradation, and found that a processing-body protein involved in mRNA degradation, decapping protein 1a (DCP1), was phosphorylated rapidly following infection. UV-inactivated and sucrose-purified RSV were sufficient to mediate DCP1 phosphorylation, indicating that it occurs as a consequence of an early event in RSV infection. Analysis using kinase inhibitors showed that RSV-induced DCP1 phosphorylation occurred through the ERK1/2 pathway. The DCP1 phosphorylation sites were limited to serine 315, serine 319, and threonine 321. Overexpression of wt DCP1 led to a decrease in RSV-induced IL-8 production, but this effect was abrogated in cells overexpressing phosphorylation-deficient DCP1 mutants. These results suggest that DCP1 phosphorylation modulates the host chemokine response to RSV infection.
Collapse
Affiliation(s)
- Laura L Dickey
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| | - Julie K Duncan
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| | - Timothy M Hanley
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| | - Rachel Fearns
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
160
|
Palumbo MC, Farina L, Paci P. Kinetics effects and modeling of mRNA turnover. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:327-36. [PMID: 25727049 DOI: 10.1002/wrna.1277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/12/2014] [Accepted: 01/09/2015] [Indexed: 01/08/2023]
Abstract
Broader comprehension of gene expression regulatory mechanisms can be gained from a global analysis of how transcription and degradation are coordinated to orchestrate complex cell responses. The role of messenger RNA (mRNA) turnover modulation in gene expression levels has become increasingly recognized. From such perspective, in this review we briefly illustrate how a simple but effective mathematical model of mRNA turnover and some experimental findings, may together shed light on the molecular mechanisms underpinning the major role of mRNA decay rates in shaping the kinetics of gene activation and repression.
Collapse
Affiliation(s)
- Maria Concetta Palumbo
- Institute for Computing Applications "Mauro Picone", National Research Council, Rome, Italy
| | | | | |
Collapse
|
161
|
AUF-1 and YB-1 independently regulate β-globin mRNA in developing erythroid cells through interactions with poly(A)-binding protein. Mech Dev 2015; 136:40-52. [PMID: 25720531 DOI: 10.1016/j.mod.2015.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 11/23/2022]
Abstract
The normal expression of β-globin protein in mature erythrocytes is critically dependent on post-transcriptional events in erythroid progenitors that ensure the high stability of β-globin mRNA. Previous work has revealed that these regulatory processes require AUF-1 and YB-1, two RNA-binding proteins that assemble an mRNP β-complex on the β-globin 3'UTR. Here, we demonstrate that the β-complex organizes during the erythropoietic interval when both β-globin mRNA and protein accumulate rapidly, implicating the importance of this regulatory mRNP to normal erythroid differentiation. Subsequent functional analyses link β-complex assembly to the half-life of β-globin mRNA in vivo, providing a mechanistic basis for this regulatory activity. AUF-1 and YB-1 appear to serve a redundant post-transcriptional function, as both β-complex assembly and β-globin mRNA levels are reduced by coordinate depletion of the two factors, and can be restored by independent rescue with either factor alone. Additional studies demonstrate that the β-complex assembles more efficiently on polyadenylated transcripts, implicating a model in which the β-complex enhances the binding of PABPC1 to the poly(A) tail, inhibiting mRNA deadenylation and consequently effecting the high half-life of β-globin transcripts in erythroid progenitors. These data specify a post-transcriptional mechanism through which AUF1 and YB1 contribute to the normal development of erythropoietic cells, as well as to non-hematopoietic tissues in which AUF1- and YB1-based regulatory mRNPs have been observed to assemble on heterologous mRNAs.
Collapse
|
162
|
Lim J, Ha M, Chang H, Kwon SC, Simanshu DK, Patel DJ, Kim VN. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 2015; 159:1365-76. [PMID: 25480299 DOI: 10.1016/j.cell.2014.10.055] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/24/2014] [Accepted: 10/20/2014] [Indexed: 02/05/2023]
Abstract
Uridylation occurs pervasively on mRNAs, yet its mechanism and significance remain unknown. By applying TAIL-seq, we identify TUT4 and TUT7 (TUT4/7), also known as ZCCHC11 and ZCCHC6, respectively, as mRNA uridylation enzymes. Uridylation readily occurs on deadenylated mRNAs in cells. Consistently, purified TUT4/7 selectively recognize and uridylate RNAs with short A-tails (less than ∼ 25 nt) in vitro. PABPC1 antagonizes uridylation of polyadenylated mRNAs, contributing to the specificity for short A-tails. In cells depleted of TUT4/7, the vast majority of mRNAs lose the oligo-U-tails, and their half-lives are extended. Suppression of mRNA decay factors leads to the accumulation of oligo-uridylated mRNAs. In line with this, microRNA induces uridylation of its targets, and TUT4/7 are required for enhanced decay of microRNA targets. Our study explains the mechanism underlying selective uridylation of deadenylated mRNAs and demonstrates a fundamental role of oligo-U-tail as a molecular mark for global mRNA decay.
Collapse
Affiliation(s)
- Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Minju Ha
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - S Chul Kwon
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Dhirendra K Simanshu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
163
|
Raju KK, Natarajan S, Kumar NS, Kumar DA, NM R. Role of cytoplasmic deadenylation and mRNA decay factors in yeast apoptosis. FEMS Yeast Res 2015; 15:fou006. [DOI: 10.1093/femsyr/fou006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
164
|
A mutation in cnot8, component of the Ccr4-not complex regulating transcript stability, affects expression levels of developmental regulators and reveals a role of Fgf3 in development of caudal hypothalamic dopaminergic neurons. PLoS One 2014; 9:e113829. [PMID: 25478689 PMCID: PMC4257555 DOI: 10.1371/journal.pone.0113829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 10/31/2014] [Indexed: 12/21/2022] Open
Abstract
While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of developmental control genes.
Collapse
|
165
|
White MR, Khan MM, Deredge D, Ross CR, Quintyn R, Zucconi BE, Wysocki VH, Wintrode PL, Wilson GM, Garcin ED. A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J Biol Chem 2014; 290:1770-85. [PMID: 25451934 DOI: 10.1074/jbc.m114.618165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous adenine-uridine rich elements (AREs) from various mRNA 3'-untranslated regions in vitro and in vivo despite its lack of a canonical RNA binding motif. How GAPDH binds to these AREs is still unknown. Here we discovered that GAPDH binds with high affinity to the core ARE from tumor necrosis factor-α mRNA via a two-step binding mechanism. We demonstrate that a mutation at the GAPDH dimer interface impairs formation of the second RNA-GAPDH complex and leads to changes in the RNA structure. We investigated the effect of this interfacial mutation on GAPDH oligomerization by crystallography, small-angle x-ray scattering, nano-electrospray ionization native mass spectrometry, and hydrogen-deuterium exchange mass spectrometry. We show that the mutation does not significantly affect GAPDH tetramerization as previously proposed. Instead, the mutation promotes short-range and long-range dynamic changes in regions located at the dimer and tetramer interface and in the NAD(+) binding site. These dynamic changes are localized along the P axis of the GAPDH tetramer, suggesting that this region is important for RNA binding. Based on our results, we propose a model for sequential GAPDH binding to RNA via residues located at the dimer and tetramer interfaces.
Collapse
Affiliation(s)
- Michael R White
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Mohd M Khan
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christina R Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Royston Quintyn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Beth E Zucconi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Elsa D Garcin
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250,
| |
Collapse
|
166
|
Wroblewski T, Matvienko M, Piskurewicz U, Xu H, Martineau B, Wong J, Govindarajulu M, Kozik A, Michelmore RW. Distinctive profiles of small RNA couple inverted repeat-induced post-transcriptional gene silencing with endogenous RNA silencing pathways in Arabidopsis. RNA (NEW YORK, N.Y.) 2014; 20:1987-99. [PMID: 25344399 PMCID: PMC4238362 DOI: 10.1261/rna.046532.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The experimental induction of RNA silencing in plants often involves expression of transgenes encoding inverted repeat (IR) sequences to produce abundant dsRNAs that are processed into small RNAs (sRNAs). These sRNAs are key mediators of post-transcriptional gene silencing (PTGS) and determine its specificity. Despite its application in agriculture and broad utility in plant research, the mechanism of IR-PTGS is incompletely understood. We generated four sets of 60 Arabidopsis plants, each containing IR transgenes expressing different configurations of uidA and CHALCONE Synthase (At-CHS) gene fragments. Levels of PTGS were found to depend on the orientation and position of the fragment in the IR construct. Deep sequencing and mapping of sRNAs to corresponding transgene-derived and endogenous transcripts identified distinctive patterns of differential sRNA accumulation that revealed similarities among sRNAs associated with IR-PTGS and endogenous sRNAs linked to uncapped mRNA decay. Detailed analyses of poly-A cleavage products from At-CHS mRNA confirmed this hypothesis. We also found unexpected associations between sRNA accumulation and the presence of predicted open reading frames in the trigger sequence. In addition, strong IR-PTGS affected the prevalence of endogenous sRNAs, which has implications for the use of PTGS for experimental or applied purposes.
Collapse
Affiliation(s)
- Tadeusz Wroblewski
- The Genome Center, University of California, Davis, Davis, California 95616, USA
| | - Marta Matvienko
- The Genome Center, University of California, Davis, Davis, California 95616, USA
| | - Urszula Piskurewicz
- The Genome Center, University of California, Davis, Davis, California 95616, USA
| | - Huaqin Xu
- The Genome Center, University of California, Davis, Davis, California 95616, USA
| | - Belinda Martineau
- The Genome Center, University of California, Davis, Davis, California 95616, USA
| | - Joan Wong
- The Genome Center, University of California, Davis, Davis, California 95616, USA
| | | | - Alexander Kozik
- The Genome Center, University of California, Davis, Davis, California 95616, USA
| | - Richard W Michelmore
- The Genome Center, University of California, Davis, Davis, California 95616, USA Department of Plant Science, University of California, Davis, Davis, California 95616, USA Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, USA Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
167
|
Development of strand-specific real-time RT-PCR to distinguish viral RNAs during Newcastle disease virus infection. ScientificWorldJournal 2014; 2014:934851. [PMID: 25379553 PMCID: PMC4212552 DOI: 10.1155/2014/934851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) causes large losses in the global fowl industry. To better understand NDV replication and transcription cycle, quantitative detection methods for distinguishing NDV genomic RNA (gRNA), antigenomic RNA (cRNA), and messenger RNA (mRNA) in NDV-infected cells are indispensible. Three reverse transcription primers were designed to specifically target the nucleoprotein (NP) region of gRNA, cRNA, and NP mRNA, and a corresponding real-time RT-PCR assay was developed to simultaneously quantify the three types of RNAs in NDV-infected cells. This method showed very good specificity, sensitivity, and reproducibility. The detection range of the assay was between 5.5 × 102 and 1.1 × 109 copies/μL of the target gene. These methods were applied to investigate the dynamics of the gRNA, cRNA, and mRNA synthesis in NDV La Sota infected DF-1 cells. The results showed that the copy numbers of viral gRNA, cRNA, and NP mRNA all exponentially increased in the beginning. The viral RNA copy number then plateaued at 10'h postinfection and gradually decreased from 16 h postinfection. No synthesis priority was observed between replication (gRNA and cRNA amounts) and transcription (mRNA amounts) during NDV infection. However, the cRNA accumulated more rapidly than gRNA, as the cRNA copy number was three- to tenfold higher than gRNA starting from 2 h postinfection. Conclusion. A real-time RT-PCR for absolute quantitation of specific viral RNA fragments in NDV-infected cells was developed for the first time. The development of this assay will be helpful for further studies on the pathogenesis and control strategies of NDV.
Collapse
|
168
|
Eliseeva IA, Lyabin DN, Ovchinnikov LP. Poly(A)-binding proteins: structure, domain organization, and activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1377-91. [PMID: 24490729 DOI: 10.1134/s0006297913130014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA interactions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
169
|
Ahlemeyer B, Vogt JF, Michel V, Hahn-Kohlberger P, Baumgart-Vogt E. Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency. Histochem Cell Biol 2014; 142:577-91. [PMID: 25224142 DOI: 10.1007/s00418-014-1254-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
The pathomechanism of peroxisomal biogenesis disorders (PBDs), a group of inherited autosomal recessive diseases with mutations of peroxin (PEX) genes, is not yet fully understood. Therefore, several knockout models, e.g., the PEX5 knockout mouse, have been generated exhibiting a complete loss of peroxisomal function. In this study, we wanted to knockdown PEX5 using the siRNA technology (1) to mimic milder forms of PBDs in which the mutated peroxin has some residual function and (2) to analyze the cellular consequences of a reduction of the PEX5 protein without adaption during the development as it is the case in a knockout animal. First, we tried to optimize the transfection of the hepatoma cell line HepG2 with PEX5 siRNA using different commercially available liposomal and non-liposomal transfection reagents (Lipofectamine(®) 2000, FuGENE 6, HiPerFect(®), INTERFERin™, RiboJuice™) as well as microporation using the Neon™ Transfection system. Microporation was found to be superior to the transfection reagents with respect to the transfection efficiency (100 vs. 0-70%), to the reduction of PEX5 mRNA (by 90 vs. 0-50%) and PEX5 protein levels (by 70 vs. 0-50%). Interestingly, we detected that a part of the cleaved PEX5 mRNA still existed as 3' fragment (15%) 24 h after microporation. Using microporation, we further analyzed whether the reduced PEX5 protein level impaired peroxisomal function. We indeed detected a reduced targeting of SKL-tagged proteins into peroxisomes as well as an increased oxidative stress as found in PBD patients and respective knockout mouse models. Knockdown of the PEX5 protein and functional consequences were at a maximum 48 h after microporation. Thereafter, the PEX5 protein was resynthesized, which may allow the temporal analysis of the loss as well as the reconstitution of peroxisomes in the future. In conclusion, we propose microporation as an efficient and reproducible method to transfect HepG2 cells with PEX5 siRNA. We succeeded to transiently knockdown PEX5 mRNA and its protein level leading to functional consequences similar as observed in peroxisome deficiencies.
Collapse
Affiliation(s)
- Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, 35385, Giessen, Germany,
| | | | | | | | | |
Collapse
|
170
|
Yamashita Y, Lambein I, Kobayashi S, Onouchi H, Chiba Y, Naito S. A halt in poly(A) shortening during S-adenosyl-L-methionine-induced translation arrest in CGS1 mRNA of Arabidopsis thaliana. Genes Genet Syst 2014; 88:241-9. [PMID: 24463527 DOI: 10.1266/ggs.88.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cystathionine γ-synthase (CGS) catalyzes the first committed step of methionine (Met) biosynthesis in plants. Expression of the Arabidopsis thaliana CGS1 gene is negatively feedback-regulated in response to the direct Met metabolite S-adenosyl-L-methionine (AdoMet). This regulation occurs at the step of mRNA stability during translation and is coupled with AdoMet-induced CGS1-specific translation arrest. In general, mRNA decay is initiated by a shortening of the poly(A) tail. However, this process has not been studied in detail in cases where regulatory events, such as programmed translation arrest, are involved. Here, we report that the poly(A) tail of the full-length CGS1 mRNA showed an apparent increase from 50-80 nucleotides (nt) to 140-150 nt after the induction of CGS1 mRNA degradation. This finding was unexpected because mRNAs that are destined for degradation harbored longer poly(A) tail than mRNAs that were not targeted for degradation. The results suggest that poly(A) shortening is inhibited or delayed during AdoMet-induced translation arrest of CGS1 mRNA. We propose an explanation for this phenomenon that remains consistent with the recent model of actively translating mRNA. We also found that CGS1 mRNA degradation intermediates, which are 5'-truncated forms of CGS1 mRNA, had a short poly(A) tail of 10-30 nt. This suggests that poly(A) shortening occurs rapidly on the degradation intermediates. The present study highlights CGS1 mRNA degradation as a useful system to understand the dynamic features of poly(A) shortening.
Collapse
Affiliation(s)
- Yui Yamashita
- Graduate School of Life Science, Hokkaido University
| | | | | | | | | | | |
Collapse
|
171
|
Abstract
Poly(A) tails are important regulators of mRNA stability and translational efficiency. Cytoplasmic removal of poly(A) tails by 3'→5' exonucleases (deadenylation) is the rate-limiting step in mRNA degradation. Two exonuclease complexes contribute the majority of the deadenylation activity in eukaryotes: Ccr4-Not and Pan2-Pan3. These can be specifically recruited to mRNA to regulate mRNA stability or translational efficiency, thereby fine-tuning gene expression. In the present review, we discuss the activities and roles of the Pan2-Pan3 deadenylation complex.
Collapse
|
172
|
Wigington CP, Williams KR, Meers MP, Bassell GJ, Corbett AH. Poly(A) RNA-binding proteins and polyadenosine RNA: new members and novel functions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2014; 5:601-22. [PMID: 24789627 PMCID: PMC4332543 DOI: 10.1002/wrna.1233] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 02/05/2023]
Abstract
Poly(A) RNA-binding proteins (Pabs) bind with high affinity and specificity to polyadenosine RNA. Textbook models show a nuclear Pab, PABPN1, and a cytoplasmic Pab, PABPC, where the nuclear PABPN1 modulates poly(A) tail length and the cytoplasmic PABPC stabilizes poly(A) RNA in the cytoplasm and also enhances translation. While these conventional roles are critically important, the Pab family has expanded recently both in number and in function. A number of novel roles have emerged for both PAPBPN1 and PABPC that contribute to the fine-tuning of gene expression. Furthermore, as the characterization of the nucleic acid binding properties of RNA-binding proteins advances, additional proteins that show high affinity and specificity for polyadenosine RNA are being discovered. With this expansion of the Pab family comes a concomitant increase in the potential for Pabs to modulate gene expression. Further complication comes from an expansion of the potential binding sites for Pab proteins as revealed by an analysis of templated polyadenosine stretches present within the transcriptome. Thus, Pabs could influence mRNA fate and function not only by binding to the nontemplated poly(A) tail but also to internal stretches of adenosine. Understanding the diverse functions of Pab proteins is not only critical to understand how gene expression is regulated but also to understand the molecular basis for tissue-specific diseases that occur when Pab proteins are altered. Here we describe both conventional and recently emerged functions for PABPN1 and PABPC and then introduce and discuss three new Pab family members, ZC3H14, hnRNP-Q1, and LARP4.
Collapse
Affiliation(s)
- Callie P. Wigington
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn R. Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P. Meers
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
173
|
Aizer A, Kalo A, Kafri P, Shraga A, Ben-Yishay R, Jacob A, Kinor N, Shav-Tal Y. Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. J Cell Sci 2014; 127:4443-56. [PMID: 25128566 DOI: 10.1242/jcs.152975] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 5'-to-3' mRNA degradation machinery localizes to cytoplasmic processing bodies (P-bodies), which are non-membranous structures found in all eukaryotes. Although P-body function has been intensively studied in yeast, less is known about their role in mammalian cells, such as whether P-body enzymes are actively engaged in mRNA degradation or whether P-bodies serve as mRNA storage depots, particularly during cellular stress. We examined the fate of mammalian mRNAs in P-bodies during translational stress, and show that mRNAs accumulate within P-bodies during amino acid starvation. The 5' and 3' ends of the transcripts residing in P-bodies could be identified, but poly(A) tails were not detected. Using the MS2 mRNA-tagging system for mRNA visualization in living cells, we found that a stationary mRNA population formed in P-bodies during translational stress, which cleared gradually after the stress was relieved. Dcp2-knockdown experiments showed that there is constant degradation of part of the P-body-associated mRNA population. This analysis demonstrates the dual role of P-bodies as decay sites and storage areas under regular and stress conditions.
Collapse
Affiliation(s)
- Adva Aizer
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Alon Kalo
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Pinhas Kafri
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Amit Shraga
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Rakefet Ben-Yishay
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Avi Jacob
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Noa Kinor
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
174
|
Vega L, Sevillano L, Esteban R, Fujimura T. Resting complexes of the persistent yeast 20S RNA Narnavirus consist solely of the 20S RNA viral genome and its RNA polymerase p91. Mol Microbiol 2014; 93:1119-29. [PMID: 25048081 DOI: 10.1111/mmi.12724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 11/30/2022]
Abstract
The positive strand 20S RNA narnavirus persistently infects Saccharomyces cerevisiae. The 20S RNA genome has a single gene that encodes the RNA-dependent RNA polymerase (p91). 20S RNA forms ribonucleoprotein resting complexes (RNPs) with p91 and resides in the cytoplasm. Here we found no host proteins stoichiometrically associated with the RNP by pull-down experiments. Furthermore, 20S RNA, when expressed from a vector in Escherichia coli, formed RNPs with p91 in the absence of yeast proteins. This interaction required the 3' cis signal for complex formation. Moreover, when 23S RNA, the genome of another narnavirus, was expressed in E. coli, it also formed RNPs with its RNA polymerase p104. Finally, when both RNAs were expressed in the same E. coli cell, they formed RNPs only with their cognate RNA polymerases. These results altogether indicate that narnaviruses RNPs consist of only the viral genomes and their cognate RNA polymerases. Because the copy number of the RNPs can be induced almost equivalent to those of rRNAs in some yeast strains, the absence of host proteins may alleviate the burden on the host by not sequestering proteins into the RNPs. It may also contribute to the persistent infection of narnaviruses by decreasing their visibility.
Collapse
Affiliation(s)
- Lorena Vega
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | | | | | | |
Collapse
|
175
|
Das S, Saha U, Das B. Cbc2p, Upf3p and eIF4G are components of the DRN (Degradation of mRNA in the Nucleus) in Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14:922-32. [PMID: 25041160 DOI: 10.1111/1567-1364.12180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022] Open
Abstract
Messenger RNAs retained in the nucleus of Saccharomyces cerevisiae are subjected to a degradation system designated DRN (Degradation of mRNA in the Nucleus) that is dependent on the nuclear mRNA cap-binding protein, Cbc1p, as well as nuclear exosome component Rrp6p, a 3' to 5' exoribonuclease. DRN has been shown to act on RNAs preferentially retained in the nucleus, such as: (1) global mRNAs in export defective nup116-Δ mutant strains at the restrictive temperature; (2) a certain class of normal mRNAs called special mRNAs (e.g. IMP3 and YLR194c mRNAs); and (3) mutant mRNAs for example, lys2-187 and cyc1-512. In this study, we further identify three novel components of DRN (Cbc2p, Upf3p and Tif4631p) by employing a genetic screen and by considering proteins/factors that interact with Cbc1p. Participation of these components in DRN was confirmed by demonstrating that null alleles of these genes resulted in stabilization of the rapid decay of global mRNAs in the export defective nup116-Δ strain and of representative special mRNAs. Depletion of Tif4632p, an isoform of Tif4631p, also exhibited a partial impairment of DRN function and is therefore also considered to play a functional role in DRN. These findings clearly establish that CBC2, UPF3, and TIF4631/32 gene products participate in DRN function.
Collapse
Affiliation(s)
- Satarupa Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | | |
Collapse
|
176
|
Chou WL, Huang LF, Fang JC, Yeh CH, Hong CY, Wu SJ, Lu CA. Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa. PLANT MOLECULAR BIOLOGY 2014; 85:443-58. [PMID: 24805883 DOI: 10.1007/s11103-014-0196-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/25/2014] [Indexed: 05/27/2023]
Abstract
Deadenylation, also called poly(A) tail shortening, is the first, rate-limiting step in the general cytoplasmic mRNA degradation in eukaryotic cells. The CCR4-NOT complex, containing the two key components carbon catabolite repressor 4 (CCR4) and CCR4-associated factor 1 (CAF1), is a major player in deadenylation. CAF1 belongs to the RNase D group in the DEDD superfamily, and is a protein conserved through evolution from yeast to humans and plants. Every higher plant, including Arabidopsis and rice, contains a CAF1 multigene family. In this study, we identified and cloned four OsCAF1 genes (OsCAF1A, OsCAF1B, OsCAF1G, and OsCAF1H) from rice. Four recombinant OsCAF1 proteins, rOsCAF1A, rOsCAF1B, rOsCAF1G, and rOsCAF1H, all exhibited 3'-5' exonuclease activity in vitro. Point mutations in the catalytic residues of each analyzed recombinant OsCAF1 proteins were shown to disrupt deadenylase activity. OsCAF1A and OsCAF1G mRNA were found to be abundant in the leaves of mature plants. Two types of OsCAF1B mRNA transcript were detected in an inverse expression pattern in various tissues. OsCAF1B was transient, induced by drought, cold, abscisic acid, and wounding treatments. OsCAF1H mRNA was not detected either under normal conditions or during most stress treatments, but only accumulated during heat stress. Four OsCAF1-reporter fusion proteins were localized in both the cytoplasm and nucleus. In addition, when green fluorescent protein fused with OsCAF1B, OsCAF1G, and OsCAF1H, respectively, fluorescent spots were observed in the nucleolus. OsCAF1B fluorescent fusion proteins were located in discrete cytoplasmic foci and fibers. We present evidences that OsCAF1B colocalizes with AtXRN4, a processing body marker, and AtKSS12, a microtubules maker, indicating that OsCAF1B is a component of the plant P-body and associate with microtubules. Our findings provide biochemical evidence that OsCAF1 proteins may be involved in the deadenylation in rice. The unique expression patterns of each OsCAF1 were observed in various tissues when undergoing abiotic stress treatments, implying that each CAF1 gene in rice plays a specific role in the development and stress response of a plant.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
177
|
Schäfer IB, Rode M, Bonneau F, Schüssler S, Conti E. The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase. Nat Struct Mol Biol 2014; 21:591-8. [PMID: 24880344 DOI: 10.1038/nsmb.2834] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/02/2014] [Indexed: 01/21/2023]
Abstract
Pan2-Pan3 is a conserved complex involved in the shortening of mRNA poly(A) tails, the initial step in eukaryotic mRNA turnover. We show that recombinant Saccharomyces cerevisiae Pan2-Pan3 can deadenylate RNAs in vitro without needing the poly(A)-binding protein Pab1. The crystal structure of an active ~200-kDa core complex reveals that Pan2 and Pan3 interact with an unusual 1:2 stoichiometry imparted by the asymmetric nature of the Pan3 homodimer. An extended region of Pan2 wraps around Pan3 and provides a major anchoring point for complex assembly. A Pan2 module formed by the pseudoubiquitin-hydrolase and RNase domains latches onto the Pan3 pseudokinase with intertwined interactions that orient the deadenylase active site toward the A-binding site of the interacting Pan3. The molecular architecture of Pan2-Pan3 suggests how the nuclease and its pseudokinase regulator act in synergy to promote deadenylation.
Collapse
Affiliation(s)
- Ingmar B Schäfer
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michaela Rode
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fabien Bonneau
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Schüssler
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
178
|
Wolf J, Valkov E, Allen MD, Meineke B, Gordiyenko Y, McLaughlin SH, Olsen TM, Robinson CV, Bycroft M, Stewart M, Passmore LA. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J 2014; 33:1514-26. [PMID: 24872509 PMCID: PMC4158885 DOI: 10.15252/embj.201488373] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved eukaryotic Pan2–Pan3 deadenylation complex shortens cytoplasmic mRNA 3′ polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2–Pan3 complex.
Collapse
Affiliation(s)
- Jana Wolf
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Eugene Valkov
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Mark D Allen
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Birthe Meineke
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Tayla M Olsen
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | - Mark Bycroft
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Murray Stewart
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
179
|
Inada T, Makino S. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation. Front Genet 2014; 5:135. [PMID: 24904636 PMCID: PMC4033010 DOI: 10.3389/fgene.2014.00135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022] Open
Abstract
The CCR4-NOT complex is a highly conserved specific gene silencer that also serves more general post-transcriptional functions. Specific regulatory proteins including the miRNA-induced silencing complex and its associated proteins, bind to 3’-UTR elements of mRNA and recruit the CCR4-NOT complex thereby promoting poly(A) shortening and repressing translation and/or mRNA degradation. Recent studies have shown that the CCR4-NOT complex that is tethered to mRNA by such regulator(s) represses translation and facilitates mRNA decay independent of a poly(A) tail and its shortening. In addition to deadenylase activity, the CCR4-NOT complex also has an E3 ubiquitin ligase activity and is involved in a novel protein quality control system, i.e., co-translational proteasomal-degradation of aberrant proteins. In this review, we describe recent progress in elucidation of novel roles of the multi-functional complex CCR4-NOT in post-transcriptional regulation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| | - Shiho Makino
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| |
Collapse
|
180
|
Seto E, Inoue T, Nakatani Y, Yamada M, Isomura H. Processing bodies accumulate in human cytomegalovirus-infected cells and do not affect viral replication at high multiplicity of infection. Virology 2014; 458-459:151-61. [PMID: 24928047 DOI: 10.1016/j.virol.2014.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/04/2014] [Accepted: 04/17/2014] [Indexed: 01/14/2023]
Abstract
Translationally silenced mRNAs are recruited to two major classes of RNA granules in the cytoplasm, processing bodies (PBs) and stress granules (SGs). We show that PBs accumulated after human cytomegalovirus (HCMV) infection. PB assembly after HCMV infection was also detected in the presence of the protein synthesis inhibitor, cycloheximide, but required active RNA synthesis. UV-inactivated HCMV virions were sufficient to induce PB accumulation in HFF cells treated with cycloheximide. Viral IE1 RNA did not colocalize with PBs, and we could not detect an effect of PB accumulation on viral growth. These results may indicate that HCMV inhibits the colocalization of IE1 mRNA with PBs, preventing IE1 mRNA decay and translational inhibition.
Collapse
Affiliation(s)
- Eri Seto
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Teruki Inoue
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoko Nakatani
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Masanobu Yamada
- Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroki Isomura
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
181
|
Slevin MK, Meaux S, Welch JD, Bigler R, Miliani de Marval PL, Su W, Rhoads RE, Prins JF, Marzluff WF. Deep sequencing shows multiple oligouridylations are required for 3' to 5' degradation of histone mRNAs on polyribosomes. Mol Cell 2014; 53:1020-30. [PMID: 24656133 DOI: 10.1016/j.molcel.2014.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/23/2013] [Accepted: 02/10/2014] [Indexed: 12/27/2022]
Abstract
Histone mRNAs are rapidly degraded when DNA replication is inhibited during S phase with degradation initiating with oligouridylation of the stem loop at the 3' end. We developed a customized RNA sequencing strategy to identify the 3' termini of degradation intermediates of histone mRNAs. Using this strategy, we identified two types of oligouridylated degradation intermediates: RNAs ending at different sites of the 3' side of the stem loop that resulted from initial degradation by 3'hExo and intermediates near the stop codon and within the coding region. Sequencing of polyribosomal histone mRNAs revealed that degradation initiates and proceeds 3' to 5' on translating mRNA and that many intermediates are capped. Knockdown of the exosome-associated exonuclease PM/Scl-100, but not the Dis3L2 exonuclease, slows histone mRNA degradation consistent with 3' to 5' degradation by the exosome containing PM/Scl-100. Knockdown of No-go decay factors also slowed histone mRNA degradation, suggesting a role in removing ribosomes from partially degraded mRNAs.
Collapse
Affiliation(s)
- Michael K Slevin
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stacie Meaux
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua D Welch
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Bigler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paula L Miliani de Marval
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Su
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jan F Prins
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William F Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
182
|
Singh AB, Kan CFK, Shende V, Dong B, Liu J. A novel posttranscriptional mechanism for dietary cholesterol-mediated suppression of liver LDL receptor expression. J Lipid Res 2014; 55:1397-407. [PMID: 24792925 DOI: 10.1194/jlr.m049429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 12/21/2022] Open
Abstract
It is well-established that over-accumulation of dietary cholesterol in the liver inhibits sterol-regulatory element binding protein (SREBP)-mediated LDL receptor (LDLR) gene transcription leading to a reduced hepatic LDLR mRNA level in hypercholesterolemic animals. However, it is unknown whether elevated cholesterol levels can elicit a cellular response to increase LDLR mRNA turnover to further repress LDLR expression in liver tissue. In the current study, we examined the effect of a high cholesterol diet on the hepatic expression of LDLR mRNA binding proteins in three different animal models and in cultured hepatic cells. Our results demonstrate that high cholesterol feeding specifically elevates the hepatic expression of LDLR mRNA decay promoting factor heterogeneous nuclear ribonucleoprotein (HNRNP)D without affecting expressions of other LDLR mRNA binding proteins in vivo and in vitro. Employing the approach of adenovirus-mediated gene knockdown, we further show that depletion of HNRNPD in the liver results in a marked reduction of serum LDL-cholesterol and a substantial increase in liver LDLR expression in hyperlipidemic mice. Additional studies of gene knockdown in albumin-luciferase-untranslated region (UTR) transgenic mice provide strong evidence supporting the essential role of 3'UTR in HNRNPD-mediated LDLR mRNA degradation in liver tissue. Altogether, this work identifies a novel posttranscriptional regulatory mechanism by which dietary cholesterol inhibits liver LDLR expression via inducing HNRNPD to accelerate LDLR mRNA degradation.
Collapse
Affiliation(s)
- Amar Bahadur Singh
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 Department of Medicine, Stanford University, Stanford, CA 94305
| | | | - Vikram Shende
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 Department of Medicine, Stanford University, Stanford, CA 94305
| | - Bin Dong
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
183
|
Sala V, Bergerone S, Gatti S, Gallo S, Ponzetto A, Ponzetto C, Crepaldi T. MicroRNAs in myocardial ischemia: identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cell Mol Life Sci 2014; 71:1439-52. [PMID: 24218009 PMCID: PMC11113160 DOI: 10.1007/s00018-013-1504-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are natural, single-stranded, small RNA molecules which subtly control gene expression. Several studies indicate that specific miRNAs can regulate heart function both in development and disease. Despite prevention programs and new therapeutic agents, cardiovascular disease remains the main cause of death in developed countries. The elevated number of heart failure episodes is mostly due to myocardial infarction (MI). An increasing number of studies have been carried out reporting changes in miRNAs gene expression and exploring their role in MI and heart failure. In this review, we furnish a critical analysis of where the frontier of knowledge has arrived in the fields of basic and translational research on miRNAs in cardiac ischemia. We first summarize the basal information on miRNA biology and regulation, especially concentrating on the feedback loops which control cardiac-enriched miRNAs. A focus on the role of miRNAs in the pathogenesis of myocardial ischemia and in the attenuation of injury is presented. Particular attention is given to cardiomyocyte death (apoptosis and necrosis), fibrosis, neovascularization, and heart failure. Then, we address the potential of miR-diagnosis (miRNAs as disease biomarkers) and miR-drugs (miRNAs as therapeutic targets) for cardiac ischemia and heart failure. Finally, we evaluate the use of miRNAs in the emerging field of regenerative medicine.
Collapse
Affiliation(s)
- V. Sala
- Department of Oncology, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Bergerone
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - S. Gatti
- Department of Oncology, University of Turin, Turin, Italy
| | - S. Gallo
- Department of Oncology, University of Turin, Turin, Italy
| | - A. Ponzetto
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - C. Ponzetto
- Department of Oncology, University of Turin, Turin, Italy
| | - T. Crepaldi
- Department of Oncology, University of Turin, Turin, Italy
- Institute of Anatomy, Corso Massimo d’Azeglio 52, 10126 Turin, Italy
| |
Collapse
|
184
|
Pitchiaya S, Heinicke LA, Custer TC, Walter NG. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 2014; 114:3224-65. [PMID: 24417544 PMCID: PMC3968247 DOI: 10.1021/cr400496q] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Laurie A. Heinicke
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan,
Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
185
|
Bloom ALM, Panepinto JC. RNA biology and the adaptation of Cryptococcus neoformans to host temperature and stress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:393-406. [PMID: 24497369 DOI: 10.1002/wrna.1219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 01/26/2023]
Abstract
Cryptococcus neoformans is an environmental fungus that can cause severe disease in humans. C. neoformans encounters a multitude of stresses within the human host to which it must adapt in order to survive and proliferate. Upon stressful changes in the external milieu, C. neoformans must reprogram its gene expression to properly respond to and combat stress in order to maintain homeostasis. Several studies have investigated the changes that occur in response to these stresses to begin to unravel the mechanisms of adaptation in this organism. Here, we review studies that have explored stress-induced changes in gene expression with a focus on host temperature adaptation. We compare global messenger RNA (mRNA) expression data compiled from several studies and identify patterns that suggest that orchestrated, transient responses occur. We also utilize the available expression data to explore the possibility of a common stress response that may contribute to cellular protection against a variety of stresses in C. neoformans. In addition, we review studies that have revealed the significance of post-transcriptional mechanisms of mRNA regulation in response to stress, and discuss how these processes may contribute to adaptation and virulence.
Collapse
Affiliation(s)
- Amanda L M Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
186
|
Halter D, Collart MA, Panasenko OO. The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PLoS One 2014; 9:e86218. [PMID: 24465968 PMCID: PMC3895043 DOI: 10.1371/journal.pone.0086218] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/08/2013] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome.
Collapse
Affiliation(s)
- David Halter
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Martine A. Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
187
|
Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:1-55. [PMID: 25201102 DOI: 10.1007/978-1-4939-1221-6_1] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
Collapse
|
188
|
Abstract
Messenger RNA deadenylation is a process that allows rapid regulation of gene expression in response to different cellular conditions. The change of the mRNA poly(A) tail length by the activation of deadenylation might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. Activation of deadenylation processes are highly regulated and associated with different cellular conditions such as cancer, development, mRNA surveillance, DNA damage response, and cell differentiation. In the last few years, new technologies for studying deadenylation have been developed. Here we overview concepts related to deadenylation and its regulation in eukaryotic cells. We also describe some of the most commonly used protocols to study deadenylation in eukaryotic cells.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Department of Chemistry, Hunter College and Graduate Center, City University of New York, 10065, New York, NY, USA
| | | | | |
Collapse
|
189
|
Lyons SM, Ricciardi AS, Guo AY, Kambach C, Marzluff WF. The C-terminal extension of Lsm4 interacts directly with the 3' end of the histone mRNP and is required for efficient histone mRNA degradation. RNA (NEW YORK, N.Y.) 2014; 20:88-102. [PMID: 24255165 PMCID: PMC3866647 DOI: 10.1261/rna.042531.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metazoan replication-dependent histone mRNAs are the only known eukaryotic mRNAs that lack a poly(A) tail, ending instead in a conserved stem-loop sequence, which is bound to the stem-loop binding protein (SLBP) on the histone mRNP. Histone mRNAs are rapidly degraded when DNA synthesis is inhibited in S phase in mammalian cells. Rapid degradation of histone mRNAs is initiated by oligouridylation of the 3' end of histone mRNAs and requires the cytoplasmic Lsm1-7 complex, which can bind to the oligo(U) tail. An exonuclease, 3'hExo, forms a ternary complex with SLBP and the stem-loop and is required for the initiation of histone mRNA degradation. The Lsm1-7 complex is also involved in degradation of polyadenylated mRNAs. It binds to the oligo(A) tail remaining after deadenylation, inhibiting translation and recruiting the enzymes required for decapping. Whether the Lsm1-7 complex interacts directly with other components of the mRNP is not known. We report here that the C-terminal extension of Lsm4 interacts directly with the histone mRNP, contacting both SLBP and 3'hExo. Mutants in the C-terminal tail of Lsm4 that prevent SLBP and 3'hExo binding reduce the rate of histone mRNA degradation when DNA synthesis is inhibited.
Collapse
Affiliation(s)
- Shawn M. Lyons
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Adele S. Ricciardi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew Y. Guo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christian Kambach
- Department of Biochemistry, Universität Bayreuth, Bayreuth, Germany 95447
| | - William F. Marzluff
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Corresponding authorE-mail
| |
Collapse
|
190
|
Winkler GS, Balacco DL. Heterogeneity and complexity within the nuclease module of the Ccr4-Not complex. Front Genet 2013; 4:296. [PMID: 24391663 PMCID: PMC3870282 DOI: 10.3389/fgene.2013.00296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 11/13/2022] Open
Abstract
The shortening of the poly(A) tail of cytoplasmic mRNA (deadenylation) is a pivotal step in the regulation of gene expression in eukaryotic cells. Deadenylation impacts on both regulated mRNA decay as well as the rate of mRNA translation. An important enzyme complex involved in poly(A) shortening is the Ccr4-Not deadenylase. In addition to at least six non-catalytic subunits, it contains two distinct subunits with ribonuclease activity: a Caf1 subunit, characterized by a DEDD (Asp-Glu-Asp-Asp) domain, and a Ccr4 component containing an endonuclease-exonuclease-phosphatase (EEP) domain. In vertebrate cells, the complexity of the complex is further increased by the presence of paralogs of the Caf1 subunit (encoded by either CNOT7 or CNOT8) and the occurrence of two Ccr4 paralogs (encoded by CNOT6 or CNOT6L). In plants, there are also multiple Caf1 and Ccr4 paralogs. Thus, the composition of the Ccr4-Not complex is heterogeneous. The potential differences in the intrinsic enzymatic activities of the paralogs will be discussed. In addition, the potential redundancy, cooperation, and/or the extent of unique roles for the deadenylase subunits of the Ccr4-Not complex will be reviewed. Finally, novel approaches to study the catalytic roles of the Caf1 and Ccr4 subunits will be discussed.
Collapse
Affiliation(s)
- G Sebastiaan Winkler
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park Nottingham, UK
| | - Dario L Balacco
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park Nottingham, UK
| |
Collapse
|
191
|
Kwon M, Lee SJ, Reddy S, Rybak Y, Adem A, Libutti SK. Down-regulation of Filamin A interacting protein 1-like Is associated with promoter methylation and an invasive phenotype in breast, colon, lung and pancreatic cancers [corrected]. PLoS One 2013; 8:e82620. [PMID: 24340050 PMCID: PMC3855469 DOI: 10.1371/journal.pone.0082620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/25/2013] [Indexed: 12/12/2022] Open
Abstract
Identifying key mediators of cancer cell invasion and metastasis is critical to the development of more effective cancer therapies. We previously identified Filamin A interacting protein 1-like (FILIP1L) as an important inhibitor of cell migration and invasion in ovarian cancer. FILIP1L expression was inversely correlated with the invasive potential of ovarian cancer cell lines and ovarian cancer specimens. We also demonstrated that DNA methylation in the FILIP1L promoter was a mechanism by which FILIP1L was down-regulated in ovarian cancer. In our present study, we tested this observation in other cancer histologies: breast, colon, lung and pancreatic cancers. Both mRNA and protein expression of FILIP1L were down-regulated in these cancer cells compared with their normal epithelial cells. As in ovarian cancer, DNA methylation is a mechanism by which FILIP1L is down-regulated in these cancer histologies. Methylation status of the FILIP1L promoter was inversely correlated with FILIP1L expression. Reduced methylation in the FILIP1L promoter following treatment with a DNA demethylating agent was associated with restoration of FILIP1L expression in these cancer cells. Further, FILIP1L expression was inversely correlated with the invasive potential of these cancer cells. Re-expression of FILIP1L in FILIP1L-low expressing, highly-invasive cancer cell lines resulted in inhibition of cell invasion. Correspondingly, knockdown of FILIP1L in FILIP1L-high expressing, low-invasive cancer cell lines resulted in increase of cell invasion. Overall, these findings suggest that down-regulation of FILIP1L associated with DNA methylation is related with the invasive phenotype in various cancers. Thus, modulation of FILIP1L expression has the potential to be a target for cancer therapy.
Collapse
Affiliation(s)
- Mijung Kwon
- Department of Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Soo Jin Lee
- Department of Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Srilakshmi Reddy
- Department of Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Yevangelina Rybak
- Department of Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Asha Adem
- Department of Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Steven K. Libutti
- Department of Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
192
|
Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, Charng YY, Deragon JM, Bousquet-Antonelli C. XRN4 and LARP1 Are Required for a Heat-Triggered mRNA Decay Pathway Involved in Plant Acclimation and Survival during Thermal Stress. Cell Rep 2013; 5:1279-93. [DOI: 10.1016/j.celrep.2013.11.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 10/08/2013] [Accepted: 11/09/2013] [Indexed: 01/22/2023] Open
|
193
|
Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation. Cell Res 2013; 24:233-46. [PMID: 24247251 PMCID: PMC3915908 DOI: 10.1038/cr.2013.152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/16/2013] [Accepted: 09/28/2013] [Indexed: 02/07/2023] Open
Abstract
The evolutionarily conserved Lsm1-7-Pat1 complex is the most critical activator of mRNA decapping in eukaryotic cells and plays many roles in normal decay, AU-rich element-mediated decay, and miRNA silencing, yet how Pat1 interacts with the Lsm1-7 complex is unknown. Here, we show that Lsm2 and Lsm3 bridge the interaction between the C-terminus of Pat1 (Pat1C) and the Lsm1-7 complex. The Lsm2-3-Pat1C complex and the Lsm1-7-Pat1C complex stimulate decapping in vitro to a similar extent and exhibit similar RNA-binding preference. The crystal structure of the Lsm2-3-Pat1C complex shows that Pat1C binds to Lsm2-3 to form an asymmetric complex with three Pat1C molecules surrounding a heptameric ring formed by Lsm2-3. Structure-based mutagenesis revealed the importance of Lsm2-3-Pat1C interactions in decapping activation in vivo. Based on the structure of Lsm2-3-Pat1C, a model of Lsm1-7-Pat1 complex is constructed and how RNA binds to this complex is discussed.
Collapse
|
194
|
López-Camarillo C, López-Rosas I, Ospina-Villa JD, Marchat LA. Deciphering molecular mechanisms of mRNA metabolism in the deep-branching eukaryoteEntamoeba histolytica. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:247-62. [DOI: 10.1002/wrna.1205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/04/2013] [Accepted: 10/09/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | - Itzel López-Rosas
- Genomics Sciences Program; Autonomous University of Mexico City; Mexico City Mexico
| | - Juan David Ospina-Villa
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| | - Laurence A. Marchat
- Institutional Program of Molecular Biomedicine; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
- Biotechnology Program; National School of Medicine and Homeopathy of the National Polytechnic Institute; Mexico City Mexico
| |
Collapse
|
195
|
Maryati M, Kaur I, Jadhav GP, Olotu-Umoren L, Oveh B, Hashmi L, Fischer PM, Winkler GS. A fluorescence-based assay suitable for quantitative analysis of deadenylase enzyme activity. Nucleic Acids Res 2013; 42:e30. [PMID: 24170810 PMCID: PMC3950723 DOI: 10.1093/nar/gkt972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In eukaryotic cells, the shortening and removal of the poly(A) tail of cytoplasmic mRNA by deadenylase enzymes is a critical step in post-transcriptional gene regulation. The ribonuclease activity of deadenylase enzymes is attributed to either a DEDD (Asp-Glu-Asp-Asp) or an endonuclease–exonuclease–phosphatase domain. Both domains require the presence of two Mg2+ ions in the active site. To facilitate the biochemical analysis of deadenylase enzymes, we have developed a fluorescence-based deadenylase assay. The assay is based on end-point measurement, suitable for quantitative analysis and can be adapted for 96- and 384-well microplate formats. We demonstrate the utility of the assay by screening a chemical compound library, resulting in the identification of non-nucleoside inhibitors of the Caf1/CNOT7 enzyme, a catalytic subunit of the Ccr4–Not deadenylase complex. These compounds may be useful tools for the biochemical analysis of the Caf1/CNOT7 deadenylase subunit of the Ccr4–Not complex and indicate the feasibility of developing selective inhibitors of deadenylase enzymes using the fluorescence-based assay.
Collapse
Affiliation(s)
- Maryati Maryati
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Heissmeyer V, Vogel KU. Molecular control of Tfh-cell differentiation by Roquin family proteins. Immunol Rev 2013; 253:273-89. [PMID: 23550652 DOI: 10.1111/imr.12056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-transcriptional gene regulation by RNA-binding proteins is a fast and effective way to adapt gene expression and change cellular responses. These trans-acting factors have been involved in a number of cell fate decisions, and their mutation is often associated with the development of disease. The RNA-binding protein Roquin-1 has been found to be crucial in the maintenance of peripheral tolerance and the prevention of autoimmune disease. This review describes the molecular role of Roquin family proteins in the control of follicular T-helper cell differentiation. Here, we discuss the redundant regulation of Icos and Ox40 costimulatory receptor mRNAs by Roquin-1 and Roquin-2 proteins. A major focus is placed on the distinct activity of Roquin-1 or Roquin-2 proteins in the mouse models of conditional gene targeting. These recent data are then integrated into an interpretation of altered Roquin protein function in the sanroque mouse that expresses the Roquin-1 protein with just one amino acid substitution and, different from the Roquin-1-deficient mouse, develops lupus-like autoimmune disease.
Collapse
Affiliation(s)
- Vigo Heissmeyer
- Helmholtz Zentrum München, Institute of Molecular Immunology, Munich, Germany.
| | | |
Collapse
|
197
|
Abstract
Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.
Collapse
|
198
|
Huang HT, Maruyama JI, Kitamoto K. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi. PLoS One 2013; 8:e72209. [PMID: 23991062 PMCID: PMC3749109 DOI: 10.1371/journal.pone.0072209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022] Open
Abstract
Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.
Collapse
Affiliation(s)
| | | | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
199
|
Krol K, Morozov IY, Jones MG, Wyszomirski T, Weglenski P, Dzikowska A, Caddick MX. RrmA regulates the stability of specific transcripts in response to both nitrogen source and oxidative stress. Mol Microbiol 2013; 89:975-88. [PMID: 23841692 PMCID: PMC4282371 DOI: 10.1111/mmi.12324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 01/10/2023]
Abstract
Differential regulation of transcript stability is an effective means by which an organism can modulate gene expression. A well-characterized example is glutamine signalled degradation of specific transcripts in Aspergillus nidulans. In the case of areA, which encodes a wide-domain transcription factor mediating nitrogen metabolite repression, the signal is mediated through a highly conserved region of the 3′ UTR. Utilizing this RNA sequence we isolated RrmA, an RNA recognition motif protein. Disruption of the respective gene led to loss of both glutamine signalled transcript degradation as well as nitrate signalled stabilization of niaD mRNA. However, nitrogen starvation was shown to act independently of RrmA in stabilizing certain transcripts. RrmA was also implicated in the regulation of arginine catabolism gene expression and the oxidative stress responses at the level of mRNA stability. ΔrrmA mutants are hypersensitive to oxidative stress. This phenotype correlates with destabilization of eifE and dhsA mRNA. eifE encodes eIF5A, a translation factor within which a conserved lysine is post-translationally modified to hypusine, a process requiring DhsA. Intriguingly, for specific transcripts RrmA mediates both stabilization and destabilization and the specificity of the signals transduced is transcript dependent, suggesting it acts in consort with other factors which differ between transcripts.
Collapse
Affiliation(s)
- Kinga Krol
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
200
|
Aoki K, Adachi S, Homoto M, Kusano H, Koike K, Natsume T. LARP1 specifically recognizes the 3' terminus of poly(A) mRNA. FEBS Lett 2013; 587:2173-8. [PMID: 23711370 DOI: 10.1016/j.febslet.2013.05.035] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023]
Abstract
A poly(A) tail functions in mRNA turnover and in facilitating translation as a ribonucleoprotein complex with poly(A) binding proteins (PABPs). However, factors that associate with the poly(A) tail other than PABPs have not been described. Using proteomics, we identified candidate proteins that interact to the 3' terminus of the poly(A) tail. Among these proteins, we focused on La motif-related protein 1 (LARP1) and found that LARP1 specifically recognizes the 3' termini of normal poly(A) tails. We also reveal that LARP1 stabilizes multiple mRNAs carrying 5' terminal oligopyrimidine tract (5'TOP). Our findings suggest that LARP1 may be involved in the post-transcriptional regulation of gene expression, at least in several 5'TOP mRNAs, through the binding to 3' terminus of the poly(A) tail.
Collapse
Affiliation(s)
- Kazuma Aoki
- Molecular Profiling Research Center for Drug Discovery(molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|