151
|
Zhang M, Li M, Han M, Huang W, Hu W, Hu J. Synthesis of gold nanoparticles, their interfacial self-assembly, and plasma welding: A solution-processable strategy to interdigital electrodes. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
152
|
Wang C, Cheng Z, Gan W, Cui M. Line scanning mechanical streak camera for phosphorescence lifetime imaging. OPTICS EXPRESS 2020; 28:26717-26723. [PMID: 32906940 PMCID: PMC7679193 DOI: 10.1364/oe.402870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Phosphorescence lifetime measurement holds great importance in life sciences and material sciences. Due to the long lifetime of phosphorescence emission, conventional approaches based on point scanning time-domain recording suffer from long recording time and low signal-to-noise ratio (SNR). To overcome these difficulties, we developed a line scanning mechanical streak camera for parallel and high SNR imaging. This design offers three key advantages. First, hundreds to thousands of pixels can be recorded simultaneously at high throughput. Second, hundreds of excitation can be accumulated on a single camera frame and read out at once with high quantum efficiency (QE) and low read noise. Third, the system is very simple, only requiring a camera and a scanner. Using a confocal line scanning configuration, we imaged samples of various lifetime ranging from tens of nanoseconds to hundreds of microseconds, which demonstrated the versatility and advantages of this method.
Collapse
Affiliation(s)
- Chenmao Wang
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, New York 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
153
|
Cho S, Jeon S, Choi W, Managuli R, Kim C. Nonlinear pth root spectral magnitude scaling beamforming for clinical photoacoustic and ultrasound imaging. OPTICS LETTERS 2020; 45:4575-4578. [PMID: 32797013 DOI: 10.1364/ol.393315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/29/2020] [Indexed: 05/20/2023]
Abstract
A recently introduced nonlinear pth root delay-and-sum (NL-p-DAS) beamforming (BF) technique for ultrasound (US) and photoacoustic (PA) imaging, achieving better spatial and contrast resolution compared to a conventional delay and sum (DAS) technique. While the method is advantageous for better resolution, it suffers from grainy speckles and dark areas in the image mainly due to the interference of non-sinusoidal functions. In this Letter, we introduce a modified NL-p-DAS technique called nonlinear pth root spectral magnitude scaling (NL-p-SMS), which performs the pth root on the spectral magnitude instead of the temporal amplitude. We evaluated the US and PA images of NL-p-SMS against those of NL-p-DAS by comparing the axial and lateral line profiles, contrasts, and contrast-to-noise ratios (CNRs) in both phantom and in vivo imaging studies with various p values. As a result, we found that the NL-p-SMS has better axial resolution and CNR than the NL-p-DAS, and reduces the grainy speckles and dark area artifacts. We believe that, with this enhanced performance, our proposed approach could be an advancement compared to the existing nonlinear BF algorithms.
Collapse
|
154
|
Butola A, Popova D, Prasad DK, Ahmad A, Habib A, Tinguely JC, Basnet P, Acharya G, Senthilkumaran P, Mehta DS, Ahluwalia BS. High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition. Sci Rep 2020; 10:13118. [PMID: 32753627 PMCID: PMC7403412 DOI: 10.1038/s41598-020-69857-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023] Open
Abstract
Sperm cell motility and morphology observed under the bright field microscopy are the only criteria for selecting a particular sperm cell during Intracytoplasmic Sperm Injection (ICSI) procedure of Assisted Reproductive Technology (ART). Several factors such as oxidative stress, cryopreservation, heat, smoking and alcohol consumption, are negatively associated with the quality of sperm cell and fertilization potential due to the changing of subcellular structures and functions which are overlooked. However, bright field imaging contrast is insufficient to distinguish tiniest morphological cell features that might influence the fertilizing ability of sperm cell. We developed a partially spatially coherent digital holographic microscope (PSC-DHM) for quantitative phase imaging (QPI) in order to distinguish normal sperm cells from sperm cells under different stress conditions such as cryopreservation, exposure to hydrogen peroxide and ethanol. Phase maps of total 10,163 sperm cells (2,400 control cells, 2,750 spermatozoa after cryopreservation, 2,515 and 2,498 cells under hydrogen peroxide and ethanol respectively) are reconstructed using the data acquired from the PSC-DHM system. Total of seven feedforward deep neural networks (DNN) are employed for the classification of the phase maps for normal and stress affected sperm cells. When validated against the test dataset, the DNN provided an average sensitivity, specificity and accuracy of 85.5%, 94.7% and 85.6%, respectively. The current QPI + DNN framework is applicable for further improving ICSI procedure and the diagnostic efficiency for the classification of semen quality in regard to their fertilization potential and other biomedical applications in general.
Collapse
Affiliation(s)
- Ankit Butola
- Bio-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Daria Popova
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dilip K Prasad
- Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anowarul Habib
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jean Claude Tinguely
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Purusotam Basnet
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
| | - Ganesh Acharya
- Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Science, Intervention and Technology Karolinska Institutet, Stockholm, Sweden
| | | | - Dalip Singh Mehta
- Bio-photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India
- Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
- Department of Clinical Science, Intervention and Technology Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
155
|
Dai C, Wan S, Yang R, Wang Z, Wan C, Shi Y, Zhang J, Li Z. High-NA achromatic diffractive lensing for arbitrary dual-wavelengths enabled by hybridized metal-insulator-metal cavities. OPTICS EXPRESS 2020; 28:23652-23659. [PMID: 32752358 DOI: 10.1364/oe.399213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
A new type of diffractive lens based on hybridized Fabry-Perot (FP) cavities with high-NA and achromatic features for arbitrary dual-wavelengths is theoretically proposed and demonstrated. We utilize the subwavelength-scale metal-insulator-metal nanocavity to form a Fresnel zone plate (MIM-FZP) that benefits from both spectral selectivity and high numerical aperture (NA > 0.9) to enable lensing functionality. By taking advantage of the different transmission orders from MIM, any arbitrary dual-wavelength achromatic focusing design is achieved. Using this approach, we merge two independent MIM-FZP designs and realize achromatic focusing performance at the selected dual-wavelength of 400/600 nm. Furthermore, the achromatic lens also exhibits a crucial potential for dynamically tuning of the operation wavelengths and focusing lengths as actively scaling the core layer thickness of MIM. The unique MIM-FZP design can be practically fabricated using a grayscale lithography technique. We believe such high-NA and achromatic optical devices enjoy great simplicity for structural design and can easily find applications including high-resolution imaging, new-generation integrated optoelectronic devices, confocal collimation, and achromatic lens, etc.
Collapse
|
156
|
Kang I, Zhang F, Barbastathis G. Phase extraction neural network (PhENN) with coherent modulation imaging (CMI) for phase retrieval at low photon counts. OPTICS EXPRESS 2020; 28:21578-21600. [PMID: 32752433 DOI: 10.1364/oe.397430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Imaging with low-dose light is of importance in various fields, especially when minimizing radiation-induced damage onto samples is desirable. The raw image captured at the detector plane is then predominantly a Poisson random process with Gaussian noise added due to the quantum nature of photo-electric conversion. Under such noisy conditions, highly ill-posed problems such as phase retrieval from raw intensity measurements become prone to strong artifacts in the reconstructions; a situation that deep neural networks (DNNs) have already been shown to be useful at improving. Here, we demonstrate that random phase modulation on the optical field, also known as coherent modulation imaging (CMI), in conjunction with the phase extraction neural network (PhENN) and a Gerchberg-Saxton-Fienup (GSF) approximant, further improves resilience to noise of the phase-from-intensity imaging problem. We offer design guidelines for implementing the CMI hardware with the proposed computational reconstruction scheme and quantify reconstruction improvement as function of photon count.
Collapse
|
157
|
Wen Q, Qin J, Geng Y, Deng G, Zhou Q, Zhou H, Qiu K. Stimulated Brillouin laser-based carrier recovery in a high-Q microcavity for coherent detection. OPTICS LETTERS 2020; 45:3848-3851. [PMID: 32667300 DOI: 10.1364/ol.395270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate all-optical carrier recovery exploring a stimulated Brillouin laser (SBL) in a high-Q whispering-gallery-mode microcavity, to achieve coherent data detection without requiring an independent local oscillator laser. An ultra-high optical signal-to-noise ratio better than 70 dB is achieved for the recovered carrier, thanks to the fact that the generated SBL counter-propagates with the incoming data signal and experiences high SBS efficiency. High-frequency stability is obtained between the recovered carrier tone and the original data signal, enabling high-performance coherent detection without the need of electrical frequency drift compensation. This Letter offers a low complexity, high energy efficiency, and high robust carrier recovery solution.
Collapse
|
158
|
Zacharias T, Bahabad A. Light beams with volume superoscillations. OPTICS LETTERS 2020; 45:3482-3485. [PMID: 32630877 DOI: 10.1364/ol.394270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Using a superposition of shifted Bessel beams with different longitudinal wave vectors and orbital angular momenta, we realize an optical beam having simultaneous axial, angular, and radial focusing narrower than the Fourier limit. Our findings can be useful for optical particle manipulation and high-resolution microscopy.
Collapse
|
159
|
Song W, Shao W, Yi W, Liu R, Desai M, Ness S, Yi J. Visible light optical coherence tomography angiography (vis-OCTA) facilitates local microvascular oximetry in the human retina. BIOMEDICAL OPTICS EXPRESS 2020; 11:4037-4051. [PMID: 33014584 PMCID: PMC7510897 DOI: 10.1364/boe.395843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
We report herein the first visible light optical coherence tomography angiography (vis-OCTA) for human retinal imaging. Compared to the existing vis-OCT systems, we devised a spectrometer with a narrower bandwidth to increase the spectral power density for OCTA imaging, while retaining the major spectral contrast in the blood. We achieved a 100 kHz A-line rate, the fastest acquisition speed reported so far for human retinal vis-OCT. We rigorously optimized the imaging protocol such that a single acquisition took < 6 seconds with a field of view (FOV) of 3×7.8 mm2. The angiography enables accurate localization of microvasculature down to the capillary level and thus enables oximetry at vessels < 100 µm in diameter. We demonstrated microvascular hemoglobin oxygen saturation (sO2) at the feeding and draining vessels at the perifoveal region. The longitudinal repeatability was assessed by < 5% coefficient of variation (CV). The unique capabilities of our vis-OCTA system may allow studies on the role of microvascular oxygen in various retinal pathologies.
Collapse
Affiliation(s)
- Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Wenjun Shao
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Wei Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Rongrong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Manishi Desai
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
- Department of Biomedical Engineering, Boston University, Boston 02118, USA
- Department of Electronic and Computer Engineering, Boston University, Boston 02118, USA
| |
Collapse
|
160
|
Shabanpour J, Beyraghi S, Cheldavi A. Ultrafast reprogrammable multifunctional vanadium-dioxide-assisted metasurface for dynamic THz wavefront engineering. Sci Rep 2020; 10:8950. [PMID: 32488027 PMCID: PMC7265406 DOI: 10.1038/s41598-020-65533-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 01/18/2023] Open
Abstract
In this paper, for the first time, a new generation of ultrafast reprogrammable multi-mission bias encoded metasurface is proposed for dynamic terahertz wavefront engineering by employing VO2 reversible and fast monoclinic to tetragonal phase transition. The multi-functionality of our designed VO2 based coding metasurface (VBCM) was guaranteed by elaborately designed meta-atom comprising three-patterned VO2 thin films whose operational statuses can be dynamically tuned among four states of "00"-"11" by merely changing the biasing voltage controlled by an external Field-programmable gate array platform. Capitalizing on such meta-atom design and by driving VBCM with different spiral-like and spiral-parabola-like coding sequences, single vortex beam and focused vortex beam with interchangeable orbital angular momentum modes were satisfactorily generated respectively. Additionally, by adopting superposition theorem and convolution operation, symmetric/asymmetric multiple beams and arbitrarily-oriented multiple vortex beams in pre-demined directions with different topological charges are realized. Several illustrative examples successfully have clarified that the proposed VBCM is a promising candidate for solving crucial terahertz challenges such as high data rate wireless communication where ultrafast switching between several missions is required.
Collapse
Affiliation(s)
- Javad Shabanpour
- Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16486-13114, Iran.
| | - Sina Beyraghi
- Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16486-13114, Iran
| | - Ahmad Cheldavi
- Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16486-13114, Iran
| |
Collapse
|
161
|
Dai Y, Wen Z, Ji K, Liu Z, Wang H, Zhang Z, Gao Y, Lu B, Wang Y, Qi X, Bai J. Asymmetric localization and symmetric diffraction-free transmission in synthetic photonic lattice with anti-parity-time symmetry. OPTICS LETTERS 2020; 45:3099-3102. [PMID: 32479469 DOI: 10.1364/ol.392436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
We study, to the best of our knowledge, the first observations of light propagation in synthetic photonic lattice with anti-parity-time symmetry by tuning the gain or loss of two coupled fiber rings alternatively and corresponding phase distribution periodically. By tuning the phase φ and the wave number Q in the lattice, asymmetric transmission of the light field can be achieved for both long and short loops when φ≠nπ/2 (n is an integer). Further investigations demonstrate that asymmetric localization of the light field in the long loop and symmetric diffraction-free transmission in two loops can both be realized by changing these two parameters. Our work provides a new method to obtain anti-parity-time symmetry in synthetic photonic lattice and paves a broad way to achieve novel optical manipulation in photonic devices.
Collapse
|
162
|
Cho S, Baik J, Managuli R, Kim C. 3D PHOVIS: 3D photoacoustic visualization studio. PHOTOACOUSTICS 2020; 18:100168. [PMID: 32211292 PMCID: PMC7082691 DOI: 10.1016/j.pacs.2020.100168] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging (or optoacoustic imaging) is a novel biomedical imaging method in biological and medical research. This modality performs morphological, functional, and molecular imaging with and without labels in both microscopic and deep tissue imaging domains. A variety of innovations have enhanced 3D PA imaging performance and thus has opened new opportunities in preclinical and clinical imaging. However, the 3D visualization tools for PA images remains a challenge. There are several commercially available software packages to visualize the generated 3D PA images. They are generally expensive, and their features are not optimized for 3D visualization of PA images. Here, we demonstrate a specialized 3D visualization software package, namely 3D Photoacoustic Visualization Studio (3D PHOVIS), specifically targeting photoacoustic data, image, and visualization processes. To support the research environment for visualization and fast processing, we incorporated 3D PHOVIS onto the MATLAB with graphical user interface and developed multi-core graphics processing unit modules for fast processing. The 3D PHOVIS includes following modules: (1) a mosaic volume generator, (2) a scan converter for optical scanning photoacoustic microscopy, (3) a skin profile estimator and depth encoder, (4) a multiplanar viewer with a navigation map, and (5) a volume renderer with a movie maker. This paper discusses the algorithms present in the software package and demonstrates their functions. In addition, the applicability of this software to ultrasound imaging and optical coherence tomography is also investigated. User manuals and application files for 3D PHOVIS are available for free on the website (www.boa-lab.com). Core functions of 3D PHOVIS are developed as a result of a summer class at POSTECH, "High-Performance Algorithm in CPU/GPU/DSP, and Computer Architecture." We believe our 3D PHOVIS provides a unique tool to PA imaging researchers, expedites its growth, and attracts broad interests in a wide range of studies.
Collapse
Affiliation(s)
- Seonghee Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jinwoo Baik
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ravi Managuli
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Hitachi Healthcare America, Twinsburg, OH, 44087, USA
| | - Chulhong Kim
- Departments of Creative IT Engineering, Mechanical Engineering, Electrical Engineering, and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Corresponding author.
| |
Collapse
|
163
|
Yang F, Wang Z, Zhang W, Ma H, Cheng Z, Gu Y, Qiu H, Yang S. Wide-field monitoring and real-time local recording of microvascular networks on small animals with a dual-raster-scanned photoacoustic microscope. JOURNAL OF BIOPHOTONICS 2020; 13:e202000022. [PMID: 32101376 DOI: 10.1002/jbio.202000022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 05/18/2023]
Abstract
Photoacoustic microscopy (PAM) provides a new method for the imaging of small-animals with high-contrast and deep-penetration. However, the established PAM systems have suffered from a limited field-of-view or imaging speed, which are difficult to both monitor wide-field activity of organ and record real-time change of local tissue. Here, we reported a dual-raster-scanned photoacoustic microscope (DRS-PAM) that integrates a two-dimensional motorized translation stage for large field-of-view imaging and a two-axis fast galvanometer scanner for real-time imaging. The DRS-PAM provides a flexible transition from wide-field monitoring the vasculature of organs to real-time imaging of local dynamics. To test the performance of DRS-PAM, clear characterization of angiogenesis and functional detail was illustrated, hemodynamic activities of vasculature in cerebral cortex of a mouse were investigated. Furthermore, response of tumor to treatment were successfully monitored during treatment. The experimental results demonstrate the DRS-PAM holds the great potential for biomedical research of basic biology.
Collapse
Affiliation(s)
- Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haigang Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
164
|
Sesen M, Whyte G. Image-Based Single Cell Sorting Automation in Droplet Microfluidics. Sci Rep 2020; 10:8736. [PMID: 32457421 PMCID: PMC7250914 DOI: 10.1038/s41598-020-65483-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
The recent boom in single-cell omics has brought researchers one step closer to understanding the biological mechanisms associated with cell heterogeneity. Rare cells that have historically been obscured by bulk measurement techniques are being studied by single cell analysis and providing valuable insight into cell function. To support this progress, novel upstream capabilities are required for single cell preparation for analysis. Presented here is a droplet microfluidic, image-based single-cell sorting technique that is flexible and programmable. The automated system performs real-time dual-camera imaging (brightfield & fluorescent), processing, decision making and sorting verification. To demonstrate capabilities, the system was used to overcome the Poisson loading problem by sorting for droplets containing a single red blood cell with 85% purity. Furthermore, fluorescent imaging and machine learning was used to load single K562 cells amongst clusters based on their instantaneous size and circularity. The presented system aspires to replace manual cell handling techniques by translating expert knowledge into cell sorting automation via machine learning algorithms. This powerful technique finds application in the enrichment of single cells based on their micrographs for further downstream processing and analysis.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, EH14 4AS, United Kingdom
- Imperial College London, Department of Bioengineering, London, SW7 2AZ, United Kingdom
| | - Graeme Whyte
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, EH14 4AS, United Kingdom.
| |
Collapse
|
165
|
Guan S, Khan AA, Sikdar S, Chitnis PV. Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning. Sci Rep 2020; 10:8510. [PMID: 32444649 PMCID: PMC7244747 DOI: 10.1038/s41598-020-65235-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/26/2020] [Indexed: 12/15/2022] Open
Abstract
Photoacoustic tomography (PAT) is a non-ionizing imaging modality capable of acquiring high contrast and resolution images of optical absorption at depths greater than traditional optical imaging techniques. Practical considerations with instrumentation and geometry limit the number of available acoustic sensors and their "view" of the imaging target, which result in image reconstruction artifacts degrading image quality. Iterative reconstruction methods can be used to reduce artifacts but are computationally expensive. In this work, we propose a novel deep learning approach termed pixel-wise deep learning (Pixel-DL) that first employs pixel-wise interpolation governed by the physics of photoacoustic wave propagation and then uses a convolution neural network to reconstruct an image. Simulated photoacoustic data from synthetic, mouse-brain, lung, and fundus vasculature phantoms were used for training and testing. Results demonstrated that Pixel-DL achieved comparable or better performance to iterative methods and consistently outperformed other CNN-based approaches for correcting artifacts. Pixel-DL is a computationally efficient approach that enables for real-time PAT rendering and improved image reconstruction quality for limited-view and sparse PAT.
Collapse
Affiliation(s)
- Steven Guan
- Bioengineering Department, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA.
- The MITRE Corporation, McLean, VA, 22102, USA.
| | - Amir A Khan
- Bioengineering Department, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Siddhartha Sikdar
- Bioengineering Department, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Parag V Chitnis
- Bioengineering Department, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA.
| |
Collapse
|
166
|
Shahin Shahidan MF, Song J, James TD, Roberts A. Multilevel nanoimprint lithography with a binary mould for plasmonic colour printing. NANOSCALE ADVANCES 2020; 2:2177-2184. [PMID: 36132510 PMCID: PMC9416936 DOI: 10.1039/d0na00038h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 06/15/2023]
Abstract
Pigment-free colouration based on plasmonic resonances has recently attracted considerable attention for potential in manufacturing and other applications. For plasmonic colour utilizing the metal-insulator-metal (MIM) configuration, the generated colour is not only dependent on the geometry and transverse dimensions, but also to the size of the vertical gap between the metal nanoparticles and the continuous metal film. The complexity of conventional fabrication methods such as electron beam lithography (EBL), however, limits the capacity to control this critical parameter. Here we demonstrate the straightforward production of plasmonic colour via UV-assisted nanoimprint lithography (NIL) with a simple binary mould and demonstrate the ability to control this gap distance in a single print by harnessing the nanofluidic behaviour of the polymer resist through strategic mould design. We show that this provides a further avenue for controlling the colour reflected by the resulting plasmonic pixels as an adjunct to the conventional approach of tailoring the transverse dimensions of the nanostructures. Our experimental results exhibit wide colour coverage of the CIE 1931 XY colour space through careful control of both the length and periodicity and the resulting vertical gap size of the structure during the nanoimprinting process. Furthermore, to show full control over the vertical dimension, we show that a fixed gap size can be produced by introducing complementary microcavities in the vicinity of the nanostructures on the original mould. This demonstrates a simple method for obtaining an additional degree of freedom in NIL not only for structural colouration but also for other industrial applications such as high-density memory, biosensors and manufacturing.
Collapse
Affiliation(s)
| | - Jingchao Song
- School of Physics, The University of Melbourne 3010 Australia
| | - Timothy D James
- Reserve Bank of Australia Craigieburn Victoria 3064 Australia
| | - Ann Roberts
- School of Physics, The University of Melbourne 3010 Australia
| |
Collapse
|
167
|
Blanchard-Dionne AP, Martin OJF. Teaching optics to a machine learning network. OPTICS LETTERS 2020; 45:2922-2925. [PMID: 32412502 DOI: 10.1364/ol.390600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
In this Letter, we demonstrate how harmonic oscillator equations can be integrated in a neural network to improve the spectral response prediction for an optical system. We use the optical properties of a one-dimensional nanoslit array for a practical implementation of the study. This method allows to build more generalizable relations between the input parameters of the array and its optical properties, showing a 20-fold improvement for parameters outside the range used for the training. We also show how this model generates the output spectrum from phenomenological relationships between the input parameters and the output spectrum, indicating how it grasps the physical mechanisms of the optical response of the structure.
Collapse
|
168
|
Zhou KC, Horstmeyer R. Diffraction tomography with a deep image prior. OPTICS EXPRESS 2020; 28:12872-12896. [PMID: 32403775 PMCID: PMC7340379 DOI: 10.1364/oe.379200] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 05/11/2023]
Abstract
We present a tomographic imaging technique, termed Deep Prior Diffraction Tomography (DP-DT), to reconstruct the 3D refractive index (RI) of thick biological samples at high resolution from a sequence of low-resolution images collected under angularly varying illumination. DP-DT processes the multi-angle data using a phase retrieval algorithm that is extended by a deep image prior (DIP), which reparameterizes the 3D sample reconstruction with an untrained, deep generative 3D convolutional neural network (CNN). We show that DP-DT effectively addresses the missing cone problem, which otherwise degrades the resolution and quality of standard 3D reconstruction algorithms. As DP-DT does not require pre-captured data or pre-training, it is not biased towards any particular dataset. Hence, it is a general technique that can be applied to a wide variety of 3D samples, including scenarios in which large datasets for supervised training would be infeasible or expensive. We applied DP-DT to obtain 3D RI maps of bead phantoms and complex biological specimens, both in simulation and experiment, and show that DP-DT produces higher-quality results than standard regularization techniques. We further demonstrate the generality of DP-DT, using two different scattering models, the first Born and multi-slice models. Our results point to the potential benefits of DP-DT for other 3D imaging modalities, including X-ray computed tomography, magnetic resonance imaging, and electron microscopy.
Collapse
Affiliation(s)
- Kevin C. Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
169
|
Chen K, Deng J, Zhou N, Liang C, Ren R, Deng L, Zhou Z, Tao J, Li Z, Zheng G. 2π-space uniform-backscattering metasurfaces enabled with geometric phase and magnetic resonance in visible light. OPTICS EXPRESS 2020; 28:12331-12341. [PMID: 32403731 DOI: 10.1364/oe.389932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Metasurfaces have shown unusual abilities to modulate the phase, amplitude and polarization of an incident lightwave with spatial resolution at the subwavelength scale. Here, we experimentally demonstrate a dielectric metasurface enabled with both geometric phase and magnetic resonance that scatters an incident light beam filling the full reflective 2π-space with high-uniformity. Specifically, by delicately reconfiguring the orientations of dielectric nanobricks acting as nano-half-waveplates in a metasurface, the optical power of phase-modulated output light is almost equally allocated to all diffraction orders filling the full reflection space. The measured beam non-uniformity in the full hemispheric space, defined as the relative standard deviation (RSD) of all scattered optical power, is only around 0.25. More interestingly, since the target intensity distribution in a uniform design is rotationally centrosymmetric, the diffraction results are identical under arbitrary polarization states, e.g., circularly polarized, linearly polarized or even unpolarized light, which brings great convenience in practical applications. The proposed uniform-backscattering metasurface enjoys the advantages including polarization insensitivity, high-integration-density and high-stability, which has great potential in sensing, lighting, laser ranging, free-space optical communication and so on.
Collapse
|
170
|
Li W, He P, Yuan W, Yu Y. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance. NANOSCALE 2020; 12:7063-7071. [PMID: 32187246 DOI: 10.1039/c9nr10697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Super-oscillatory lens (SOL) optical microscopy, behaving as a non-invasive and universal imaging technique, as well as being a simple post-processing procedure, may provide a potential application for sub-diffraction-limit fluorescence imaging. However, the low energy concentration, high-intensity sidelobes and micrometer-scale working distance of the reported planar SOLs impose unavoidable restrictions on the ground-state applications. Here, we demonstrate step-shaped SOLs based on the multiple-phase-modulated (MPM) method to improve the focusing efficiency. Two pivotal advantages are thus generated: (i) the fabrication complexity can be effectively reduced based on several conventional optical lithography steps; (ii) the focusing efficiency is much higher than that of the random MPM ones due to the efficient manipulation of the wavefronts, bringing about a stronger light concentration to the focal spot. Additionally, the ratio of the sidelobe intensity is flexibly tuned to meet the customized requirements, and a 2 mm-working-distance MPM SOL with the sidelobe intensity highly suppressed is finally exploited. For the first time, as far as we know, a SOL-based fluorescence microscopy without the pinhole filter to map the horizontal morphology of the dispersive fluorescent particles is established. Compared with the results achieved by the conventional wide-field microscopy, the sample details beating the diffraction limit can be reconstructed by simple imaging fusion. This research demonstrates the promising applications of SOLs for low-cost, simplified and highly customized sub-diffraction-limit fluorescence imaging systems free from photobleaching and an extremely short working distance.
Collapse
Affiliation(s)
- Wenli Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Room 2501, No.45, Gaoxin South 9th Road, Nanshan District, Guangdong, Shenzhen 518057, China
| | | | | | | |
Collapse
|
171
|
Hu X, Lian Y, Liu Z, Jin Y, Hu Y, Liu Y, Huang M, Lin Z. Optimizing selection of the test color sample set for the CIE 2017 color fidelity index. OPTICS EXPRESS 2020; 28:8407-8422. [PMID: 32225467 DOI: 10.1364/oe.383283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
We have developed a new method for selecting the test color sample set (TCSS) used to calculate CIE 2017 color fidelity index (CIE-Rf). Taking a Large Set as a starting point, a new optimized color sample set (OCSS) is obtained by clustering analysis. Taking metamerism phenomenon into account, spectra clustering is performed within the class obtained from color appearance attributes clustering. The CIE-Rf of 1202 light sources are calculated and analyzed by taking the Large Set, OCSS and CIE color evaluation sample set (CIE CESS-99) as TCSS. Through analyzing CIE-Rf, the performance of the OCSS is further investigated. The results show that the clustering analysis method developed in this paper can be well used in selecting test color samples, and the obtained OCSS can represent Large Set well and be better used for color fidelity metrics of light sources.
Collapse
|
172
|
Emile O, Emile J. Experimental analysis of submicrometer optical intensity distributions after an opaque disk. APPLIED OPTICS 2020; 59:1678-1683. [PMID: 32225673 DOI: 10.1364/ao.387699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Generation of subwavelength beam sizes is a fascinating challenge with several implications. The observation of a 120 nm laser spot in the visible part of the spectrum is reported here. It has a size variation of less than 10% in a distance of $ 50\;\unicode{x00B5}{\rm m} $50µm along the axis of propagation. This so-called Arago spot results from the diffraction of the light from a laser diode by the edges of an absorbing disk. Applications are discussed and hollow beams carrying orbital angular momentum with a 400 nm diameter dark spot in the center are evidenced. This paves the way toward atom lithography via atom guiding or new spectroscopy on forbidden transitions.
Collapse
|
173
|
Lee D, Gwak J, Badloe T, Palomba S, Rho J. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. NANOSCALE ADVANCES 2020; 2:605-625. [PMID: 36133253 PMCID: PMC9419029 DOI: 10.1039/c9na00751b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 05/29/2023]
Abstract
This review focuses on the imaging applications of metasurfaces. These optical elements provide a unique platform to control light; not only do they have a reduced size and complexity compared to conventional imaging systems but they also enable novel imaging modalities, such as functional-imaging techniques. This review highlights the development of metalenses, from their basic principles, to the achievement of achromatic and tunable lenses, and metasurfaces implemented in functional optical imaging applications.
Collapse
Affiliation(s)
- Dasol Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Junho Gwak
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Stefano Palomba
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute, The University of Sydney Sydney NSW 2006 Australia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
174
|
He H, Shang X, Xu L, Zhao J, Cai W, Wang J, Zhao C, Wang L. Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO 2. OPTICS EXPRESS 2020; 28:4563-4570. [PMID: 32121690 DOI: 10.1364/oe.385900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Perfect absorption and polarization conversion of electromagnetic wave (EM) are of significant importance for numerous optical applications. Vanadium dioxide (VO2), which can be converted from insulating state to metallic state by being exposed to different temperatures, is introduced into a metallic square loop to constitute a switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion. Combined theoretical analyses and numerical simulations, the results show that at temperature T = 356 K, the metasurface acts as a perfect absorber with nearly 91% absorptance at the wavelength of 1547 nm. When the temperature decreases to T = 292 K, the metasurface expresses as a high efficiency (about 94%) polarization converter with the polarization conversion ratio up to 86% around 1550 nm. The designed bifunctional metasurface has plenty of potential applications such as energy harvesting, optical sensing and imaging. Moreover, it can also provide guidance to research tunable, smart and multifunctional devices.
Collapse
|
175
|
Zhang F, Feng Y, Chen X, Ge L, Wan W. Synthetic Anti-PT Symmetry in a Single Microcavity. PHYSICAL REVIEW LETTERS 2020; 124:053901. [PMID: 32083913 DOI: 10.1103/physrevlett.124.053901] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/31/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Non-Hermitian systems based on parity-time (PT) and anti-PT symmetry reveal rich physics beyond the Hermitian regime. So far, realizations of such symmetric systems have been limited to the spatial domain. Here we theoretically and experimentally demonstrate synthetic anti-PT symmetry in a spectral dimension induced by nonlinear Brillouin scattering in a single optical microcavity, where Brillouin scattering induced transparency or absorption in two spectral resonances provides the optical gain and loss to observe a phase transition between two symmetry regimes. This scheme provides a new paradigm towards the investigation of non-Hermitian physics in a synthetic photonic dimension for all-optical signal processing and quantum information science.
Collapse
Affiliation(s)
- Fangxing Zhang
- The State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaming Feng
- MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianfeng Chen
- MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ge
- Department of Physics and Astronomy, College of Staten Island, the City University of New York, NY 10314, and the Graduate Center, CUNY, New York, New York 10016, USA
| | - Wenjie Wan
- The State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
176
|
Matlock A, Sentenac A, Chaumet PC, Yi J, Tian L. Inverse scattering for reflection intensity phase microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:911-926. [PMID: 32206398 PMCID: PMC7041473 DOI: 10.1364/boe.380845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 05/05/2023]
Abstract
Reflection phase imaging provides label-free, high-resolution characterization of biological samples, typically using interferometric-based techniques. Here, we investigate reflection phase microscopy from intensity-only measurements under diverse illumination. We evaluate the forward and inverse scattering model based on the first Born approximation for imaging scattering objects above a glass slide. Under this design, the measured field combines linear forward-scattering and height-dependent nonlinear back-scattering from the object that complicates object phase recovery. Using only the forward-scattering, we derive a linear inverse scattering model and evaluate this model's validity range in simulation and experiment using a standard reflection microscope modified with a programmable light source. Our method provides enhanced contrast of thin, weakly scattering samples that complement transmission techniques. This model provides a promising development for creating simplified intensity-based reflection quantitative phase imaging systems easily adoptable for biological research.
Collapse
Affiliation(s)
- Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Anne Sentenac
- Institut Fresnel, Aix Marseille Univ., CNRS, Centrale Marseille, Marseille, France
| | - Patrick C. Chaumet
- Institut Fresnel, Aix Marseille Univ., CNRS, Centrale Marseille, Marseille, France
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston, MA 02215, USA
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
177
|
Dardikman-Yoffe G, Roitshtain D, Mirsky SK, Turko NA, Habaza M, Shaked NT. PhUn-Net: ready-to-use neural network for unwrapping quantitative phase images of biological cells. BIOMEDICAL OPTICS EXPRESS 2020; 11:1107-1121. [PMID: 32206402 PMCID: PMC7041455 DOI: 10.1364/boe.379533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 05/17/2023]
Abstract
We present a deep-learning approach for solving the problem of 2π phase ambiguities in two-dimensional quantitative phase maps of biological cells, using a multi-layer encoder-decoder residual convolutional neural network. We test the trained network, PhUn-Net, on various types of biological cells, captured with various interferometric setups, as well as on simulated phantoms. These tests demonstrate the robustness and generality of the network, even for cells of different morphologies or different illumination conditions than PhUn-Net has been trained on. In this paper, for the first time, we make the trained network publicly available in a global format, such that it can be easily deployed on every platform, to yield fast and robust phase unwrapping, not requiring prior knowledge or complex implementation. By this, we expect our phase unwrapping approach to be widely used, substituting conventional and more time-consuming phase unwrapping algorithms.
Collapse
Affiliation(s)
- Gili Dardikman-Yoffe
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Darina Roitshtain
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Simcha K. Mirsky
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir A. Turko
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mor Habaza
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natan T. Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
178
|
Kansara S, Sonvane Y, Gajjar PN, Gupta SK. 2D BeP2 monolayer: investigation of electronic and optical properties by driven modulated strain. RSC Adv 2020; 10:26804-26812. [PMID: 35515786 PMCID: PMC9055527 DOI: 10.1039/d0ra03599h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
Recently, the two-dimensional (2D) material beryllium diphosphide (BeP2) has attracted significant attention for potential device applications due to its Dirac semimetal state, dynamic and thermal stability, and high carrier mobility. In this work, we investigated its electronic and optical properties under biaxial Lagrangian strain using density functional theory (DFT). Electronic band gaps and effective charge carrier mass were highly sensitive to the Lagrangian strain of BeP2 monolayer. The bandgaps of BeP2 varied from 0 eV to 0.30 eV for 2% to 8% strain, where the strain range is based on the final stable condition of the system. The absorption spectra for the dielectric properties show the highest absorption peaks in the infrared (IR) region. These abundant strain-dependent studies of the BeP2 monolayer provide guidelines for its application in infrared sensors and devices. BeP2 monolayer is a promising material for the novel IR optical device.![]()
Collapse
Affiliation(s)
| | - Yogesh Sonvane
- Advanced Materials Lab
- Department of Applied Physics
- S.V. National Institute of Technology
- Surat 395007
- India
| | - P. N. Gajjar
- Department of Physics
- Gujarat University
- Ahmedabad 380009
- India
| | - Sanjeev K. Gupta
- Computational Materials and Nanoscience Group
- Department of Physics
- St. Xavier's College
- Ahmedabad 380009
- India
| |
Collapse
|
179
|
Matlock A, Tian L. High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:6432-6448. [PMID: 31853409 PMCID: PMC6913397 DOI: 10.1364/boe.10.006432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 05/06/2023]
Abstract
Intensity diffraction tomography (IDT) provides quantitative, volumetric refractive index reconstructions of unlabeled biological samples from intensity-only measurements. IDT is scanless and easily implemented in standard optical microscopes using an LED array but suffers from large data requirements and slow acquisition speeds. Here, we develop multiplexed IDT (mIDT), a coded illumination framework providing high volume-rate IDT for evaluating dynamic biological samples. mIDT combines illuminations from an LED grid using physical model-based design choices to improve acquisition rates and reduce dataset size with minimal loss to resolution and reconstruction quality. We analyze the optimal design scheme with our mIDT framework in simulation using the reconstruction error compared to conventional IDT and theoretical acquisition speed. With the optimally determined mIDT scheme, we achieve hardware-limited 4Hz acquisition rates enabling 3D refractive index distribution recovery on live Caenorhabditis elegans worms and embryos as well as epithelial buccal cells. Our mIDT architecture provides a 60 × speed improvement over conventional IDT and is robust across different illumination hardware designs, making it an easily adoptable imaging tool for volumetrically quantifying biological samples in their natural state.
Collapse
Affiliation(s)
- Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
180
|
Wang M, Salut R, Suarez MA, Martin N, Grosjean T. Chiroptical transmission through a plasmonic helical traveling-wave nanoantenna, towards on-tip chiroptical probes. OPTICS LETTERS 2019; 44:4861-4864. [PMID: 31568461 DOI: 10.1364/ol.44.004861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Resonant plasmonic helices have been widely utilized for locally enhancing and tailoring optical chirality. Here we investigate their nonresonant operation through the recently introduced concept of a plasmonic helical "traveling-wave" nanoantenna. Relying on the coupling of a nonresonant plasmonic helix and a nano-aperture, the helical traveling-wave nanoantenna transmits circularly polarized light with the same handedness as the helix and blocks the other, with a measured dissymmetry factor larger than 1.92 (maximum value of 2). This chiroptical transmission is spatially localized, spectrally broadband, and background-free. Finally, we demonstrate the possibility to engineer such a plasmonic helical nanoantenna at the apex of a sharp tip typically used in scanning near-field microscopies, thus opening the route for moveable, broadband, and background-free chiroptical probes.
Collapse
|