151
|
Imai-Sumida M, Dasgupta P, Kulkarni P, Shiina M, Hashimoto Y, Shahryari V, Majid S, Tanaka Y, Dahiya R, Yamamura S. Genistein Represses HOTAIR/Chromatin Remodeling Pathways to Suppress Kidney Cancer. Cell Physiol Biochem 2020; 54:53-70. [PMID: 31961100 DOI: 10.33594/000000205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Genistein, a soy isoflavone, has been shown to have anti-cancer effects in various cancers including renal cancer. Long non-coding RNA, HOX transcript antisense RNA (HOTAIR), is involved in cancer progression and metastasis, such as renal cancer. Our aim was to investigate the effects of genistein on HOTAIR chromatin remodeling functions. METHODS We used MTS assays and Transwell migration assays to study the effects of genistein on cell proliferation and migration respectively in human renal cell carcinoma (RCC) cell lines. We used Western blots to analyze SNAIL and ZO-1 expression. We performed chromatin immunoprecipitation (ChIP) assays to study recruitment of the polycomb repressive complex 2 (PRC2) to the ZO-1 promoter. We performed RNA immunoprecipitation (RIP) assays to study interaction between HOTAIR and PRC2, SMARCB1 or ARID1A. We also performed transfection experiments to overexpress EED, HOTAIR and knockdown SMARCB1. RESULTS Genistein reduced cell proliferation and migration of human renal cell carcinoma cell lines. ChIP assays indicated that genistein reduces recruitment of the PRC2 to the ZO-1 promoter and increased its expression. RIP assays showed that genistein inhibits HOTAIR interaction with PRC2, leading to tumor suppression. Immunoprecipitation also revealed that genistein reduced EED levels in PRC2, suggesting that decreased EED levels suppress HOTAIR interaction with PRC2. EED overexpression in the presence of genistein restored PRC2 interaction with HOTAIR and reduced ZO-1 transcription, suggesting genistein activates ZO-1 by inhibiting HOTAIR/PRC2 functions. RIP assays also showed that HOTAIR interacts with SMARCB1 and ARID1A, subunits of the human SWI/SNF chromatin remodeling complex and genistein reduces this interaction. Combination of HOTAIR overexpression and SMARCB1 knockdown in the presence of genistein revealed that genistein inhibits SNAIL transcription via the HOTAIR/SMARCB1 pathway. CONCLUSION Genistein suppresses EED levels in PRC2 and inhibits HOTAIR/PRC2 interaction. Genistein suppresses HOTAIR/PRC2 recruitment to the ZO-1 promoter and enhances ZO-1 transcription. Genistein also inhibits SNAIL transcription via reducing HOTAIR/SMARCB1 interaction. We demonstrate that the reduction of HOTAIR interaction with chromatin remodeling factors by genistein represses HOTAIR/chromatin remodeling pathways to suppress RCC malignancy.
Collapse
Affiliation(s)
- Mitsuho Imai-Sumida
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Pritha Dasgupta
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Priyanka Kulkarni
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Marisa Shiina
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Yutaka Hashimoto
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Varahram Shahryari
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Shahana Majid
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Yuichiro Tanaka
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA,
| |
Collapse
|
152
|
Cheng Q, Ouyang X, Zhang R, Zhu L, Song X. Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression. RNA Biol 2020; 17:1693-1706. [PMID: 31997706 DOI: 10.1080/15476286.2020.1719752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Pancreatic cancer is a major cause of mortality with a poor diagnosis and prognosis that most often occurs in elderly patients. Few studies, however, focus on the interplay of age and pancreatic cancer at the transcriptional level. Here we evaluated the possible roles of age-dependent, differentially expressed genes (DEGs) in pancreatic cancer. These DEGs were used to construct a correlation network and clustered in six gene modules, among which two modules were highly correlated with patients' survival time. Integrating different datasets, including ATAC-Seq and ChIP-Seq, we performed multi-parallel analyses and identified eight age-dependent protein coding genes and two non-coding RNAs as potential candidates. These candidates, together with KLF5, a potent functional transcription factor in pancreatic cancer, are likely to be key elements linking cellular senescence and pancreatic cancer, providing insights on the balance between them, as well as on diagnosis and subsequent prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Qingyu Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xuan Ouyang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Ran Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Lianbang Zhu
- The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| |
Collapse
|
153
|
Tao D, Zhang Z, Liu X, Zhang Z, Fu Y, Zhang P, Yuan H, Liu L, Cheng J, Jiang H. LncRNA HOTAIR promotes the invasion and metastasis of oral squamous cell carcinoma through metastasis-associated gene 2. Mol Carcinog 2020; 59:353-364. [PMID: 31995261 DOI: 10.1002/mc.23159] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/18/2022]
Abstract
Despite therapeutic advancements, there has been little improvement in the survival status of patients with oral squamous cell carcinoma (OSCC). HOX antisense intergenic RNA (HOTAIR) has been shown to be dysregulated in several cancer types. However, the roles of HOTAIR in OSCC remain largely unknown. In this study, we investigated the association of HOTAIR expression with clinicopathological features in OSCC patients and the crucial roles of HOTAIR in the modulation of tumor progression. Our results showed that HOTAIR was highly expressed both in OSCC tissue samples and cell lines compared with corresponding normal oral mucosa tissues and human oral keratinocytes. Its overexpression was positively correlated with TNM (tumor-node-metastases) stage, histological grade, and regional lymph node metastasis. The knockdown of HOTAIR by short hairpin RNA significantly decreased the migration, invasion, and epithelial-mesenchymal transition of OSCC cells in vitro. Moreover, there was a negative correlation between HOTAIR and microRNA-326 expression in OSCC tissue samples and cell lines. Luciferase reporter and loss-of-function assays revealed that HOTAIR acted as a competitive endogenous RNA effectively sponging miR-326, thereby regulating the derepression of metastasis-associated gene 2 (MTA2). Finally, the expression and clinical significance of MTA2 were analyzed in another cohort of OSCC tissue samples. High MTA2 expression was significantly correlated with clinicopathological features of advanced OSCC and poor prognosis for patients with OSCC. Collectively, HOTAIR overexpression promoted the progression of OSCC. The HOTAIR-miR-326-MTA2 axis may contribute to a better understanding of OSCC pathogenesis and be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Detao Tao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhenxing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziwen Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
154
|
Zheng M, Hu Y, Gou R, Nie X, Li X, Liu J, Lin B. Identification three LncRNA prognostic signature of ovarian cancer based on genome-wide copy number variation. Biomed Pharmacother 2020; 124:109810. [PMID: 32000042 DOI: 10.1016/j.biopha.2019.109810] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/10/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Ovarian cancer is one of the most common malignant tumors of the female reproductive system, which seriously threatens the health of patients. It is of great significance to identify biomarkers to improve the clinical status of ovarian cancer patients. METHODS Methylation, RNA- sequencing, Copy number variation (CNV), mutation and clinical characteristics of ovarian cancer and control samples were downloaded from The Cancer Genome Atlas database (TCGA). The "iClusterPlus". R package was used to cluster the molecular subtypes. The copy number variation of the entire lncRNA genome was analyzed using GISTIC. The prognosis-associated lncRNA related to CNV was screened as potential targets for ovarian cancer. RESULTS Six molecular subtypes were identified based on multi-omics analysis and DElncRNAs are significantly enriched in specific molecular subtypes. The deletion or amplification of lncRNA copy number affects the occurrence and development of ovarian cancer to some extent. Three prognostic-associated lncRNA including LOC101927151, LINC00861 and LEMD1-AS1 were selected. These lncRNAs can be used as biomarkers to predict survival in patients with ovarian cancer. The accuracy of results were verified using the Gene Expression Omnibus (GEO) dataset. CONCLUSION Based on genome-wide copy number variation, prognostic-associated lncRNAs were identified as new biomolecular markers for ovarian cancer.
Collapse
Affiliation(s)
- Mingjun Zheng
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China; Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Yuexin Hu
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Rui Gou
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Xin Nie
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Xiao Li
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Juanjuan Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Bei Lin
- Department of Gynaecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China.
| |
Collapse
|
155
|
Jiang B, Tang Y, Wang H, Chen C, Yu W, Sun H, Duan M, Lin X, Liang P. Down-regulation of long non-coding RNA HOTAIR promotes angiogenesis via regulating miR-126/SCEL pathways in burn wound healing. Cell Death Dis 2020; 11:61. [PMID: 31974341 PMCID: PMC6978466 DOI: 10.1038/s41419-020-2247-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023]
Abstract
miR-126, an endothelial-specific microRNA, is associated to vascular integrity and angiogenesis. It is well established that angiogenesis plays a critical role in burn wound healing. However, there was a lack of understanding of the mechanism by which miR-126 regulates angiogenesis during burn wound healing. HOX transcript antisense intergenic RNA (HOTAIR) is a well-characterized long non-coding RNA (lncRNA) involved in cell proliferation, apoptosis, migration, and invasion of cancer cells. Sciellin (SCEL), a precursor to the cornified envelope of human keratinocytes, has been shown to inhibit migration and invasion capabilities of colorectal cancer cells. In this study, a cohort of 20 burn wound tissues and paired adjacent normal tissues were collected. LncRNA and messenger RNA expression profiles were screened by microarray analysis in five pairs of samples with mostly increased miR-126 levels. miR-126 was highly expressed in burn wound tissues and human umbilical vein endothelial cells (HUVECs) exposed to heat stress, whereas HOTAIR and SCEL were down-regulated after thermal injury. Bioinformatic analysis, dual luciferase reporter assay, and quantitative real-time PCR were conducted to validate that HOTAIR and SCEL competitively bind to miR-126 to function as the competitive endogenous RNA. miR-126 promoted endothelial cell proliferation, migration, and angiogenesis, but suppressed apoptosis, while HOTAIR and SCEL exerted opposite effects in HUVECs. The biological functions were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Annexin-V-FITC/PI (propidium iodide/fluorescein isothiocyanate) staining, transwell migration, and tube formation assays. Collectively, our study revealed that HOTAIR/miR-126/SCEL axis contributes to burn wound healing through mediating angiogenesis.
Collapse
Affiliation(s)
- Bimei Jiang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenchang Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mengting Duan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
156
|
Abildgaard C, Do Canto LM, Steffensen KD, Rogatto SR. Long Non-coding RNAs Involved in Resistance to Chemotherapy in Ovarian Cancer. Front Oncol 2020; 9:1549. [PMID: 32039022 PMCID: PMC6985280 DOI: 10.3389/fonc.2019.01549] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) accounts for more than 150,000 deaths worldwide every year. Patients are often diagnosed at an advanced stage with metastatic dissemination. Although platinum- and taxane-based chemotherapies are effective treatment options, they are rarely curative and eventually, the disease will progress due to acquired resistance. Emerging evidence suggests a crucial role of long non-coding RNAs (lncRNAs) in the response to therapy in OC. Transcriptome profiling studies using high throughput approaches have identified differential expression patterns of lncRNAs associated with disease recurrence. Furthermore, several aberrantly expressed lncRNAs in resistant OC cells have been related to increased cell division, improved DNA repair, up-regulation of drug transporters or reduced susceptibility to apoptotic stimuli, supporting their involvement in acquired resistance. In this review, we will discuss the key aspects of lncRNAs associated with the development of resistance to platinum- and taxane-based chemotherapy in OC. The molecular landscape of OC will be introduced, to provide a background for understanding the role of lncRNAs in the acquisition of malignant properties. We will focus on the interplay between lncRNAs and molecular pathways affecting drug response to evaluate their impact on treatment resistance. Additionally, we will discuss the prospects of using lncRNAs as biomarkers or targets for precision medicine in OC. Although there is still plenty to learn about lncRNAs and technical challenges to be solved, the evidence of their involvement in OC and the development of acquired resistance are compelling and warrant further investigation for clinical applications.
Collapse
Affiliation(s)
- Cecilie Abildgaard
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Luisa M Do Canto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark
| | - Karina D Steffensen
- Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Silvia R Rogatto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
157
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
158
|
Wu K, Liu F, Wu W, Chen Y, Wu H, Zhang W. Long non-coding RNA HOX transcript antisense RNA (HOTAIR) suppresses the angiogenesis of human placentation by inhibiting vascular endothelial growth factor A expression. Reprod Fertil Dev 2019; 31:377-385. [PMID: 30126531 DOI: 10.1071/rd18118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is a long non-coding RNA located within the Homeobox C (HOXC) gene cluster on chromosome 12. Previous studies have revealed that HOTAIR is overexpressed in many types of cancers and is associated with metastasis and poor survival rates; however, few reports have mentioned the relationship between HOTAIR and angiogenesis of the human placenta. The aim of the present study was to investigate the correlation between HOTAIR and vascular endothelial growth factor (VEGF) A in the human placenta. HOTAIR levels decreased significantly in human placenta with increasing gestational age, and were negatively correlated with VEGFA levels. Invitro assays revealed that HOTAIR overexpression suppressed the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs); however, inhibition of HOTAIR had the opposite effects. Furthermore, VEGFA overexpression reversed the inhibitory effect of HOTAIR on the proliferation, migration, invasion and tube formation of HUVECs. In addition, overexpression of HOTAIR significantly inhibited VEGFA expression. Notably, a luciferase reporter assay found that HOTAIR inhibited VEGFA transcription by directly targeting the VEGFA promoter. Together, these results suggest that HOTAIR plays an important role in suppressing angiogenesis of the human placenta by inhibiting the expression of VEGFA; thus, HOTAIR may represent a potential therapeutic target for patients with human placental vascularisation abnormalities.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Gynecology, Zhongnan Hospital of Wuhan University, No. 169 South of Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
| | - Fulin Liu
- The First Department of Gynecology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan 430060, Hubei, China
| | - Wanrong Wu
- The First Department of Gynecology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan 430060, Hubei, China
| | - Yurou Chen
- The First Department of Gynecology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan 430060, Hubei, China
| | - Hanshu Wu
- The First Department of Gynecology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan 430060, Hubei, China
| | - Wei Zhang
- Department of Gynecology, Zhongnan Hospital of Wuhan University, No. 169 South of Donghu Road, Wuchang District, Wuhan 430071, Hubei, China
| |
Collapse
|
159
|
Takahashi K, Ota Y, Kogure T, Suzuki Y, Iwamoto H, Yamakita K, Kitano Y, Fujii S, Haneda M, Patel T, Ota T. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer. Cancer Sci 2019; 111:98-111. [PMID: 31715081 PMCID: PMC6942436 DOI: 10.1111/cas.14232] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
The role of long noncoding RNAs (lncRNAs) in the epithelial‐mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) is unclear. Some lncRNAs can be transferred by extracellular vesicles (EVs) and have potential as biomarkers. Here, we identify an lncRNA that could serve as a biomarker for PDAC and show the functional roles of the lncRNA. Expression profiling of lncRNAs revealed that highly upregulated in liver cancer (HULC) was highly expressed, and induced, by transforming growth factor‐β in PDAC cells and their EVs. Knockdown of HULC decreased PDAC cell invasion and migration by inhibiting the EMT. Thus, HULC could be transferred by EVs, and promote EMT, invasion, and migration in recipient PDAC cells. To assess the roles of HULC, PDAC cell xenografts in nude mice were established. Knockdown of HULC in PDAC cells implanted in mice inhibited tumor growth. Moreover, microRNA‐133b suppressed PDAC cell invasion and migration by inhibiting the EMT through targeting HULC. Furthermore, serum samples were obtained from 20 PDAC and 22 intraductal papillary mucinous neoplasm (IPMN) patients, as well as 21 healthy individuals. Analysis of serum EV HULC expression by digital PCR showed that HULC expression was significantly increased in PDAC patients compared to healthy individuals or IPMN patients. Additionally, HULC showed good predictive performance for discriminating PDAC, suggesting that the analysis of EV‐encapsulated HULC would contribute to the diagnosis for human PDAC. Extracellular vesicle‐transported HULC promotes cell invasion and migration by inducing the EMT, and microRNA‐133b suppresses the EMT by targeting HULC. Extracellular vesicle‐encapsulated HULC could be a potential circulating biomarker for human PDAC.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yu Ota
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuko Suzuki
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hidetaka Iwamoto
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Yamakita
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yohei Kitano
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Satoshi Fujii
- Department of Laboratory Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tushar Patel
- Departments of Internal Medicine, Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
160
|
Li B, Chng WJ. EZH2 abnormalities in lymphoid malignancies: underlying mechanisms and therapeutic implications. J Hematol Oncol 2019; 12:118. [PMID: 31752930 PMCID: PMC6868783 DOI: 10.1186/s13045-019-0814-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/27/2019] [Indexed: 02/08/2023] Open
Abstract
EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which along with other PRC2 components mediates gene expression suppression via the methylation of Histone H3 at lysine 27. Recent studies have revealed a dichotomous role of EZH2 in physiology and in the pathogenesis of cancer. While it plays an essential role in the development of the lymphoid system, its deregulation, whether due to genetic or non-genetic causes, promotes B cell- and T cell-related lymphoma or leukemia. These findings triggered a boom in the development of therapeutic EZH2 inhibitors in recent years. Here, we discuss physiologic and pathogenic function of EZH2 in lymphoid context, various internal causes of EZH2 aberrance and how EZH2 modulates lymphomagenesis through epigenetic silencing, post-translational modifications (PTMs), orchestrating with surrounding tumor micro-environment and associating with RNA or viral partners. We also summarize different strategies to directly inhibit PRC2-EZH2 or to intervene EZH2 upstream signaling.
Collapse
Affiliation(s)
- Boheng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
161
|
Minn AKK, Sato N, Mieno MN, Arai T, Muramatsu M. Association study of long non-coding RNA HOTAIR rs920778 polymorphism with the risk of cancer in an elderly Japanese population. Gene 2019; 729:144263. [PMID: 31759985 DOI: 10.1016/j.gene.2019.144263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
The HOTAIR gene encodes a long noncoding RNA (lncRNA), which functions in development and tumorigenesis. A single nucleotide polymorphism (SNP) rs920778 in the HOTAIR gene, has been recurrently studied for susceptibility to many cancers including oesophageal cancer, gastric cancer, lung cancer, and hepatocellular carcinoma. Most of these studies were conducted in Chinese populations, and a few in Turkish, Iranian, and Portuguese populations. They mostly give rise to controversial results. It still remains largely unknown whether the cancer risk is conferred in a Japanese population. Here, we established an association study on the representative SNP rs920778, to examine its contribution to the presence of cancer in consecutive autopsy cases in the JG-SNP database. A total of 1373 subjects (mean age 80) including 827 cancer positive and 546 cancer negative subjects were analyzed. As a result, the occurrence of overall cancer was not associated with the rs920778 polymorphism (p > 0.05). For each cancer type, we did not find association except for lung cancer (p = 0.04) which was more likely a by-chance association after multiple testing. Our findings imply that rs920778 polymorphism does not affect total cancer presence and the effect on specific cancer types is also weak in the Japanese population.
Collapse
Affiliation(s)
- Aye Ko Ko Minn
- Department of Molecular Epidemiology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Noriko Sato
- Department of Molecular Epidemiology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
162
|
Jiang B, Xue M, Xu D, Song J, Zhu S. Down-regulated lncRNA HOTAIR alleviates polycystic ovaries syndrome in rats by reducing expression of insulin-like growth factor 1 via microRNA-130a. J Cell Mol Med 2019; 24:451-464. [PMID: 31733099 PMCID: PMC6933321 DOI: 10.1111/jcmm.14753] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023] Open
Abstract
It has been found that long noncoding RNA HOTAIR, microRNA‐130a (miR‐130a) and insulin‐like growth factor 1 (IGF1) expression are associated with ovarian cancer, thus, we hypothesised that the HOTAIR/miR‐130a/IGF1 axis might associate with endocrine disorders and biological behaviours of ovarian granulosa cells in rat models of polycystic ovary syndrome (PCOS). PCOS rat models were established by injection of dehydro‐isoandrosterone, followed by treatment of si‐HOTAIR, oe‐HOTAIR, miR‐130a mimics or miR‐130a inhibitors. Serum hormonal levels were determined to evaluate endocrine conditions. The effect of HOTAIR and miR‐130a on activities of isolated ovarian granulosa cells was assessed, as well as the involvement of IGF1.In the ovarian tissues and granulosa cells of PCOS rat models, highly expressed HOTAIR and IGF1 and poorly expressed miR‐130a were identified. In response to oe‐HOTAIR, serum levels of E2, T and LH were increased and serum levels of FSH were reduced; the proliferation of granulosa cells was reduced and apoptosis was promoted; notably, expression of miR‐130a was reduced while expression of IGF1 was increased. The treatment of si‐HOTAIR reversed the situation. Furthermore, the binding of HOTAIR to miR‐130a and targeting relationship of miR‐130a and IGF1 were confirmed. LncRNA HOTAIR up‐regulates the expression of IGF1 and aggravates the endocrine disorders and granulosa cell apoptosis through competitive binding to miR‐130a in rat models of PCOS. Based on our finding, we predict that competitive binding of HOTAIR to miR‐130a may act as a novel target for the molecular treatment of PCOS.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Min Xue
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dabao Xu
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiayu Song
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shujuan Zhu
- Department of Gynaecology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
163
|
Hua YQ, Zhu YD, Xie GQ, Zhang K, Sheng J, Zhu ZF, Ning ZY, Chen H, Chen Z, Meng ZQ, Liu LM. Long non-coding SBF2-AS1 acting as a competing endogenous RNA to sponge microRNA-142-3p to participate in gemcitabine resistance in pancreatic cancer via upregulating TWF1. Aging (Albany NY) 2019; 11:8860-8878. [PMID: 31619579 PMCID: PMC6834408 DOI: 10.18632/aging.102307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study is implemented to probe into the function of lncRNA SBF2-AS1 as a competing endogenous RNA (ceRNA) to sponge microRNA-142-3p (miR-142-3p) in modulating TWF1 expression in the gemcitabine resistance of pancreatic cancer. RESULTS LncRNA SBF2-AS1 was highly expressed in pancreatic cancer tissues and cells. SBF2-AS1 was found to be associated with gemcitabine resistance in pancreatic cancer. Knock-down of SBF2-AS1 inhibited proliferation, epithelial-mesenchymal transition, while promoting apoptosis of gemcitabine resistant pancreatic cancer cells. SBF2-AS1 inhibited the expression of TWF1 by competitively binding with miR-142-3p in pancreatic cancer. CONCLUSION Our study demonstrates that knock-down of SBF2-AS1 inhibits the expression of TWF1 by competitively binding with miR-142-3p to induce gemcitabine resistance in pancreatic cancer. METHODS Expression of SBF2-AS1 was tested in pancreatic cancer tissues and cells. Construction of AsPC-1/GEM and PANC-1/GEM cells with low expression of SBF2-AS1 was performed to determine the biological behaviors of drug-resistant cells. AsPC-1 and PANC-1 cells expressing SBF2-AS1 and/or miR-142-3p were constructed and treated with different concentrations of gemcitabine to detect the sensitivity of the cells to gemcitabine. The binding relationship between SBF2-AS1 and miR-142-3p and between miR-142-3p and TWF1 were determined.
Collapse
Affiliation(s)
- Yong-Qiang Hua
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Yao-Dong Zhu
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei 230000, Anhui Province, PR China
| | - Guo-Qun Xie
- Oncology Department, Yueyang Hospital of Integrative Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Ke Zhang
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Jie Sheng
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Zhen-Feng Zhu
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Zhou-Yu Ning
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Hao Chen
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Zhen Chen
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Zhi-Qiang Meng
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Lu-Ming Liu
- Minimally Invasive Treatment Center, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
164
|
Xu YH, Deng JL, Wang G, Zhu YS. Long non-coding RNAs in prostate cancer: Functional roles and clinical implications. Cancer Lett 2019; 464:37-55. [PMID: 31465841 DOI: 10.1016/j.canlet.2019.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNA transcripts longer than 200 nucleotides that do not encode proteins. LncRNAs have been documented to exhibit aberrant expression in various types of cancer, including prostate cancer. Currently, screening for prostate cancer results in overdiagnosis. The consequent overtreatment of patients with indolent disease in the clinic is due to the lack of appropriately sensitive and specific biomarkers. Thus, the identification of lncRNAs as novel biomarkers and therapeutic targets for prostate cancer is promising. In the present review, we attempt to summarize the current knowledge of lncRNA expression patterns and mechanisms in prostate cancer. In particular, we focus on lncRNAs regulated by the androgen receptor and the specific molecular mechanism of lncRNAs in prostate cancer to provide a potential clinical therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Yun-Hua Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Yuan-Shan Zhu
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
165
|
Zhu S, Huang X, Zhang K, Tan W, Lin Z, He Q, Chen Y, Shang C. Low expression of long noncoding RNA CTC-297N7.9 predicts poor prognosis in patients with hepatocellular carcinoma. Cancer Med 2019; 8:7679-7692. [PMID: 31674731 PMCID: PMC6912069 DOI: 10.1002/cam4.2618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are reported to play important roles in tumorigenesis of various malignant tumors. However, the clinical significance of aberrant lncRNA expression in hepatocellular carcinoma (HCC) is still elusive. METHODS Firstly, a differentially expressed lncRNA CTC-297N7.9 in HCC was detected by analyzing the data from The Cancer Genome Atlas (TCGA). Secondly, the expression level of CTC-297N7.9 was examined in four HCC cell lines and 60 pairs of HCC tissues by polymerase chain reaction (PCR) assay at our center. Thirdly, receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic value of CTC-297N7.9 for HCC. Correlation and survival analysis of HCC patients from the TCGA and our center were also carried out to assess the predictive value of CTC-297N7.9. Finally, survival prognostic models were established combining lncRNA expression and other clinical parameters. RESULTS The expression of CTC-297N7.9 was downregulated in HCC cell lines and HCC tissues. ROC curve revealed its significant diagnostic value in HCC. CTC-297N7.9 expression correlated with serum alpha-fetal protein (AFP), tumor stage, and tumor differentiation. Survival analysis indicated that overall survival (OS) and disease-free survival (DFS) are all positively associated with CTC-297N7.9 expression, especially in patients without viral hepatitis or cirrhosis. Cox regression analysis showed that CTC-297N7.9 expression level is an independent prognostic factor for both OS and DFS in HCC patients. Based on the model, CTC-297N7.9 was observed to be negatively correlated to risk score, indicating its role as a protective factor for HCC. CONCLUSION Our study demonstrated that the low expression of CTC-297N7.9 is associated with poor prognosis in HCC patients, suggesting its possible role as a potential prognostic marker for HCC.
Collapse
Affiliation(s)
- Sicong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Department of SICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuelian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Kelin Zhang
- Department of SICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenliang Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhirong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing He
- Department of SICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
166
|
Liu P, Sun QQ, Liu TX, Lu K, Zhang N, Zhu Y, Chen M. Serum lncRNA-UFC1 as a potential biomarker for diagnosis and prognosis of pancreatic cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4125-4129. [PMID: 31933809 PMCID: PMC6949777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Early diagnosis is important to improve the prognosis of pancreatic cancer (PC). Identifying potential biomarkers is essential for the monitoring and treatment of PC. The long noncoding RNA (lncRNA) UFC1 has been identified as an oncogenic factor in many cancers. However, the expression of UFC1 and its potential role in diagnosis and prognosis of PC remain largely unknown. The present study aimed to investigate the role of serum UFC1 in diagnosis and prognosis. The results indicated that serum UFC1 expression was relatively higher in PC patients than that in healthy volunteers. ROC curve analysis revealed that the serum UFC1 levels could distinguish PC patients from healthy controls, with an AUC value of 0.810. In addition, the serum UFC1 expression level was associated with lymph nodes metastasis, distant metastasis, and clinical stage. Kaplan-Meier analysis indicated that patients with high UFC1 expression exhibited shorter progression-free survival (PFS) and overall survival (OS) than those with low UFC1 expression. Multivariate analysis demonstrated that clinical stage and UFC1 expression level were significant, independent prognostic factors in PC patients. Our data demonstrate that serum UFC1 might serve as a potential biomarker for diagnosis and prognosis of PC.
Collapse
Affiliation(s)
- Peng Liu
- The Second Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Radiation OncologyHangzhou, Zhejiang Province, China
| | - Quan-Quan Sun
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Radiation OncologyHangzhou, Zhejiang Province, China
| | - Tong-Xin Liu
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Radiation OncologyHangzhou, Zhejiang Province, China
| | - Ke Lu
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Radiation OncologyHangzhou, Zhejiang Province, China
| | - Na Zhang
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Radiation OncologyHangzhou, Zhejiang Province, China
| | - Yuan Zhu
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Radiation OncologyHangzhou, Zhejiang Province, China
| | - Ming Chen
- The Second Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu Province, China
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Radiation OncologyHangzhou, Zhejiang Province, China
| |
Collapse
|
167
|
Choudhari R, Sedano MJ, Harrison AL, Subramani R, Lin KY, Ramos EI, Lakshmanaswamy R, Gadad SS. Long noncoding RNAs in cancer: From discovery to therapeutic targets. Adv Clin Chem 2019; 95:105-147. [PMID: 32122521 DOI: 10.1016/bs.acc.2019.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently gained considerable attention as key players in biological regulation; however, the mechanisms by which lncRNAs govern various disease processes remain mysterious and are just beginning to be understood. The ease of next-generation sequencing technologies has led to an explosion of genomic information, especially for the lncRNA class of noncoding RNAs. LncRNAs exhibit the characteristics of mRNAs, such as polyadenylation, 5' methyl capping, RNA polymerase II-dependent transcription, and splicing. These transcripts comprise more than 200 nucleotides (nt) and are not translated into proteins. Directed interrogation of annotated lncRNAs from RNA-Seq datasets has revealed dramatic differences in their expression, largely driven by alterations in transcription, the cell cycle, and RNA metabolism. The fact that lncRNAs are expressed cell- and tissue-specifically makes them excellent biomarkers for ongoing biological events. Notably, lncRNAs are differentially expressed in several cancers and show a distinct association with clinical outcomes. Novel methods and strategies are being developed to study lncRNA function and will provide researchers with the tools and opportunities to develop lncRNA-based therapeutics for cancer.
Collapse
Affiliation(s)
- Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Melina J Sedano
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alana L Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ramadevi Subramani
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ken Y Lin
- The Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
168
|
Li L, Wei J, Hei J, Ren Y, Li H. Long non-coding RNA H19 regulates proliferation of ovarian granulosa cells via STAT3 in polycystic ovarian syndrome. Arch Med Sci 2019; 17:785-791. [PMID: 34025849 PMCID: PMC8130457 DOI: 10.5114/aoms.2019.89254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Studies have shown that long non-coding RNAs (lncRNA) are aberrantly expressed in polycystic ovarian syndrome (PCOS) ovaries and may have a role in PCOS development. In this study, the role and therapeutic implications of lncRNA H19 were investigated in PCOS ovaries and granulosa cells. MATERIAL AND METHODS qRT-PCR was used for expression analysis. Cell Counting Kit 8 (CCK-8) assay was used for cell viability and acridine orange/ethidium bromide (AO/EB) and Annexin V/propidium iodide staining was used to detect apoptosis. All transfections were carried out with Lipofectamine 2000 reagent. Western blot analysis was used for protein expression analysis. RESULTS The expression of lncRNA H19 was remarkably upregulated in the PCOS ovarian tissues as well as the granulosa cells. Suppression of lncRNA H19 expression caused the inhibition of KGN granulosa cell proliferation due to the triggering of apoptosis. Bioinformatic analysis revealed the presence of the GAS binding site for STAT3 in the promoter of lncRNA H19. Silencing of STAT3 suppressed the expression of lncRNA H19 in KGN cells and also halted their growth by triggering apoptosis. Co-transfect experiments revealed that STAT3 and lncRNA H19 silencing cause inhibition of KGN growth synergistically. CONCLUSIONS lncRNA H19 regulates the growth of ovarian granulosa cells and might prove to be a therapeutic target for management of PCOS.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Jianxun Wei
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Jiangrong Hei
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Yongbian Ren
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Hongmei Li
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| |
Collapse
|
169
|
Lou C, Zhao J, Gu Y, Li Q, Tang S, Wu Y, Tang J, Zhang C, Li Z, Zhang Y. LINC01559 accelerates pancreatic cancer cell proliferation and migration through YAP-mediated pathway. J Cell Physiol 2019; 235:3928-3938. [PMID: 31608998 DOI: 10.1002/jcp.29288] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is one of the top two most fatal cancers, with the poorest survival rate among all human malignancies. Increasing evidence suggests the involvement of long noncoding RNAs (lncRNAs) in the initiation and progression of various cancers. Herein, we investigated the role of lncRNA LINC01559 in PC. Several online databases indicated that LINC01559 was at a low expression in normal pancreatic tissues but was obviously upregulated in PAAD tissues. Further, our results showed that LINC01559 was stimulated in PC cell lines relative to normal controls. Furthermore, we validated that LINC01559 facilitated PC cell proliferation and migration in vitro. Also, silencing LINC01559 obstructed PC cell growth in vivo. Besides, LINC01559 was revealed to be mainly in the cytoplasm of PC cells and therefore served as a ceRNA of Yes-associated protein (YAP) in PC cells via sponging miR-607. Surprisingly, we also proved that LINC01559 could interact with YAP protein, which might hinder YAP phosphorylation and enhance YAP transcriptional activity in PC cells. Furthermore, we demonstrated that YAP was the downstream effector in LINC01559-regulated PC development. Collectively, our findings unmasked that LINC01559 accelerates PC progression through relying on YAP, providing a new potential target for clinical treatment of patients with PC.
Collapse
Affiliation(s)
- Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Juan Zhao
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuanlong Gu
- Department of Hematology and Oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Qingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuli Tang
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yangjiazi Wu
- The Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jiebing Tang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chunhui Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
170
|
Arshi A, Raeisi F, Mahmoudi E, Mohajerani F, Kabiri H, Fazel R, Zabihian-Langeroudi M, Jusic A. A Comparative Study of HOTAIR Expression in Breast Cancer Patient Tissues and Cell Lines. CELL JOURNAL 2019; 22:178-184. [PMID: 31721532 PMCID: PMC6874785 DOI: 10.22074/cellj.2020.6543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Objective Recent data suggest that increased levels of the HOTAIR long non-coding RNA (lncRNA) are involved in
the development of various types of malignancy, including breast cancer. The aim of present study was to investigate
HOTAIR lncRNA expression profile in breast cancer (BC) patients and cell lines.
Materials and Methods In this experimental study, expression level of HOTAIR lncRNA was evaluated in BC and
normal tissues of 15 patients as well as MDA-MB-231, MCF-7 and MCF-10A cell lines, using quantitative reverse-
transcription polymerase chain reaction (qRT-PCR). HOTAIR lncRNA expression levels were estimated using 2-ΔΔCt
method. Further, receiver operating characteristic (ROC) curve analysis was done to evaluate the selected lncRNA
diagnostic potential. The Cox’s proportional hazards regression model was performed to evaluate the predictive value
of this lncRNA level in BC patients.
Results The results of present study demonstrated no significant difference in the expression of HOTAIR lncRNA in
MCF7 and MDA-MB-231 cancer cell lines compared to MCF-10A as normal cell line (P>0.05). However, we observed
a significantly increase in the expression of HOTAIR in BC patients compared to normal tissues (P<0.001). Significant
associations were found between gene expression and tumour size and margin. We found 91.1% sensitivity and 95.7%
specificity of circulating HOTAIR with an area under the ROC curve of 0.969. The Kaplan-Meier analysis indicated
significant correlation between HOTAIR expression and overall survival.
Conclusion This study demonstrated that expression of HOTAIR is increased in BC and might be associated with its
progression. According to these findings, HOTAIR expression could be proposed as biomarkers for BC early diagnosis and
prognosis.
Collapse
Affiliation(s)
- Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farzaneh Raeisi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Mohajerani
- Department of Genetics, Faculty of Modern Medical Science, Islamic Azad University of Medical Sciences of Tehran, Tehran, Iran
| | - Hamidreza Kabiri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Razieh Fazel
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina. Electronic Address:
| |
Collapse
|
171
|
Luo Y, He Y, Ye X, Song J, Wang Q, Li Y, Xie X. High Expression of Long Noncoding RNA HOTAIRM1 is Associated with the Proliferation and Migration in Pancreatic Ductal Adenocarcinoma. Pathol Oncol Res 2019; 25:1567-1577. [PMID: 30613920 DOI: 10.1007/s12253-018-00570-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable malignancy. Long noncoding RNA (LncRNA) HOTAIRM1 (HOX antisense intergenic RNA myeloid 1) has been shown to play important roles in the progression of several type cancers. However, the exact role of HOTAIRM1 in PDAC development remains largely unknown. This study aims to evaluate the potential function of HOTAIRM1 in the development and progress of PDAC. HOTAIRM1 expression was measured by RT-qPCR in forty seven paired human PDAC tissues and five PDAC cell lines. SW1990 and PANC-1 cells were transfected with siHOTAIRM1 to achieve HOTAIRM1 silence. MTT assay and colony formation assay were used to detect the effect of HOTAIRM1 knockdown on cell proliferation. The impact of HOTAIRM1 silence on cell cycle and apoptosis was assessed by flow cytometry assay. Transwell migration assay was performed to explore the influence of HOTAIRM1 downregulation on the migratory potential of PDAC cells. Western blot assay was applied to determine the expression changes of cell cycle, apoptosis, and migration-related genes before and after downregulating HOTAIRM1. HOTAIRM1 expression was abnormally upregulated in PDAC tissues and cells when compared with the control samples, and was positively associated with the expression of KRAS gene mutation. In vitro functional experiments, HOTAIRM1 expression was significantly downregulated by transfection with siHOTAIRM1 in SW1990 and PANC cell lines. HOTAIRM1 knockdown attenuated cell proliferation by inducing cell cycle arrest at G0/G1 phase, promoted cell apoptosis, and inhibited cell migration in PDAC cells by regulating related-genes expression. In conclusion, HOTAIRM1 plays a critical role in PDAC progression, which may be a novel diagnostic and rational therapeutic target for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Yongyun Luo
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Yaqin He
- Surgery Laboratory, General Hospital of Ningxia Medical University, 804 South Shengli Street, Yinchuan, 750004, China
| | - Xiaoping Ye
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, 804 South Shengli Street, Yinchuan, 750004, China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Yukui Li
- Surgery Laboratory, General Hospital of Ningxia Medical University, 804 South Shengli Street, Yinchuan, 750004, China.
| | - Xiaoliang Xie
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, 804 South Shengli Street, Yinchuan, 750004, China.
- Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
172
|
Wang W, Wu D, He X, Hu X, Hu C, Shen Z, Lin J, Pan Z, He Z, Lin H, Wang M. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett 2019; 460:18-28. [PMID: 31207321 DOI: 10.1016/j.canlet.2019.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
Accumulating evidence indicates that CCL18 and the long non-coding RNA, HOTAIR, have critical roles in cancer progression and metastasis, but the correlation between CCL18 and HOTAIR in esophageal squamous cell carcinoma (ESCC) and their downstream molecular mechanisms remain unclear. Overexpression of CCL18 in ESCC tissues was associated with a worse survival in patients with ESCC. CCL18 enhanced the invasiveness of ESCC cells in a dose-dependent manner, whereas CCL18 knockdown inhibited their invasiveness. In particular, CCL18 expression was positively associated with HOTAIR expression in ESCC tissues. Furthermore, CCL18 upregulated the expression of HOTAIR, and knockdown of HOTAIR alleviated the CCL18-induced invasiveness of ESCC cells. HOTAIR may act as a competing endogenous RNA and could effectively becoming a sponge for miR-130a-5p, thereby modulating the derepression of ZEB1 and promoting epithelial-mesenchymal transition in ESCC. Our study suggests that CCL18 contributes to the malignant progression of esophageal cancer by upregulating HOTAIR expression. HOTAIR overexpression may promote tumor invasiveness and progression in ESCC, given that HOTAIR functions as a miR-130a-5p sponge, positively regulating ZEB1. This provides new therapeutic targets for early diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Wenjian Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Duoguang Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaotian He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xueting Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chuwen Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhiwen Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhanghai He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
173
|
Li H, Han Q, Chen Y, Chen X, Ma R, Chang Q, Yin D. Upregulation of the long non-coding RNA FOXD2-AS1 is correlated with tumor progression and metastasis in papillary thyroid cancer. Am J Transl Res 2019; 11:5457-5471. [PMID: 31632522 PMCID: PMC6789238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Mounting evidence has shown that long non-coding RNAs (lncRNAs) play critical regulation roles in the progression of various cancers. However, the biological role and clinical value of lncRNA FOXD2-AS1 in papillary thyroid cancer (PTC) remain to be elucidated. METHODS The expression of FOXD2-AS1 in PTC tissues and cell lines was evaluated by RT-qPCR and in situ hybridization. The association between FOXD2-AS1 expression levels and clinicopathologic features was analyzed through tissue microarray. The biological function of FOXD2-AS1 in PTC cells was determined both in vitro through CCK-8, EdU staining, colony formation and cell invasion assays and in vivo through a xenograft tumor model. Functional and pathway enrichment analysis were also conducted to analyze the molecular mechanism. RESULTS FOXD2-AS1 was significantly upregulated in PTC tissues, and high FOXD2-AS1 expression was positively associated with malignant potential factors in PTC patients. In addition, high level of FOXD2-AS1 expression was an unfavorable independent prognostic biomarker for patients with PTC. Moreover, we found that knockdown of FOXD2-AS1 could effectively inhibit PTC cell proliferation and invasion in vitro and suppress tumor growth of PTC in vivo. Bioinformatics analysis indicated that activation of cell cycle and apoptosis pathways might be involved in the oncogenic function of FOXD2-AS1 in PTC. Moreover, we demonstrated that FOXD2-AS1 directly interacted with miR-185-5p as miRNA sponge and overexpression of FOXD2-AS1 partially reversed the suppressive effect of miR-185-5p in TPC cells. CONCLUSION Our findings suggest FOXD2-AS1 functions as an oncogene and promotes the tumor progression and metastasis in PTC, which might serve as a promising prognostic biomarker and potential therapeutic target for PTC patients.
Collapse
Affiliation(s)
- Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Qicai Han
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Yali Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Xiaolong Chen
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Runsheng Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Qungang Chang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
174
|
Bai X, Lu D, Lin Y, Lv Y, He L. A seven-miRNA expression-based prognostic signature and its corresponding potential competing endogenous RNA network in early pancreatic cancer. Exp Ther Med 2019; 18:1601-1608. [PMID: 31410115 PMCID: PMC6676175 DOI: 10.3892/etm.2019.7728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to establish a microRNA (miRNA/miR) signature to predict the prognosis of patients with pancreatic cancer (PC) at the early stage and to investigate the involvement of competing endogenous RNAs (ceRNAs) in PC. Using mature miRNA expression profiles from The Cancer Genome Atlas, differentially expressed miRNAs in tissues derived from patients exhibiting early PC and tissues from healthy individuals were compared. The least absolute shrinkage and selection operator regression method was used to construct a miRNA-based signature for predicting prognosis. The miRNet tool, gene set enrichment analysis (GSEA) and the LncRNADisease database were utilized to explore the mechanistic involvement of ceRNAs. A total of seven downregulated miRNAs in PC (miR-424-5p, miR-139-5p, miR-5586-5p, miR-126-3p, miR-3613-5p, miR-454-3p and miR-1271-5p) were selected to generate a signature. Based on this seven-miRNA signature, it was possible to stratify patients with PC into low- and high-risk groups. The overall survival of the low-risk group was significantly longer than that of the high-risk group (P<0.001). The seven-miRNA signature was able to predict the 2-year-survival rate of patients with early PC with an area under the curve of 0.750. Furthermore, as opposed to routine clinicopathological features, this seven-miRNA signature was an independent prognostic factor according to multivariate Cox regression analysis. GSEA indicated that the extracellular matrix receptor interaction pathway and the transforming growth factor-β signaling pathway were enriched in the high-risk group. A ceRNA network of the seven-miR signature was constructed. In conclusion, the present study provided a seven-miRNA signature, according to which patients with early PC may be divided into high- and low-risk groups. The ceRNA network of the prognostic signature was preliminarily explored.
Collapse
Affiliation(s)
- Xue Bai
- Department of Medical Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Donglan Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yufeng Lv
- Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, Guangxi 530029, P.R. China
| | - Liusheng He
- Department of Surgery 1, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
175
|
Ismail DM, Shaker OG, Kandeil MA, Hussein RM. Gene Expression of the Circulating Long Noncoding RNAH19andHOTAIRin Egyptian Colorectal Cancer Patients. Genet Test Mol Biomarkers 2019; 23:671-680. [DOI: 10.1089/gtmb.2019.0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dina M. Ismail
- National Organization for Research and Control of Biologicals, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A. Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Rasha M. Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
| |
Collapse
|
176
|
Li H, Wang FL, Li W, Fei YH, Wang YT, Zhang JE, Bi HY, Zhang M. Aberrant expressed long non-coding RNAs in laryngeal squamous-cell carcinoma. Am J Otolaryngol 2019; 40:615-625. [PMID: 31128861 DOI: 10.1016/j.amjoto.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022]
Abstract
PURPOSE Laryngeal squamous-cell carcinoma (LSCC) is the second most common malignant tumor of head and neck squamous cell carcinoma. The study was aimed to identify key long non-coding RNAs (lncRNAs) biomarkers for LSCC. METHODS Differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) between LSCC and adjacent tissues were obtained based on The Cancer Genome Atlas. DElncRNA-DEmRNAs co-expression and DElncRNA-nearby-target DEmRNA interaction networks were constructed. Receiver operating characteristic and survival analysis were performed. A published dataset were as used to validate the result of bioinformatics analysis. RESULTS We obtained 1103 DEmRNAs and 306 DElncRNAs between LSCC and adjacent tissues. A total of 338 DElncRNA-DEmRNA co-expression pairs and 229 DElncRNA-nearby-target DEmRNA pairs were obtained. Ten DElncRNAs and six DEmRNAs has great diagnostic value for LSCC. HOXB9 has potential prognostic value for LSCC. The results of GSE84957 validation were generally consistent with our results. CONCLUSION Our study provided clues for understanding the mechanism and developing potential biomarkers for LSCC.
Collapse
Affiliation(s)
- Hu Li
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong, China
| | - Fu-Ling Wang
- Department of Obstetrics, Maternal and Child Health Hospital of RenCheng District, Jining, Jining, Shandong, China
| | - Wei Li
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong, China
| | - Yong-Hua Fei
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong, China
| | - Ya-Ting Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong, China
| | - Jing-E Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong, China
| | - Hui-Yun Bi
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong, China
| | - Mei Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong, China.
| |
Collapse
|
177
|
Xiong X, Shi Q, Yang X, Wang W, Tao J. LINC00052 functions as a tumor suppressor through negatively modulating miR-330-3p in pancreatic cancer. J Cell Physiol 2019; 234:15619-15626. [PMID: 30712321 DOI: 10.1002/jcp.28209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is a serious solid malignant tumor worldwide. Increasing evidence has pointed out that abnormal expressions of long noncoding RNAs are involved in various tumors. Meanwhile, LINC00052 is reported as a famous tumor regulator in several cancers. Nevertheless, the biological role of LINC00052 in pancreatic cancer progression is still unknown. Our study was to explore the specific mechanism of LINC00052 in pancreatic cancer. First, we observed that the LINC00052 was obviously downregulated in several pancreatic cancer cell lines. Overexpression of LINC00052 greatly repressed AsPC-1 and SW1990 cell proliferation, triggered the apoptosis and prevented cell cycle in the G1 phase. For another, AsPC-1 and SW1990 cell migration and invasion capacity were also obviously repressed by LINC00052 upregulation. Moreover, miR-330-3p was elevated in pancreatic cancer cells and can function as a target of LINC00052 confirmed by luciferase reporter and RNA Immunoprecipitation (RIP) experiments. Inhibition of miR-330-3p could depress pancreatic cancer progression while overexpressed miR-330-3p exhibited an opposite process. Finally, our data indicated that the LINC00052 also remarkably suppressed pancreatic tumor growth via modulating miR-330-3p in vivo. To conclude, our study revealed that the LINC00052 might provide a new perspective for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiao Shi
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaojia Yang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
178
|
Harnessing the tissue and plasma lncRNA-peptidome to discover peptide-based cancer biomarkers. Sci Rep 2019; 9:12322. [PMID: 31444383 PMCID: PMC6707329 DOI: 10.1038/s41598-019-48774-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Proteome-centric studies, although have identified numerous lncRNA-encoded polypeptides, lack differential expression analysis of lncRNA-peptidome across primary tissues, cell lines and cancer states. We established a computational-proteogenomic workflow involving re-processing of publicly available LC-MS/MS data, which facilitated the identification of tissue-specific and universally expressed (UExp) lncRNA-polypeptides across 14 primary human tissues and 11 cell lines. The utility of lncRNA-peptidome as cancer-biomarkers was investigated by re-processing LC-MS/MS data from 92 colon-adenocarcinoma (COAD) and 30 normal colon-epithelium tissues. Intriguingly, a significant upregulation of five lncRNA UExp-polypeptides in COAD tissues was observed. Furthermore, clustering of the UExp-polypeptides led to the classification of COAD patients that coincided with the clinical stratification, underlining the prognostic potential of the UExp-polypeptides. Lastly, we identified differential abundance of the UExp-polypeptides in the plasma of prostate-cancer patients highlighting their potential as plasma-biomarker. The analysis of lncRNA-peptidome may pave the way to identify effective tissue/plasma biomarkers for different cancer types.
Collapse
|
179
|
Lv Y, Huang S. Role of non-coding RNA in pancreatic cancer. Oncol Lett 2019; 18:3963-3973. [PMID: 31579086 PMCID: PMC6757267 DOI: 10.3892/ol.2019.10758] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a malignant disease that develops rapidly and carries a poor prognosis. Currently, surgery is the only radical treatment. Non-coding RNAs (ncRNAs) are protein-free RNAs produced by genome transcription; they play important roles in regulating gene expression, participating in epigenetic modification, cell proliferation, differentiation and reproduction. ncRNAs also play key roles in the development of cancer; microRNA (miRNA) and long non-coding RNA (lncRNA) may lead the way to new treatments for pancreatic cancer. miRNAs are short-chain ncRNAs (19–24 nt) that inhibit the degradation of protein translation or their target gene mRNAs to regulate gene expression. lncRNAs contain >200 nt of ncRNA and play important regulatory roles in a number of malignant tumors, in terms of tumor cell proliferation, apoptosis, invasion and distant metastasis. lncRNAs can be exploited for the diagnosis and treatment of pancreatic cancer and have substantial prospects for clinical application. Nevertheless, the molecular mechanism of their regulation and function, as well as the significance of other ncRNAs, such as piwi-interacting RNA, in the pathogenesis of pancreatic cancer, are largely unknown. In this review, the structures of ncRNAs with various classifications, as well as the functions and important roles of ncRNAs in the diagnosis and treatment of pancreatic cancer are reviewed.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
180
|
Cai J, Yu Y, Xu Y, Liu H, Shou J, You L, Jiang H, Han X, Xie B, Han W. Exploring the role of Mir204/211 in HNSCC by the combination of bioinformatic analysis of ceRNA and transcription factor regulation. Oral Oncol 2019; 96:153-160. [PMID: 31422208 DOI: 10.1016/j.oraloncology.2019.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to reveal the regulatory roles of microRNAs in head and neck squamous cell carcinoma (HNSCC) through comprehensive ceRNA, miRNA-transcription factor (TF)-hub gene network and survival analysis. MATERIALS AND METHODS Expression analysis was performed using the 'edgeR' package based on The Cancer Genome Atlas database. The ceRNA network was screened by intersecting prediction results from miRcode, miRTarBase, miRDB and TargetScan. GSE30784, GSE59102 and GSE107591 from the Gene Expression Omnibus repository were chosen for cross-validation. Hub genes were identified using a protein-protein interaction network constructed by Search Tool for the Retrieval of Interacting Genes. The Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TTRUST) was utilized to map the miRNA-TF-Hub gene network. Patient overall survival was analyzed using the 'survival' package in R. Structural and functional analysis of miR-204/211 was based on miRbase and RNAstructure. RESULTS A ceRNA network of 178 lncRNAs, 19 miRNAs and 55 mRNAs was generated, and a TF regulatory network with 11 miRNAs, 11 TFs and 18 hub genes was constructed from the 52 hub genes identified through the protein-protein interaction (PPI) network. Survival analysis demonstrated that the dysregulated expression of 11 lncRNAs and 14 mRNAs was highly related to overall survival. Furthermore, miR-204 and miR-211 were significantly involved in the network with identical mature structures, indicating them as key miRNAs in HNSCC. CONCLUSION This study reveals the comprehensive molecular regulatory networks centralized by miRNAs in HNSCC and uncovers the crucial role of miR-204 and miR-211, which may become potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Yeke Yu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Yuzi Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiawei Shou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanliang Jiang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - XuFeng Han
- Department of Internal Medicine, Yuyao Traditional Chinese Medicine Hospital, Yuyao, Zhejiang, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
181
|
Long Non-coding RNAs as Important Biomarkers in Laryngeal Cancer and Other Head and Neck Tumours. Int J Mol Sci 2019; 20:ijms20143444. [PMID: 31336999 PMCID: PMC6678449 DOI: 10.3390/ijms20143444] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
Head and neck carcinoma (HNC) is a heterogeneous disease encompassing a variety of tumors according to the origin. Laryngeal cancer (LC) represents one of the most frequent tumors in the head and neck region. Despite clinical studies and advance in treatment, satisfactory curative strategy has not yet been reached. Therefore, there is an urgent need for the identification of specific molecular signatures that better predict the clinical outcomes and markers that serve as suitable therapeutic targets. Long non-coding RNAs (lncRNA) are reported as important regulators of gene expression and represent an innovative pharmacological application as molecular biomarkers in cancer. The purpose of this review is to discuss the most relevant epigenetic and histological prognostic biomarkers in HNC, with particular focus on LC. We summarize the emerging roles of long non-coding RNAs in HNC and LC development and their possible use in early diagnosis.
Collapse
|
182
|
Zeng Z, Xu FY, Zheng H, Cheng P, Chen QY, Ye Z, Zhong JX, Deng SJ, Liu ML, Huang K, Li Q, Li W, Hu YH, Wang F, Wang CY, Zhao G. LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics 2019; 9:5298-5314. [PMID: 31410216 PMCID: PMC6691583 DOI: 10.7150/thno.34559] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Rationale: Hypoxia has been proved to contribute to aggressive phenotype of cancers, while functional and regulatory mechanism of long noncoding RNA (lncRNA) in the contribution of hypoxia on pancreatic cancer (PC) tumorigenesis is incompletely understood. The aim of this study was to uncover the regulatory and functional roles for hypoxia-induced lncRNA-MTA2TR (MTA2 transcriptional regulator RNA, AF083120.1) in the regulation of PC tumorigenesis. Methods: A lncRNA microarray confirmed MTA2TR expression in tissues of PC patients. The effects of MTA2TR on proliferation and metastasis of PC cells and xenograft models were determined, and the key mechanisms by which MTA2TR promotes PC were further dissected. Furthermore, the expression and regulation of MTA2TR under hypoxic conditions in PC cells were assessed. We also assessed the correlation between MTA2TR expression and PC patient clinical outcomes. Results: We found that metastasis associated protein 2 (MTA2) transcriptional regulator lncRNA (MTA2TR) was overexpressed in PC patient tissues relative to paired noncancerous tissues. Furthermore, we found that depletion of MTA2TR significantly inhibited PC cell proliferation and invasion both in vitro and in vivo. We further demonstrated that MTA2TR transcriptionally upregulates MTA2 expression by recruiting activating transcription factor 3 (ATF3) to the promoter area of MTA2. Consequentially, MTA2 can stabilize the HIF-1α protein via deacetylation, which further activates HIF-1α transcriptional activity. Interestingly, our results revealed that MTA2TR is transcriptionally regulated by HIF-1α under hypoxic conditions. Our clinical samples further indicated that the overexpression of MTA2TR was correlated with MTA2 upregulation, as well as with reduced overall survival (OS) in PC patients. Conclusions: These results suggest that feedback between MTA2TR and HIF-1α may play a key role in regulating PC tumorigenesis, thus potentially highlighting novel avenues PC treatment.
Collapse
|
183
|
Landscape of Overlapping Gene Expression in the Equine Placenta. Genes (Basel) 2019; 10:genes10070503. [PMID: 31269762 PMCID: PMC6678446 DOI: 10.3390/genes10070503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that overlapping genes are much more common in eukaryotic genomes than previously thought. These different-strand overlapping genes are potential sense–antisense (SAS) pairs, which might have regulatory effects on each other. In the present study, we identified the SAS loci in the equine genome using previously generated stranded, paired-end RNA sequencing data from the equine chorioallantois. We identified a total of 1261 overlapping loci. The ratio of the number of overlapping regions to chromosomal length was numerically higher on chromosome 11 followed by chromosomes 13 and 12. These results show that overlapping transcription is distributed throughout the equine genome, but that distributions differ for each chromosome. Next, we evaluated the expression patterns of SAS pairs during the course of gestation. The sense and antisense genes showed an overall positive correlation between the sense and antisense pairs. We further provide a list of SAS pairs with both positive and negative correlation in their expression patterns throughout gestation. This study characterizes the landscape of sense and antisense gene expression in the placenta for the first time and provides a resource that will enable researchers to elucidate the mechanisms of sense/antisense regulation during pregnancy.
Collapse
|
184
|
Kopp F. Molecular functions and biological roles of long non‐coding RNAs in human physiology and disease. J Gene Med 2019; 21:e3104. [DOI: 10.1002/jgm.3104] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Florian Kopp
- Department of Molecular BiologyUniversity of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
185
|
HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett 2019; 454:90-97. [DOI: 10.1016/j.canlet.2019.04.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/17/2023]
|
186
|
Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 2019; 9:1354-1366. [PMID: 31392074 PMCID: PMC6682721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023] Open
Abstract
Cancer is difficult to cure due to frequent metastasis, and developing effective therapeutic approaches to treat cancer is urgently important. Long non-coding RNAs (lncRNAs) have diverse roles in regulating gene expression at both the transcriptional and translational levels and have been reported to be involved in tumorigenesis and tumor metastasis. In this article, we review the emerging roles of lncRNAs in cancer, especially in cancer immunity, cancer metabolism and cancer metastasis. We also discuss the use of novel technologies, such as antisense oligonucleotides, CRISPR-Cas9 and nanomedicines, to target lncRNAs and thus control cancers.
Collapse
Affiliation(s)
- Ming-Chun Jiang
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
| | - Jiao-Jiao Ni
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
- Institute of Gastroenterology, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Wen-Yu Cui
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
| | - Bo-Ya Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310016, Zhejiang, China
- Institute of Gastroenterology, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of MedicineHangzhou 310058, Zhejiang, China
- Institute of Gastroenterology, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| |
Collapse
|
187
|
Li Y, Ren Y, Wang Y, Tan Y, Wang Q, Cai J, Zhou J, Yang C, Zhao K, Yi K, Jin W, Wang L, Liu M, Yang J, Li M, Kang C. A Compound AC1Q3QWB Selectively Disrupts HOTAIR-Mediated Recruitment of PRC2 and Enhances Cancer Therapy of DZNep. Theranostics 2019; 9:4608-4623. [PMID: 31367244 PMCID: PMC6643429 DOI: 10.7150/thno.35188] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Over 20% of cancer 'driver' genes encode chromatin regulators. Long noncoding RNAs (lincRNAs), which are dysregulated in various cancers, play a critical role in chromatin dynamics and gene regulation by interacting with key epigenetic regulators. It has been previously reported that the lincRNA HOTAIR mediates recruitment of polycomb repressive complex 2 (PRC2) leading to aberrant transcriptional silencing of tumor suppressor genes in glioma and breast cancer. Thus, lincRNA HOTAIR can serve as a promising therapeutic target. Herein, we identified a small-molecule compound AC1Q3QWB (AQB) as a selective and efficient disruptor of HOTAIR-EZH2 interaction, resulting in blocking of PRC2 recruitment and increasing tumor suppressors expression. Methods: Molecular docking and high-throughput screening were performed to identify the small compound, AQB. RIP and ChIRP assays were carried to assess the selective interference of AQB with the HOTAIR-EZH2 interaction. The effects of AQB on tumor malignancy were evaluated in a variety of cancer cell lines and orthotopic breast cancer models. The combination therapy of AQB and 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2 was used in vitro and in orthotopic breast cancer and glioblastoma patient-derived xenograft (PDX) models. Results: Tumor cells highly expressing HOTAIR and EZH2 were sensitive to AQB. APC2, as one of the target genes, was significantly up-regulated by AQB and led to degradation of β-catenin resulting in suppression of Wnt/β-catenin signaling which may contribute to inhibition of tumor growth and metastasis in vitro and in orthotopic breast cancer models. Remarkably, AQB enhanced the toxicity of DZNep in vitro. In orthotopic breast cancer and glioblastoma patient-derived xenografts (PDX) models, the combination of low doses of AQB and DZNep realized much better killing than DZNep treatment alone. Conclusion: AQB is a HOTAIR-EZH2 inhibitor, which blocks PRC2 recruitment and has great potential as an effective agent for targeted cancer therapy.
Collapse
|
188
|
Bourguignon LYW. Matrix Hyaluronan-CD44 Interaction Activates MicroRNA and LncRNA Signaling Associated With Chemoresistance, Invasion, and Tumor Progression. Front Oncol 2019; 9:492. [PMID: 31293964 PMCID: PMC6598393 DOI: 10.3389/fonc.2019.00492] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often drug resistance. A great deal of effort has been placed on searching for unique molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components have been identified as a physiological ligand for surface CD44 isoforms which are frequently overexpressed in malignant tumor cells during cancer progression. The binding interaction between HA and CD44 isoforms often stimulates aberrant cellular signaling processes and appears to be responsible for the induction of multiple oncogenic events required for cancer-specific phenotypes and behaviors. In recent years, both microRNAs (miRNAs) (with ~20–25 nucleotides) and long non-coding RNAs (lncRNAs) (with ~200 nucleotides) have been found to be abnormally expressed in cancer cells and actively participate in numerous oncogenic signaling events needed for tumor cell-specific functions. In this review, I plan to place a special emphasis on HA/CD44-induced signaling pathways and the presence of several novel miRNAs (e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer development and progression. I believe that important information can be obtained from these studies on HA/CD44-activated miRNAs and lncRNA that may be very valuable for the future development of innovative therapeutic drugs for the treatment of matrix HA/CD44-mediated cancers.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
189
|
Myoferlin Contributes to the Metastatic Phenotype of Pancreatic Cancer Cells by Enhancing Their Migratory Capacity through the Control of Oxidative Phosphorylation. Cancers (Basel) 2019; 11:cancers11060853. [PMID: 31248212 PMCID: PMC6628295 DOI: 10.3390/cancers11060853] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies with an overall survival of 5% and is the second cause of death by cancer, mainly linked to its high metastatic aggressiveness. Accordingly, understanding the mechanisms sustaining the PDAC metastatic phenotype remains a priority. In this study, we generated and used a murine in vivo model to select clones from the human Panc-1 PDAC cell line that exhibit a high propensity to seed and metastasize into the liver. We showed that myoferlin, a protein previously reported to be overexpressed in PDAC, is significantly involved in the migratory abilities of the selected cells. We first report that highly metastatic Panc-1 clones expressed a significantly higher myoferlin level than the corresponding low metastatic ones. Using scratch wound and Boyden’s chamber assays, we show that cells expressing a high myoferlin level have higher migratory potential than cells characterized by a low myoferlin abundance. Moreover, we demonstrate that myoferlin silencing leads to a migration decrease associated with a reduction of mitochondrial respiration. Since mitochondrial oxidative phosphorylation has been shown to be implicated in the tumor progression and dissemination, our data identify myoferlin as a valid potential therapeutic target in PDAC.
Collapse
|
190
|
Liu Y, Feng W, Liu W, Kong X, Li L, He J, Wang D, Zhang M, Zhou G, Xu W, Chen W, Gong A, Xu M. Circulating lncRNA ABHD11-AS1 serves as a biomarker for early pancreatic cancer diagnosis. J Cancer 2019; 10:3746-3756. [PMID: 31333792 PMCID: PMC6636289 DOI: 10.7150/jca.32052] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Recent studies have shown that circulating long noncoding RNAs (lncRNAs) could be stably detectable in the blood of cancer patients and play important roles in the diagnosis of many different cancers. However, the value of lncRNAs in the diagnosis of pancreatic cancer (PC) has not been fully explored. Methods: Eleven PC-related lncRNAs were selected by analyzing bioinformatics databases. The expression levels of the lncRNAs were further analyzed in a small set of plasma samples from a training group including 30 noncancer samples (15 healthy and 15 chronic pancreatitis (CP) subjects) and 15 PC samples. Then, the candidate lncRNAs were validated with data from 46 healthy controls, 97 CP patients and 114 PC patients. Receiver operating characteristic (ROC) curves were employed to evaluate the diagnostic performance of the identified lncRNAs. Results: After selection and validation, three characteristic plasma candidate lncRNAs, ABHD11-AS1, LINC00176 and SNHG11, were identified, and their levels were significantly higher in PC patients than in normal controls. We found that among the three candidate lncRNAs, ABHD11-AS1 showed the best diagnostic performance for the detection of PC. Furthermore, ABHD11-AS1 had a higher area under the ROC curve (AUC) than CEA, CA199 and CA125 for early PC diagnosis, while the combination of ABHD11-AS1 and CA199 was more effective than ABHD11-AS1 alone. Conclusions: Plasma ABHD11-AS1 could serve as a potential biomarker for detecting PC, and the combination of ABHD11-AS1 and CA199 was more efficient for the diagnosis of PC than ABHD11-AS1 alone, particularly for early tumor screening.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Wen Feng
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.,Department of Gastroenterology, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
| | - Wenyu Liu
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lei Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Junbo He
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Dawei Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Meiting Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Gai Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Wei Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Wei Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| |
Collapse
|
191
|
Wang X, Guo S, Zhao R, Liu Y, Yang G. STAT3-Activated Long Non-Coding RNA Lung Cancer Associated Transcript 1 Drives Cell Proliferation, Migration, and Invasion in Hepatoblastoma Through Regulation of the miR-301b/STAT3 Axis. Hum Gene Ther 2019; 30:702-713. [PMID: 30479162 DOI: 10.1089/hum.2018.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatoblastoma (HB) usually occurs in infants and toddlers. Although long non-coding RNAs (lncRNAs) in various human cancers have been widely studied, the role of lncRNAs in HB remains unclear. This study aimed to investigate the biological role of the lncRNA lung cancer associated transcript 1 (LUCAT1) in HB. Analysis of data from The Cancer Genome Atlas indicated that upregulation of lncRNA LUCAT1 was closely associated with poor overall survival of HB patients. Quantitative reverse transcription polymerase chain reaction analysis showed that LUCAT1 was highly expressed in both HB tissues and cell lines. Loss-of function assays to identify the biological function of LUCAT1 in HB showed that LUCAT1 knockdown inhibited cell proliferation, migration, and invasion but reversed epithelial-mesenchymal transition. Luciferase assays indicated that STAT3 was a transcription activator of LUCAT1 and that LUCAT1 could increase STAT3 expression by competitively binding to miR-301b. In conclusion, it was found that LUCAT1 was activated by STAT3 and promoted cell proliferation, migration, and invasion in HB through modulation of the miR-301b/STAT3 axis.
Collapse
Affiliation(s)
- Xianqiang Wang
- 1 Department of Pediatric Surgery, PLA General Hospital, Beijing, P.R. China
| | - Sen Guo
- 2 Department of General Surgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Rui Zhao
- 2 Department of General Surgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Yanfeng Liu
- 2 Department of General Surgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Guangyun Yang
- 3 Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
192
|
Abstract
Over the past decade, the amount of research and the number of publications on associations between circulating small and long non-coding RNAs (ncRNAs) and cancer have grown exponentially. Particular focus has been placed on the development of diagnostic and prognostic biomarkers to enable efficient patient management - from early detection of cancer to monitoring for disease recurrence or progression after treatment. Owing to their high abundance and stability, circulating ncRNAs have potential utility as non-invasive, blood-based biomarkers that can provide information on tumour biology and the effects of treatments, such as targeted therapies and immunotherapies. Increasing evidence highlights the roles of ncRNAs in cell-to-cell communication, with a number of ncRNAs having the capacity to regulate gene expression outside of the cell of origin through extracellular vesicle-mediated transfer to recipient cells, with implications for cancer progression and therapy resistance. Moreover, 'foreign' microRNAs (miRNAs) encoded by non-human genomes (so-called xeno-miRNAs), such as viral miRNAs, have been shown to be present in human body fluids and can be used as biomarkers. Herein, we review the latest developments in the use of circulating ncRNAs as diagnostic and prognostic biomarkers and discuss their roles in cell-to-cell communication in the context of cancer. We provide a compendium of miRNAs and long ncRNAs that have been reported in the literature to be present in human body fluids and that have the potential to be used as diagnostic and prognostic cancer biomarkers.
Collapse
|
193
|
Yang J, Ye Z, Mei D, Gu H, Zhang J. Long noncoding RNA DLX6-AS1 promotes tumorigenesis by modulating miR-497-5p/FZD4/FZD6/Wnt/β-catenin pathway in pancreatic cancer. Cancer Manag Res 2019; 11:4209-4221. [PMID: 31118816 PMCID: PMC6510228 DOI: 10.2147/cmar.s194453] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are abnormally expressed in various human tumors and play an important role in multiple tumorigeneses, including pancreatic cancer (PC). Materials and methods The present study was designed to evaluate the role of lncRNA DLX6-AS1 in tumorigenesis of PC. The expression of DLX6-AS1 and its effect on proliferation, apoptosis, migration, and invasion was investigated in vitro. Its effect on tumor growth and metastasis in vivo and its potential targets were also examined. Results We observed that DLX6-AS1 was highly expressed in PC tissues and PC cell lines, and was negatively correlated with the survival of PC patients. We found that overexpression of DLX6-AS1 promoted proliferation, migration, and invasion of PC cells, inhibited apoptosis, increased Bcl-2, cyclin D1, and MMP-2 expression, and decreased cleaved caspase 3, p27, and E-cadherin expression in PC cells. In addition, overexpression of DLX6-AS1 promoted PC growth by increasing tumor volume and weight and increasing the number of liver and lung metastatic foci. Knockdown of DLX6-AS1 showed an opposite effect in all the experiments. miR-497-5p was demonstrated to be a direct target of DLX6-AS1 and was regulated by DLX6-AS1. We also demonstrated that miR-497-5p targeted FZD4 and FZD6 and decreased their expression. miR-497-5p mimics also decreased the expression of FZD4, FZD6, and β-catenin; the expression of FZD4 or FZD6 was reversed by the overexpression of vectors FZD4 or FZD6, respectively, while the expression of β-catenin was reversed by either vector. Finally, the effect of DLX6-AS1 on proliferation, cell cycle, migration, invasion, and apoptosis of cells and expression of FZD4, FZD6, and β-catenin was neutralized by overexpression of vectors of miR-497-5p, FZD4, or FZD6, totally or partially. Conclusion Collectively, these findings suggested that DLX6-AS1/miR-497-5p/FZD4/FZD6/Wnt/β-catenin signaling pathway is involved in the pathogenesis of PC, and DLX6-AS1 could be a potential biomarker and target for PC treatment.
Collapse
Affiliation(s)
- Jiyong Yang
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| | - Zhen Ye
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| | - Dan Mei
- Department of General Surgery, Wuxi Hospital of Traditional Chinese Medicine, Wuxi 214000, China
| | - Honggang Gu
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| | - Jingzhe Zhang
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 210000, China, ;
| |
Collapse
|
194
|
Long non-coding RNA HOTAIR in circulatory exosomes is correlated with ErbB2/HER2 positivity in breast cancer. Breast 2019; 46:64-69. [PMID: 31100572 DOI: 10.1016/j.breast.2019.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/11/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023] Open
Abstract
Cancer cells are known to produce and secret extracellular vesicles for intercellular communication through the carried cargos. HOTAIR (HOX transcript antisense intergenic RNA), a well-studied long non-coding RNA (lncRNA), plays a critical role in cancer progression. In several cancer types it has been shown that HOTAIR-containing exosomes are produced by cancer cells. Here we show that circulatory exosomal HOTAIR is present in breast cancer patients and explores the pathological correlation with the disease. Exosomes were isolated by matrix-based precipitation from conditioned media of cultured breast cancer cell lines as well as blood samples of recently recruited breast cancer patients. HOTAIR RNA in exosomes was detected by quantitative reverse transcriptase-mediated polymerase chain reaction (qRT-PCR). Expression of exosomal HOTAIR was positively correlated with status of the receptor tyrosine kinase (RTK) ErbB2 (also known as HER2/neu) in tumor tissues. The causal correlation of ErbB2 and HOTAIR was validated in isogenic breast cancer cell lines with and without ectopic ErbB2 expression. Our finding provides a molecular basis to develop novel liquid biopsy biomarkers and targeted therapies with improved precision for malignant breast cancer.
Collapse
|
195
|
Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta SC. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 2019; 76:1947-1966. [PMID: 30879091 PMCID: PMC7775409 DOI: 10.1007/s00018-019-03053-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sumit S Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
196
|
Li J, Liu R, Tang S, Feng F, Wang X, Qi L, Liu C, Yao Y, Sun C. The effect of long noncoding RNAs HOX transcript antisense intergenic RNA single-nucleotide polymorphisms on breast cancer, cervical cancer, and ovarian cancer susceptibility: A meta-analysis. J Cell Biochem 2019; 120:7056-7067. [PMID: 30484890 DOI: 10.1002/jcb.27975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
Recent studies have shown that long noncoding RNAs (lncRNA) HOX transcript antisense intergenic RNA (HOTAIR) polymorphisms are associated with cancer susceptibility. The greatest threat to women's health among a variety of cancers is breast cancer (BC), cervical cancer (CC), and ovarian cancer (OC), and the incidence of it is increasing. We performed a meta-analysis to clarify the relationship between lncRNA HOTAIR expression and BC, CC, and OC susceptibility. We thoroughly searched PubMed, Embase, and the Cochrane Library to obtain the relevant literature. We extracted data from case groups and control groups for each single-nucleotide polymorphism (SNP) (rs4759314, rs920778, rs189663, rs12826786, rs7958904, and rs874945) and compared the relationship between alleles, codominance models, dominant and invisible models and BC, CC, and OC susceptibility. Our study included 11 studies with a total of 5322 patients. There was a significant association between the rs4759314 polymorphism of HOTAIR and susceptibility to BC, CC, and OC (codominant model: AG/AA odds ratio [OR] = 1.13 [95% confidence intervals [CI], 1.00-1.29], GG/AA OR = 1.54 [95% CI, 1.06-2.23]; dominant model: GG + AG/AA OR = 1.16 [95% CI, 1.02-1.32]; and recessive model: GG/AA + AG OR = 1.51 [95% CI, 1.05-2.19]). The association between the expression of rs920778 and BC, CC, and OC susceptibility was not clear (alleles T/C: OR = 1.28 [95% CI, 0.87-1.89]; in codominant model: CT/CC OR = 1.10, [95% CI, 0.71-1.71], TT/CC OR = 1.29 [95% CI, 0.59-2.80]; dominant model: TC + TT/CC OR = 1.16, [95% CI, 0.73-1.86]; and recessive model: TT/TC + CC OR = 1.43, [95% CI, 0.83-2.47]). HOTAIR polymorphism rs1899663 was associated with BC, CC, and OC susceptibility to a certain extent, (alleles T/G OR = 0.90 [95% CI, 0.69-1.16]; in the codominant model: GT/GG OR = 0.81 [95% CI, 0.50-1.30], TT/GG OR = 1.04 [95% CI, 0.63-1.72]; dominant model: GT + TT/GG OR = 0.82 [95% CI, 0.52-1.29]; and recessive model: TT/GT + GG OR = 1.21 [95% CI, 0.76-1.94]). The rs12826786, rs7958904, and rs874945 polymorphisms were associated with a certain degree of BC, CC, and OC susceptibility, but they were not statistically significant. HOTAIR rs4759314 increased susceptibility to BC, CC, and OC in some patients; rs029778 and rs1899663 also increased susceptibility to some extent. SNPs rs12826786, rs7958904, and rs874945 did not correlate with an effect on patient susceptibility to BC, CC, and OC.
Collapse
Affiliation(s)
- Jia Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Ruijuan Liu
- Oncology Department, Weifang Traditional Chinese Hospital, Weifang, Shandong, China
| | - Shifeng Tang
- Oncology Department, Weifang Traditional Chinese Hospital, Weifang, Shandong, China
| | - Fubin Feng
- Oncology Department, Weifang Traditional Chinese Hospital, Weifang, Shandong, China
| | - Xue Wang
- School of Basicl Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lingyu Qi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Yao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Changgang Sun
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
197
|
Gao S, Cai Y, Zhang H, Hu F, Hou L, Xu Q. Long noncoding RNA DLEU1 aggravates pancreatic ductal adenocarcinoma carcinogenesis via the miR-381/CXCR4 axis. J Cell Physiol 2019; 234:6746-6757. [PMID: 30382579 DOI: 10.1002/jcp.27421] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022]
Abstract
Recent evidence has highlighted that long noncoding RNAs (lncRNA) are associated with many diseases, particularly cancer. However, current understanding of the lncRNA deleted in lymphocytic leukemia 1 (DLEU1) in pancreatic ductal adenocarcinoma (PDAC) remains limited. Our studies indicated that the DLEU1 expression level was upregulated in PDAC tissue samples compared with adjacent normal tissue. Moreover, the aberrant overexpression of DLEU1 indicated poor prognosis of patients with PDAC. Loss-of-function experiments revealed that DLEU1 knockdown inhibited the proliferation, migration, and invasion of PDAC cells in vitro and decreased tumor growth in vivo. Bioinformatics analysis predicted that miR-381 potentially targeted the DLEU1 3'-untranslated region (UTR), suggesting an interaction between miR-381 and DLEU1. Furthermore, miR-381 also targeted the chemokine receptor-4 (CXCR4) messenger RNA 3'-UTR, which was validated by luciferase reporter assay. Taken together, our study demonstrated the oncogenic role of DLEU1 in clinical PDAC specimens and cellular experiments, showing the potential involvement of DLEU1/miR-381/CXCR4 pathway. These results provide novel insight into PDAC tumorigenesis.
Collapse
Affiliation(s)
- Song Gao
- Department of Oncology, Shanghai Tenths People's Hospital, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai, China
| | - Yunyun Cai
- Department of Integrated Traditional Western Medicine, Minhang Branch of Fudan University of Shanghai Cancer Center, Shanghai, China
| | - Hu Zhang
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Hu
- Department of Oncology, Shanghai Tenths People's Hospital, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai, China
| | - Lengchen Hou
- Department of Anesthesiology, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenths People's Hospital, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
198
|
Li L, Zhang X, Liu Q, Yin H, Diao Y, Zhang Z, Wang Y, Gao Y, Ren X, Li J, Cui D, Lu Y, Liu H. Emerging role of HOX genes and their related long noncoding RNAs in lung cancer. Crit Rev Oncol Hematol 2019; 139:1-6. [PMID: 31112877 DOI: 10.1016/j.critrevonc.2019.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 01/02/2023] Open
Abstract
The transcription factor homeobox (Hox) proteins are the master regulator for the embryonic development. Studies have identified new functions for HOX in the regulation of metabolism and other primary cellular processes in humans. Their dysregulation has been observed in a variety of cancers and accumulating evidence has revealed the crucial role of HOX in cancer progression, metastasis, and resistance to therapy. HOX-related long non-coding RNAs (lncRNAs) became the most attracting lncRNAs recently that play critical role in gene regulation and chromatin dynamics in cancers. In this review, we explore the roles of HOX and their related lncRNAs in lung cancer, indicating HOX genes as potential therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Lianlian Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Xiaoyu Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Qian Liu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China; School of Life Science, Ludong University, Yantai, 264025, Shandong, China
| | - Haipeng Yin
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Yutao Diao
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Zhiyong Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Yang Wang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Yan Gao
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Xia Ren
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Juan Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Yanqin Lu
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Hongyan Liu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
| |
Collapse
|
199
|
Liu LC, Wang YL, Lin PL, Zhang X, Cheng WC, Liu SH, Chen CJ, Hung Y, Jan CI, Chang LC, Qi X, Hsieh-Wilson LC, Wang SC. Long noncoding RNA HOTAIR promotes invasion of breast cancer cells through chondroitin sulfotransferase CHST15. Int J Cancer 2019; 145:2478-2487. [PMID: 30963568 DOI: 10.1002/ijc.32319] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
The long noncoding RNA HOTAIR plays significant roles in promoting cancer metastasis. However, how it conveys an invasive advantage in cancer cells is not clear. Here we identify the chondroitin sulfotransferase CHST15 (GalNAc4S-6ST) as a novel HOX transcript antisense intergenic RNA (HOTAIR) target gene using RNA profiling and show that CHST15 is required for HOTAIR-mediated invasiveness in breast cancer cells. CHST15 catalyzes sulfation of the C6 hydroxyl group of the N-acetyl galactosamine 4-sulfate moiety in chondroitin sulfate to form the 4,6-disulfated chondroitin sulfate variant known as the CS-E isoform. We show that HOTAIR is necessary and sufficient for CHST15 transcript expression. Inhibition of CHST15 by RNA interference abolished cell invasion promoted by HOTAIR but not on HOTAIR-mediated migratory activity. Conversely, reconstitution of CHST15 expression rescued the invasive activity of HOTAIR-depleted cells. In corroboration with this mechanism, blocking cell surface chondroitin sulfate using a pan-CS antibody or an antibody specifically recognizes the CS-E isoform significantly suppressed HOTAIR-induced invasion. Inhibition of CHST15 compromised tumorigenesis and metastasis in orthotopic breast cancer xenograft models. Furthermore, the expression of HOTAIR closely correlated with the level of CHST15 protein in primary as well as metastatic tumor lesions. Our results demonstrate a novel mechanism underlying the function of HOTAIR in tumor progression through programming the context of cell surface glycosaminoglycans. Our results further establish that the invasive and migratory activities downstream of HOTAIR are distinctly regulated, whereby CHST15 preferentially controls the arm of invasiveness. Thus, the HOTAIR-CHST15 axis may provide a new avenue toward novel therapeutic strategies and prognosis biomarkers for advanced breast cancer.
Collapse
Affiliation(s)
- Liang-Chih Liu
- Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Le Lin
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Jung Chen
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Ing Jan
- Division of Molecular Pathology, Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Xiaoyang Qi
- Department of Hematology Oncology, University of Cincinnati, Cincinnati, OH
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
200
|
Dai W, Feng Y, Mo S, Xiang W, Li Q, Wang R, Xu Y, Cai G. Transcriptome profiling reveals an integrated mRNA-lncRNA signature with predictive value of early relapse in colon cancer. Carcinogenesis 2019; 39:1235-1244. [PMID: 29982331 DOI: 10.1093/carcin/bgy087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
The purpose of our study was to develop a multigene signature based on transcriptome profiles of both mRNAs and lncRNAs to identify a group of patients who are at high risk of early relapse in stages II-III colon cancer. Firstly, propensity score matching was conducted between patients in early relapse group and long-term survival group from GSE39582 training series (N = 359) and patients were matched 1:1. Global transcriptome analysis was then performed between the paired groups to identify tumor specific mRNAs and lncRNAs. Finally, using LASSO Cox regression model, we built a multigene early relapse classifier incorporating 15 mRNAs and three lncRNAs. The prognostic and predictive accuracy of the signature was internally validated in 102 colon cancer patients and externally validated in other 241 patients. In the training set, patients with high risk score were more likely to suffer from relapse than those with low risk score (HR: 2.67, 95% CI: 2.07-3.46, P < 0.001). The results were validated in the internal validation set (HR: 2.23, 95% CI: 1.23-3.78, P = 0.003) and external validation (HR 1.88, 95% CI 1.42-2.48; P < 0.001) set. Time-dependent receiver operating curve at 1 year showed that the integrated mRNA-lncRNA signature [area under curve (AUC) = 0.742] had better prognostic accuracy than AJCC TNM stage (AUC = 0.615) in the entire 702 patients. In addition, survival decision curve analyses at 12 months revealed a good clinical usefulness of the integrated mRNA-lncRNA signature. In conclusion, we successfully developed an integrated mRNA-lncRNA signature that can accurately predict early relapse.
Collapse
Affiliation(s)
- Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqiang Xiang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|