151
|
Liquid-Liquid Phase Separation Prediction of Proteins in Salt Solution by Deep Neural Network. Biomolecules 2022; 13:biom13010042. [PMID: 36671427 PMCID: PMC9855436 DOI: 10.3390/biom13010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) underlies the formation of membrane-free organelles in eukaryotic cells and plays an important role in the development of some diseases. The phase boundary of metastable liquid-liquid phase separation as well as the cloud point temperature of some globular proteins characterize the phase behavior of proteins and have been widely studied theoretically and experimentally. In the present study, we used a regression and classification neural network to deal with the phase behavior of lysozyme and bovine serum albumin (BSA). We predicted the cloud point temperature and solubility of a lysozyme solution containing sodium chloride by regression and the reentrant phase behavior of BSA in YCl3 solution containing a surfactant dodecyl dimethyl amine oxide (DDAO) by classification. Specifically, our network model is capable of predicting (a) the solubility of lysozyme in the range: pH 4.0-5.4, temperature 0-25 °C, and NaCl concentration 2-7% (w/v); (b) the cloud point temperature of lysozyme in the range: pH 4.0-4.8, NaCl concentration 2-7%, and lysozyme concentration 0-400 mg/mL; and (c) the phase behavior of BSA in the range: DDAO 1-60 mM, BSA 30-100 mg/mL, and YCl3 1-20 mM. We experimentally tested the model at some prediction points with a high accuracy, which means that deep neural networks can be applicable in qualitative and quantitive analysis of liquid-liquid phase separation.
Collapse
|
152
|
Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat Commun 2022; 13:7845. [PMID: 36543777 PMCID: PMC9768726 DOI: 10.1038/s41467-022-35265-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The assembly of biomolecules into condensates is a fundamental process underlying the organisation of the intracellular space and the regulation of many cellular functions. Mapping and characterising phase behaviour of biomolecules is essential to understand the mechanisms of condensate assembly, and to develop therapeutic strategies targeting biomolecular condensate systems. A central concept for characterising phase-separating systems is the phase diagram. Phase diagrams are typically built from numerous individual measurements sampling different parts of the parameter space. However, even when performed in microwell plate format, this process is slow, low throughput and requires significant sample consumption. To address this challenge, we present here a combinatorial droplet microfluidic platform, termed PhaseScan, for rapid and high-resolution acquisition of multidimensional biomolecular phase diagrams. Using this platform, we characterise the phase behaviour of a wide range of systems under a variety of conditions and demonstrate that this approach allows the quantitative characterisation of the effect of small molecules on biomolecular phase transitions.
Collapse
|
153
|
Otis JB, Sharpe S. Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides. Biomacromolecules 2022; 23:5225-5238. [PMID: 36378745 DOI: 10.1021/acs.biomac.2c01027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials. The present study investigates the interplay between the solvent, sequence syntax, structure, and dynamics in promoting LLPS of resilin-like-polypeptides (RLPs) derived from domains 1 and 3 of Drosophila melanogaster pro-resilin. NMR, UV-vis, and microscopy data demonstrate that while kosmotropic salts and low pH promote LLPS, the effects of chaotropic salts with increasing pH are more complex. Subtle variations between the repeating amino acid motifs of resilin domain 1 and domain 3 lead to significantly different salt and pH dependence of LLPS, with domain 3 sequence motifs more strongly favoring phase separation under most conditions. These findings provide new insight into the molecular drivers of RLP phase separation and the complex roles of both RLP sequence and solution composition in fine-tuning assembly conditions.
Collapse
Affiliation(s)
- James Brandt Otis
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
154
|
Yong H, Sommer JU. Cononsolvency Effect: When the Hydrogen Bonding between a Polymer and a Cosolvent Matters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huaisong Yong
- School of New Energy and Materials, Southwest Petroleum University, 610500Chengdu, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, 610500Chengdu, China
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069Dresden, Germany
| | - Jens-Uwe Sommer
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, D-01069Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307Dresden, Germany
| |
Collapse
|
155
|
Nucleoside Analogs and Perylene Derivatives Modulate Phase Separation of SARS-CoV-2 N Protein and Genomic RNA In Vitro. Int J Mol Sci 2022; 23:ijms232315281. [PMID: 36499608 PMCID: PMC9738865 DOI: 10.3390/ijms232315281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs. The antivirals were selected based on their presumed ability to compete with RNA for specific N sites or interfere with non-specific pi-pi/cation-pi interactions. The set of antivirals included fleximers, 5'-norcarbocyclic nucleoside analogs, and perylene-harboring nucleoside analogs as well as non-nucleoside amphiphilic and hydrophobic perylene derivatives. Most of these antivirals enhanced the formation of N-RNA condensates. Hydrophobic perylene derivatives and 5'-norcarbocyclic derivatives caused up to 50-fold and 15-fold enhancement, respectively. Molecular modeling data argue that hydrophobic compounds do not hamper specific N-RNA interactions and may promote non-specific ones. These findings shed light on the determinants of potent small-molecule modulators of viral LLPS.
Collapse
|
156
|
Amankwaa B, Schoborg T, Labrador M. Drosophila insulator proteins exhibit in vivo liquid-liquid phase separation properties. Life Sci Alliance 2022; 5:5/12/e202201536. [PMID: 35853678 PMCID: PMC9297610 DOI: 10.26508/lsa.202201536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Drosophila insulator proteins and the cohesin subunit Rad21 coalesce in vivo to form liquid-droplet condensates, suggesting that liquid–liquid phase separation mediates their function in 3D genome organization. Mounting evidence implicates liquid–liquid phase separation (LLPS), the condensation of biomolecules into liquid-like droplets in the formation and dissolution of membraneless intracellular organelles (MLOs). Cells use MLOs or condensates for various biological processes, including emergency signaling and spatiotemporal control over steady-state biochemical reactions and heterochromatin formation. Insulator proteins are architectural elements involved in establishing independent domains of transcriptional activity within eukaryotic genomes. In Drosophila, insulator proteins form nuclear foci known as insulator bodies in response to osmotic stress. However, the mechanism through which insulator proteins assemble into bodies is yet to be investigated. Here, we identify signatures of LLPS by insulator bodies, including high disorder tendency in insulator proteins, scaffold–client–dependent assembly, extensive fusion behavior, sphericity, and sensitivity to 1,6-hexanediol. We also show that the cohesin subunit Rad21 is a component of insulator bodies, adding to the known insulator protein constituents and γH2Av. Our data suggest a concerted role of cohesin and insulator proteins in insulator body formation and under physiological conditions. We propose a mechanism whereby these architectural proteins modulate 3D genome organization through LLPS.
Collapse
Affiliation(s)
- Bright Amankwaa
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
157
|
Cui H, Zhang Y, Shen Y, Zhu S, Tian J, Li Q, Shen Y, Liu S, Cao Y, Shum HC. Dynamic Assembly of Viscoelastic Networks by Aqueous Liquid-Liquid Phase Separation and Liquid-Solid Phase Separation (AqLL-LS PS 2 ). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205649. [PMID: 36222390 DOI: 10.1002/adma.202205649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Living cells comprise diverse subcellular structures, such as cytoskeletal networks, which can regulate essential cellular activities through dynamic assembly and synergistic interactions with biomolecular condensates. Despite extensive efforts, reproducing viscoelastic networks for modulating biomolecular condensates in synthetic systems remains challenging. Here, a new aqueous two-phase system (ATPS) is proposed, which consists of poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX), to construct viscoelastic networks capable of being assembled and dissociated dynamically to regulate the self-assembly of condensates on-demand. Viscoelastic networks are generated using liquid-liquid phase-separated DEX droplets as templates and the following liquid-to-solid transition of the PNIPAM-rich phase. The resulting networks can dissolve liquid fused in sarcoma (FUS) condensates within 5 min. This work demonstrates rich phase-separation behaviors in a single ATPS through incorporating stimuli-responsive polymers. The concept can potentially be applied to other macromolecules through other stimuli to develop materials with rich phase behaviors and hierarchical structures.
Collapse
Affiliation(s)
- Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Yinan Shen
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Qingchuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Yi Shen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sihan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
158
|
Hong Y, Najafi S, Casey T, Shea JE, Han SI, Hwang DS. Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins. Nat Commun 2022; 13:7326. [PMID: 36443315 PMCID: PMC9705477 DOI: 10.1038/s41467-022-35001-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine's ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine's ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.
Collapse
Affiliation(s)
- Yuri Hong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Saeed Najafi
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Thomas Casey
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Joan-Emma Shea
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| | - Song-I Han
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
159
|
Molecular and environmental determinants of biomolecular condensate formation. Nat Chem Biol 2022; 18:1319-1329. [DOI: 10.1038/s41589-022-01175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
|
160
|
Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry 2022; 61:2443-2455. [PMID: 35802394 PMCID: PMC9669140 DOI: 10.1021/acs.biochem.2c00210] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of membraneless organelles, often termed "biological condensates", play an important role in the regulation of cellular processes such as gene transcription, translation, and protein quality control. On the basis of experimental and theoretical investigations, liquid-liquid phase separation (LLPS) has been proposed as a possible mechanism for the origin of biological condensates. LLPS requires multivalent macromolecules that template the formation of long-range, intermolecular interaction networks and results in the formation of condensates with defined composition and material properties. Multivalent interactions driving LLPS exhibit a wide range of modes from highly stereospecific to nonspecific and involve both folded and disordered regions. Multidomain proteins serve as suitable macromolecules for promoting phase separation and achieving disparate functions due to their potential for multivalent interactions and regulation. Here, we aim to highlight the influence of the domain architecture and interdomain interactions on the phase separation of multidomain protein condensates. First, the general principles underlying these interactions are illustrated on the basis of examples of multidomain proteins that are predominantly associated with nucleic acid binding and protein quality control and contain both folded and disordered regions. Next, the examples showcase how LLPS properties of folded and disordered regions can be leveraged to engineer multidomain constructs that form condensates with the desired assembly and functional properties. Finally, we highlight the need for improvements in coarse-grained computational models that can provide molecular-level insights into multidomain protein condensates in conjunction with experimental efforts.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | | | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
161
|
Ji Y, Li F, Qiao Y. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies. J Mater Chem B 2022; 10:8616-8628. [PMID: 36268634 DOI: 10.1039/d2tb01688e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules inspires the construction of protocells and drives the formation of cellular membraneless organelles. The resulting biomolecular condensates featuring dynamic assembly, disassembly, and phase transition play significant roles in a series of biological processes, including RNA metabolism, DNA damage response, signal transduction and neurodegenerative disease. Intensive investigations have been conducted for understanding and manipulating intracellular phase-separated disease-related proteins (e.g., FUS, tau and TDP-43). Herein, we review current studies on the regulation strategies of intracellular LLPS focusing on FUS, which are categorized into physical stimuli, biochemical modulators, and protein structural modifications, with summarized molecular mechanisms. This review is expected to provide a sketch of the modulation of FUS LLPS with its pros and cons, and an outlook for the potential clinical treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
162
|
Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21:841-862. [PMID: 35974095 PMCID: PMC9380678 DOI: 10.1038/s41573-022-00505-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.
Collapse
|
163
|
Huang Y, Wang J, Wang N, Li X, Ji X, Yang J, Zhou L, Wang T, Huang X, Hao H. Molecular mechanism of liquid–liquid phase separation in preparation process of crystalline materials. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
164
|
Tejedor AR, Sanchez-Burgos I, Estevez-Espinosa M, Garaizar A, Collepardo-Guevara R, Ramirez J, Espinosa JR. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat Commun 2022; 13:5717. [PMID: 36175408 PMCID: PMC9522849 DOI: 10.1038/s41467-022-32874-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Biomolecular condensates, some of which are liquid-like during health, can age over time becoming gel-like pathological systems. One potential source of loss of liquid-like properties during ageing of RNA-binding protein condensates is the progressive formation of inter-protein β-sheets. To bridge microscopic understanding between accumulation of inter-protein β-sheets over time and the modulation of FUS and hnRNPA1 condensate viscoelasticity, we develop a multiscale simulation approach. Our method integrates atomistic simulations with sequence-dependent coarse-grained modelling of condensates that exhibit accumulation of inter-protein β-sheets over time. We reveal that inter-protein β-sheets notably increase condensate viscosity but does not transform the phase diagrams. Strikingly, the network of molecular connections within condensates is drastically altered, culminating in gelation when the network of strong β-sheets fully percolates. However, high concentrations of RNA decelerate the emergence of inter-protein β-sheets. Our study uncovers molecular and kinetic factors explaining how the accumulation of inter-protein β-sheets can trigger liquid-to-solid transitions in condensates, and suggests a potential mechanism to slow such transitions down. In this work the authors propose a multiscale computational approach, integrating atomistic and coarse-grained models simulations, to study the thermodynamic and kinetic factors playing a major role in the liquid-to-solid transition of biomolecular condensates. It is revealed how the gradual accumulation of inter-protein β-sheets increases the viscosity of functional liquid-like condensates, transforming them into gel-like pathological aggregates, and it is also shown how high concentrations of RNA can decelerate such transition.
Collapse
Affiliation(s)
- Andres R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.,Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Maria Estevez-Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jorge Ramirez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
165
|
Abstract
Condensed states of proteins, including liquid-like membraneless organelles and solid-like aggregates, contribute in fundamental ways to the organisation and function of the cell. Perturbations of these states can lead to a variety of diseases through mechanisms that we are now beginning to understand. We define protein condensation diseases as conditions caused by the disruption of the normal behaviour of the condensed states of proteins. We analyze the problem of the identification of targets for pharmacological interventions for these diseases and explore opportunities for the regulation of the formation and organisation of aberrant condensed states of proteins. In this review, the authors define protein condensation diseases as conditions caused by aberrant liquid-like or solid-like states of proteins, and describe opportunities for therapeutic interventions to restore the normal phase behaviour of proteins. The review accompanies the related collection of articles published in Nature Communications focusing on possible therapeutic approaches involving liquid-liquid phase separation.
Collapse
|
166
|
Ren CL, Shan Y, Zhang P, Ding HM, Ma YQ. Uncovering the molecular mechanism for dual effect of ATP on phase separation in FUS solution. SCIENCE ADVANCES 2022; 8:eabo7885. [PMID: 36103543 PMCID: PMC9473584 DOI: 10.1126/sciadv.abo7885] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/04/2023]
Abstract
Recent studies reported that adenosine triphosphate (ATP) could inhibit and enhance the phase separation in prion-like proteins. The molecular mechanism underlying such a puzzling phenomenon remains elusive. Here, taking the fused in sarcoma (FUS) solution as an example, we comprehensively reveal the underlying mechanism by which ATP regulates phase separation by combining the semiempirical quantum mechanical method, mean-field theory, and molecular simulation. At the microscopic level, ATP acts as a bivalent or trivalent binder; at the macroscopic level, the reentrant phase separation occurs in dilute FUS solutions, resulting from the ATP concentration-dependent binding ability under different conditions. The ATP concentration for dissolving the protein condensates is about 10 mM, agreeing with experimental results. Furthermore, from a dynamic point of view, the effect of ATP on phase separation is also nonmonotonic. This work provides a clear physical description of the microscopic interaction and macroscopic phase diagram of the ATP-modulated phase separation.
Collapse
Affiliation(s)
- Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yue Shan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
167
|
Zachrdla M, Savastano A, Ibáñez de Opakua A, Cima‐Omori M, Zweckstetter M. Contributions of the N-terminal intrinsically disordered region of the severe acute respiratory syndrome coronavirus 2 nucleocapsid protein to RNA-induced phase separation. Protein Sci 2022; 31:e4409. [PMID: 36040256 PMCID: PMC9387207 DOI: 10.1002/pro.4409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein is an essential structural component of mature virions, encapsulating the genomic RNA and modulating RNA transcription and replication. Several of its activities might be associated with the protein's ability to undergo liquid-liquid phase separation. NSARS-CoV-2 contains an intrinsically disordered region at its N-terminus (NTE) that can be phosphorylated and is affected by mutations found in human COVID-19 infections, including in the Omicron variant of concern. Here, we show that NTE deletion decreases the range of RNA concentrations that can induce phase separation of NSARS-CoV-2 . In addition, deletion of the prion-like NTE allows NSARS-CoV-2 droplets to retain their liquid-like nature during incubation. We further demonstrate that RNA-binding engages multiple parts of the NTE and changes NTE's structural properties. The results form the foundation to characterize the impact of N-terminal mutations and post-translational modifications on the molecular properties of the SARS-CoV-2 nucleocapsid protein. STATEMENT: The nucleocapsid protein of SARS-CoV-2 plays an important role in both genome packaging and viral replication upon host infection. Replication has been associated with RNA-induced liquid-liquid phase separation of the nucleocapsid protein. We present insights into the role of the N-terminal part of the nucleocapsid protein in the protein's RNA-mediated liquid-liquid phase separation.
Collapse
Affiliation(s)
- Milan Zachrdla
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Adriana Savastano
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Alain Ibáñez de Opakua
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Maria‐Sol Cima‐Omori
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Markus Zweckstetter
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
168
|
Biological colloids: Unique properties of membranelles organelles in the cell. Adv Colloid Interface Sci 2022; 310:102777. [DOI: 10.1016/j.cis.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
169
|
Maity H, Baidya L, Reddy G. Salt-Induced Transitions in the Conformational Ensembles of Intrinsically Disordered Proteins. J Phys Chem B 2022; 126:5959-5971. [PMID: 35944496 DOI: 10.1021/acs.jpcb.2c03476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salts modulate the behavior of intrinsically disordered proteins (IDPs) and influence the formation of membraneless organelles through liquid-liquid phase separation (LLPS). In low ionic strength solutions, IDP conformations are perturbed by the screening of electrostatic interactions, independent of the salt identity. In this regime, insight into the IDP behavior can be obtained using the theory for salt-induced transitions in charged polymers. However, salt-specific interactions with the charged and uncharged residues, known as the Hofmeister effect, influence IDP behavior in high ionic strength solutions. There is a lack of reliable theoretical models in high salt concentration regimes to predict the salt effect on IDPs. We propose a simulation methodology using a coarse-grained IDP model and experimentally measured water to salt solution transfer free energies of various chemical groups that allowed us to study the salt-specific transitions induced in the IDPs conformational ensemble. We probed the effect of three different monovalent salts on five IDPs belonging to various polymer classes based on charged residue content. We demonstrate that all of the IDPs of different polymer classes behave as self-avoiding walks (SAWs) at physiological salt concentration. In high salt concentrations, the transitions observed in the IDP conformational ensembles are dependent on the salt used and the IDP sequence and composition. Changing the anion with the cation fixed can result in the IDP transition from a SAW-like behavior to a collapsed globule. An important implication of these results is that a suitable salt can be identified to induce condensation of an IDP through LLPS.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
170
|
Roden C, Dai Y, Giannetti C, Seim I, Lee M, Sealfon R, McLaughlin G, Boerneke M, Iserman C, Wey S, Ekena J, Troyanskaya O, Weeks K, You L, Chilkoti A, Gladfelter A. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. Nucleic Acids Res 2022; 50:8168-8192. [PMID: 35871289 PMCID: PMC9371935 DOI: 10.1093/nar/gkac596] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 12/11/2022] Open
Abstract
Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.
Collapse
Affiliation(s)
- Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Catherine A Giannetti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Ian Seim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Rachel Sealfon
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Grace A McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark A Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel A Wey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Joanne L Ekena
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olga G Troyanskaya
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
171
|
Kamagata K, Ariefai M, Takahashi H, Hando A, Subekti DRG, Ikeda K, Hirano A, Kameda T. Rational peptide design for regulating liquid-liquid phase separation on the basis of residue-residue contact energy. Sci Rep 2022; 12:13718. [PMID: 35962177 PMCID: PMC9374670 DOI: 10.1038/s41598-022-17829-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
Since liquid-liquid phase separation (LLPS) of proteins is governed by their intrinsically disordered regions (IDRs), it can be controlled by LLPS-regulators that bind to the IDRs. The artificial design of LLPS-regulators based on this mechanism can be leveraged in biological and therapeutic applications. However, the fabrication of artificial LLPS-regulators remains challenging. Peptides are promising candidates for artificial LLPS-regulators because of their ability to potentially bind to IDRs complementarily. In this study, we provide a rational peptide design methodology for targeting IDRs based on residue-residue contact energy obtained using molecular dynamics (MD) simulations. This methodology provides rational peptide sequences that function as LLPS regulators. The peptides designed with the MD-based contact energy showed dissociation constants of 35-280 nM for the N-terminal IDR of the tumor suppressor p53, which are significantly lower than the dissociation constants of peptides designed with the conventional 3D structure-based energy, demonstrating the validity of the present peptide design methodology. Importantly, all of the designed peptides enhanced p53 droplet formation. The droplet-forming peptides were converted to droplet-deforming peptides by fusing maltose-binding protein (a soluble tag) to the designed peptides. Thus, the present peptide design methodology for targeting IDRs is useful for regulating droplet formation.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan. .,Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| | - Maulana Ariefai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Atsumi Hando
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, 135-0064, Japan.
| |
Collapse
|
172
|
Aida H, Shigeta Y, Harada R. The role of ATP in solubilizing RNA-binding protein fused in sarcoma. Proteins 2022; 90:1606-1612. [PMID: 35297101 DOI: 10.1002/prot.26335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered protein (IDP) plays an important role in liquid-liquid phase separation (LLPS). RNA-binding protein fused in sarcoma (FUS) is a well-studied IDP that induces LLPS since its low-complexity core region (FUS-LC-core) is essential for droplet formation through contacts between FUS-LC-cores. Several experimental studies have reported that adenosine triphosphate (ATP) concentrations modulate LLPS-driven droplet formation through the dissolution of FUS. To elucidate the role of ATP in this dissolution, microsecond-order all-atom molecular dynamics (MD) simulations were performed for a crowded system of FUS-LC-cores in the presence of multiple ATP molecules. Our analysis revealed that the adenine group of ATP frequently contacted the FUS-LC-core, and the phosphoric acid group of ATP was exposed to the external solvent, which promoted both hydration and solubilization of FUS.
Collapse
Affiliation(s)
- Hayato Aida
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
173
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
174
|
Bedi S, Kumar G, Rose SM, Rakshit S, Sinha S. Barrier-free liquid condensates of nanocatalysts as effective concentrators of catalysis. Chem Commun (Camb) 2022; 58:8634-8637. [PMID: 35819054 DOI: 10.1039/d2cc03111f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional methods of molecular confinement have physicochemical barriers that restrict the free passage of substrates/products. Here, we explored liquid-liquid phase separation as a method to restrain protein-metal nanocomposites within barrier-free condensates. Confinement within liquid droplets was independent of the protein's native conformation and amplified the catalytic efficiency of metal nanocatalysts by one order of magnitude.
Collapse
Affiliation(s)
- Silky Bedi
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - S M Rose
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
175
|
Nguyen T, Li S, Chang JTH, Watters JW, Ng H, Osunsade A, David Y, Liu S. Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA. Nat Commun 2022; 13:3988. [PMID: 35810158 PMCID: PMC9271091 DOI: 10.1038/s41467-022-31738-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
Biomolecular condensation constitutes an emerging mechanism for transcriptional regulation. Recent studies suggest that the co-condensation between transcription factors (TFs) and DNA can generate mechanical forces driving genome rearrangements. However, the reported forces generated by protein-DNA co-condensation are typically below one piconewton (pN), questioning its physiological significance. Moreover, the force-generating capacity of these condensates in the chromatin context remains unknown. Here, we show that Sox2, a nucleosome-binding pioneer TF, forms co-condensates with DNA and generates forces up to 7 pN, exerting considerable mechanical tension on DNA strands. We find that the disordered domains of Sox2 are required for maximum force generation but not for condensate formation. Furthermore, we show that nucleosomes dramatically attenuate the mechanical stress exerted by Sox2 by sequestering it from coalescing on bare DNA. Our findings reveal that TF-mediated DNA condensation can exert significant mechanical stress on the genome which can nonetheless be attenuated by the chromatin architecture.
Collapse
Affiliation(s)
- Tuan Nguyen
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Sai Li
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Jeremy T-H Chang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Htet Ng
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Adewola Osunsade
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yael David
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
176
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
177
|
Garaizar A, Espinosa JR, Joseph JA, Krainer G, Shen Y, Knowles TP, Collepardo-Guevara R. Aging can transform single-component protein condensates into multiphase architectures. Proc Natl Acad Sci U S A 2022; 119:e2119800119. [PMID: 35727989 PMCID: PMC9245653 DOI: 10.1073/pnas.2119800119] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/28/2022] [Indexed: 01/23/2023] Open
Abstract
Phase-separated biomolecular condensates that contain multiple coexisting phases are widespread in vitro and in cells. Multiphase condensates emerge readily within multicomponent mixtures of biomolecules (e.g., proteins and nucleic acids) when the different components present sufficient physicochemical diversity (e.g., in intermolecular forces, structure, and chemical composition) to sustain separate coexisting phases. Because such diversity is highly coupled to the solution conditions (e.g., temperature, pH, salt, composition), it can manifest itself immediately from the nucleation and growth stages of condensate formation, develop spontaneously due to external stimuli or emerge progressively as the condensates age. Here, we investigate thermodynamic factors that can explain the progressive intrinsic transformation of single-component condensates into multiphase architectures during the nonequilibrium process of aging. We develop a multiscale model that integrates atomistic simulations of proteins, sequence-dependent coarse-grained simulations of condensates, and a minimal model of dynamically aging condensates with nonconservative intermolecular forces. Our nonequilibrium simulations of condensate aging predict that single-component condensates that are initially homogeneous and liquid like can transform into gel-core/liquid-shell or liquid-core/gel-shell multiphase condensates as they age due to gradual and irreversible enhancement of interprotein interactions. The type of multiphase architecture is determined by the aging mechanism, the molecular organization of the gel and liquid phases, and the chemical makeup of the protein. Notably, we predict that interprotein disorder to order transitions within the prion-like domains of intracellular proteins can lead to the required nonconservative enhancement of intermolecular interactions. Our study, therefore, predicts a potential mechanism by which the nonequilibrium process of aging results in single-component multiphase condensates.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jerelle A. Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Yi Shen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tuomas P.J. Knowles
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
178
|
Kilgore HR, Young RA. Learning the chemical grammar of biomolecular condensates. Nat Chem Biol 2022; 18:1298-1306. [PMID: 35761089 PMCID: PMC9691472 DOI: 10.1038/s41589-022-01046-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
Abstract
Biomolecular condensates compartmentalize and regulate assemblies of biomolecules engaged in vital physiological processes in cells. Specific proteins and nucleic acids engaged in shared functions occur in any one kind of condensate, suggesting that these compartments have distinct chemical specificities. Indeed, some small-molecule drugs concentrate in specific condensates due to chemical properties engendered by particular amino acids in the proteins in those condensates. Here we argue that the chemical properties that govern molecular interactions between a small molecule and biomolecules within a condensate can be ascertained for both the small molecule and the biomolecules. We propose that learning this 'chemical grammar', the rules describing the chemical features of small molecules that engender attraction or repulsion by the physicochemical environment of a specific condensate, should enable design of drugs with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Henry R Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
179
|
Regulating FUS Liquid-Liquid Phase Separation via Specific Metal Recognition. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
180
|
Ranganathan S, Shakhnovich E. The physics of liquid-to-solid transitions in multi-domain protein condensates. Biophys J 2022; 121:2751-2766. [PMID: 35702028 DOI: 10.1016/j.bpj.2022.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Many RNA-binding proteins (RBPs) that assemble into membraneless organelles have a common architecture including disordered prion-like domain (PLD) and folded RNA-binding domain (RBD). An enrichment of PLD within the condensed phase gives rise to formation, on longer time scales, of amyloid-like fibrils (aging). In this study, we employ coarse-grained Langevin dynamics simulations to explore the physical basis for the structural diversity in condensed phases of multi-domain RBPs. We discovered a highly cooperative first-order transition between disordered structures and an ordered phase whereby chains of PLD organize in fibrils with high nematic orientational order. An interplay between homodomain (PLD-PLD) and heterodomain (PLD-RBD) interactions results in variety of structures with distinct spatial architectures. Interestingly, the different structural phases also exhibit vastly different intracluster dynamics of proteins, with diffusion coefficients 5 times (disordered structures) to 50 times (ordered structures) lower than that of the dilute phase. Cooperativity of this liquid-solid transition makes fibril formation highly malleable to mutations or post-translational modifications. Our results provide a mechanistic understanding of how multi-domain RBPs could form assemblies with distinct structural and material properties.
Collapse
Affiliation(s)
- Srivastav Ranganathan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
181
|
Carrettiero DC, Almeida MC, Longhini AP, Rauch JN, Han D, Zhang X, Najafi S, Gestwicki JE, Kosik KS. Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate. Nat Commun 2022; 13:3074. [PMID: 35654899 PMCID: PMC9163039 DOI: 10.1038/s41467-022-30751-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
The formation of membraneless organelles can be a proteotoxic stress control mechanism that locally condenses a set of components capable of mediating protein degradation decisions. The breadth of mechanisms by which cells respond to stressors and form specific functional types of membraneless organelles, is incompletely understood. We found that Bcl2-associated athanogene 2 (BAG2) marks a distinct phase-separated membraneless organelle, triggered by several forms of stress, particularly hyper-osmotic stress. Distinct from well-known condensates such as stress granules and processing bodies, BAG2-containing granules lack RNA, lack ubiquitin and promote client degradation in a ubiquitin-independent manner via the 20S proteasome. These organelles protect the viability of cells from stress and can traffic to the client protein, in the case of Tau protein, on the microtubule. Components of these ubiquitin-independent degradation organelles include the chaperone HSP-70 and the 20S proteasome activated by members of the PA28 (PMSE) family. BAG2 condensates did not co-localize with LAMP-1 or p62/SQSTM1. When the proteasome is inhibited, BAG2 condensates and the autophagy markers traffic to an aggresome-like structure.
Collapse
Affiliation(s)
- Daniel C Carrettiero
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Maria C Almeida
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Jennifer N Rauch
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Dasol Han
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xuemei Zhang
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
182
|
Badaczewska-Dawid AE, Uversky VN, Potoyan DA. BIAPSS: A Comprehensive Physicochemical Analyzer of Proteins Undergoing Liquid-Liquid Phase Separation. Int J Mol Sci 2022; 23:6204. [PMID: 35682883 PMCID: PMC9181037 DOI: 10.3390/ijms23116204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules is a phenomenon which is nowadays recognized as the driving force for the biogenesis of numerous functional membraneless organelles and cellular bodies. The interplay between the protein primary sequence and phase separation remains poorly understood, despite intensive research. To uncover the sequence-encoded signals of protein capable of undergoing LLPS, we developed a novel web platform named BIAPSS (Bioinformatics Analysis of LLPS Sequences). This web server provides on-the-fly analysis, visualization, and interpretation of the physicochemical and structural features for the superset of curated LLPS proteins.
Collapse
Affiliation(s)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
183
|
Palaia I, Šarić A. Controlling cluster size in 2D phase-separating binary mixtures with specific interactions. J Chem Phys 2022; 156:194902. [PMID: 35597653 DOI: 10.1063/5.0087769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By varying the concentration of molecules in the cytoplasm or on the membrane, cells can induce the formation of condensates and liquid droplets, similar to phase separation. Their thermodynamics, much studied, depends on the mutual interactions between microscopic constituents. Here, we focus on the kinetics and size control of 2D clusters, forming on membranes. Using molecular dynamics of patchy colloids, we model a system of two species of proteins, giving origin to specific heterotypic bonds. We find that concentrations, together with valence and bond strength, control both the size and the growth time rate of the clusters. In particular, if one species is in large excess, it gradually saturates the binding sites of the other species; the system then becomes kinetically arrested and cluster coarsening slows down or stops, thus yielding effective size selection. This phenomenology is observed both in solid and fluid clusters, which feature additional generic homotypic interactions and are reminiscent of the ones observed on biological membranes.
Collapse
Affiliation(s)
- Ivan Palaia
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
184
|
Yang M, Digby ZA, Chen Y, Schlenoff JB. Valence-induced jumps in coacervate properties. SCIENCE ADVANCES 2022; 8:eabm4783. [PMID: 35584213 PMCID: PMC9116606 DOI: 10.1126/sciadv.abm4783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Spontaneous phase separation, or coacervation, of oppositely charged macromolecules is a powerful and ubiquitous mechanism for the assembly of natural and synthetic materials. Two critical triggering phenomena in coacervation science and technology are highlighted here. The first is the transition from one (mixed) to two (separated) phases of polyelectrolytes coacervated with small molecules upon the addition of one or two charges per molecule. The second is a large jump in coacervate modulus and viscosity mediated by the addition of just one additional charge to a three-charged system. This previously unknown viscoelastic transition is relevant to those aspects of disease states that are characterized by abnormal mechanical properties and irreversible assembly.
Collapse
|
185
|
Sun T, Minhas V, Mirzoev A, Korolev N, Lyubartsev AP, Nordenskiöld L. A Bottom-Up Coarse-Grained Model for Nucleosome-Nucleosome Interactions with Explicit Ions. J Chem Theory Comput 2022; 18:3948-3960. [PMID: 35580041 PMCID: PMC9202350 DOI: 10.1021/acs.jctc.2c00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleosome core particle (NCP) is a large complex of 145-147 base pairs of DNA and eight histone proteins and is the basic building block of chromatin that forms the chromosomes. Here, we develop a coarse-grained (CG) model of the NCP derived through a systematic bottom-up approach based on underlying all-atom MD simulations to compute the necessary CG interactions. The model produces excellent agreement with known structural features of the NCP and gives a realistic description of the nucleosome-nucleosome attraction in the presence of multivalent cations (Mg(H2O)62+ or Co(NH3)63+) for systems comprising 20 NCPs. The results of the simulations reveal structural details of the NCP-NCP interactions unavailable from experimental approaches, and this model opens the prospect for the rigorous modeling of chromatin fibers.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| |
Collapse
|
186
|
Structure-dependent recruitment and diffusion of guest proteins in liquid droplets of FUS. Sci Rep 2022; 12:7101. [PMID: 35501371 PMCID: PMC9061845 DOI: 10.1038/s41598-022-11177-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Liquid droplets of a host protein, formed by liquid–liquid phase separation, recruit guest proteins and provide functional fields. Recruitment into p53 droplets is similar between disordered and folded guest proteins, whereas the diffusion of guest proteins inside droplets depends on their structural types. In this study, to elucidate how the recruitment and diffusion properties of guest proteins are affected by a host protein, we characterized the properties of guest proteins in fused in sarcoma (FUS) droplets using single-molecule fluorescence microscopy in comparison with p53 droplets. Unlike p53 droplets, disordered guest proteins were recruited into FUS droplets more efficiently than folded guest proteins, suggesting physical exclusion of the folded proteins from the small voids of the droplet. The recruitment did not appear to depend on the physical parameters (electrostatic or cation–π) of guests, implying that molecular size exclusion limits intermolecular interaction-assisted uptake. The diffusion of disordered guest proteins was comparable to that of the host FUS, whereas that of folded proteins varied widely, similar to the results for host p53. The scaling exponent of diffusion highlights the molecular sieving of large folded proteins in droplets. Finally, we proposed a molecular recruitment and diffusion model for guest proteins in FUS droplets.
Collapse
|
187
|
Wessén J, Pal T, Chan HS. Field theory description of ion association in re-entrant phase separation of polyampholytes. J Chem Phys 2022; 156:194903. [DOI: 10.1063/5.0088326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phase separation of several different overall neutral polyampholyte species (with zero net charge) is studied in solution with two oppositely charged ion species that can form ion-pairs through an association reaction. A field theory description of the system, that treats polyampholyte charge sequence dependent electrostatic interactions as well as excluded volume effects, is hereby given. Interestingly, analysis of the model using random phase approximation and field theoretic simulation consistently show evidence of a re-entrant polyampholyte phase separation at high ion concentrations when there is an overall decrease of volume upon ion-association. As an illustration of the ramifications of our theoretical framework, several polyampholyte concentration vs ion concentration phase diagrams under constant temperature conditions are presented to elucidate the dependence of phase separation behavior on polyampholyte sequence charge pattern as well as ion-pair dissociation constant, volumetric effects on ion association, solvent quality, and temperature.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemsitry, University of Toronto, Canada
| | | | | |
Collapse
|
188
|
Huertas J, Woods EJ, Collepardo-Guevara R. Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes. Curr Opin Cell Biol 2022; 75:102067. [DOI: 10.1016/j.ceb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
189
|
Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Sci Rep 2022; 12:4390. [PMID: 35293386 PMCID: PMC8924231 DOI: 10.1038/s41598-022-08130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed by the process of liquid-liquid phase separation (LLPS) play diverse roles inside cells, from spatiotemporal compartmentalisation to speeding up chemical reactions. Upon maturation, the liquid-like properties of condensates, which underpin their functions, are gradually lost, eventually giving rise to solid-like states with potential pathological implications. Enhancement of inter-protein interactions is one of the main mechanisms suggested to trigger the formation of solid-like condensates. To gain a molecular-level understanding of how the accumulation of stronger interactions among proteins inside condensates affect the kinetic and thermodynamic properties of biomolecular condensates, and their shapes over time, we develop a tailored coarse-grained model of proteins that transition from establishing weak to stronger inter-protein interactions inside condensates. Our simulations reveal that the fast accumulation of strongly binding proteins during the nucleation and growth stages of condensate formation results in aspherical solid-like condensates. In contrast, when strong inter-protein interactions appear only after the equilibrium condensate has been formed, or when they accumulate slowly over time with respect to the time needed for droplets to fuse and grow, spherical solid-like droplets emerge. By conducting atomistic potential-of-mean-force simulations of NUP-98 peptides-prone to forming inter-protein [Formula: see text]-sheets-we observe that formation of inter-peptide [Formula: see text]-sheets increases the strength of the interactions consistently with the loss of liquid-like condensate properties we observe at the coarse-grained level. Overall, our work aids in elucidating fundamental molecular, kinetic, and thermodynamic mechanisms linking the rate of change in protein interaction strength to condensate shape and maturation during ageing.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
190
|
Agarwal A, Arora L, Rai SK, Avni A, Mukhopadhyay S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat Commun 2022; 13:1154. [PMID: 35241680 PMCID: PMC8894376 DOI: 10.1038/s41467-022-28797-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 12/30/2022] Open
Abstract
Biomolecular condensation via liquid-liquid phase separation of proteins and nucleic acids is associated with a range of critical cellular functions and neurodegenerative diseases. Here, we demonstrate that complex coacervation of the prion protein and α-synuclein within narrow stoichiometry results in the formation of highly dynamic, reversible, thermo-responsive liquid droplets via domain-specific electrostatic interactions between the positively-charged intrinsically disordered N-terminal segment of prion and the acidic C-terminal tail of α-synuclein. The addition of RNA to these coacervates yields multiphasic, vesicle-like, hollow condensates. Picosecond time-resolved measurements revealed the presence of transient electrostatic nanoclusters that are stable on the nanosecond timescale and can undergo breaking-and-making of interactions on slower timescales giving rise to a liquid-like behavior in the mesoscopic regime. The liquid-to-solid transition drives a rapid conversion of complex coacervates into heterotypic amyloids. Our results suggest that synergistic prion-α-synuclein interactions within condensates provide mechanistic underpinnings of their physiological role and overlapping neuropathological features.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
191
|
Azizi I, Grosberg AY, Rabin Y. Reentrant transitions in a mixture of small and big particles interacting via soft repulsive potential. Phys Rev E 2022; 105:L032604. [PMID: 35428062 DOI: 10.1103/physreve.105.l032604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
We report an observation of a temperature-controlled reentrant transition in simulations of mixtures of small and big particles interacting via a soft repulsive potential in two dimensions. As temperature increases, the system passes from a fluid mixture, to a crystal of big particles in a fluid of small particles, and back to a fluid mixture. Solidification is driven by entropy gain of small particles which overcomes the free-energy cost of confining big ones. Melting results from enhanced interpenetration of particles at high temperature which reduces the entropic forces that stabilize the crystal.
Collapse
Affiliation(s)
- Itay Azizi
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
| | - Yitzhak Rabin
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
192
|
How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein. J Mol Biol 2022; 434:167562. [PMID: 35351518 PMCID: PMC9400470 DOI: 10.1016/j.jmb.2022.167562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
E. coli single-stranded-DNA binding protein (EcSSB) displays nearest-neighbor (NN) and non-nearest-neighbor (NNN)) cooperativity in binding ssDNA during genome maintenance. NNN cooperativity requires the intrinsically-disordered linkers (IDL) of the C-terminal tails. Potassium glutamate (KGlu), the primary E. coli salt, promotes NNN-cooperativity, while KCl inhibits it. We find that KGlu promotes compaction of a single polymeric SSB-coated ssDNA beyond what occurs in KCl, indicating a link of compaction to NNN-cooperativity. EcSSB also undergoes liquid-liquid phase separation (LLPS), inhibited by ssDNA binding. We find that LLPS, like NNN-cooperativity, is promoted by increasing [KGlu] in the physiological range, while increasing [KCl] and/or deletion of the IDL eliminate LLPS, indicating similar interactions in both processes. From quantitative determinations of interactions of KGlu and KCl with protein model compounds, we deduce that the opposing effects of KGlu and KCl on SSB LLPS and cooperativity arise from their opposite interactions with amide groups. KGlu interacts unfavorably with the backbone (especially Gly) and side chain amide groups of the IDL, promoting amide-amide interactions in LLPS and NNN-cooperativity. By contrast, KCl interacts favorably with these amide groups and therefore inhibits LLPS and NNN-cooperativity. These results highlight the importance of salt interactions in regulating the propensity of proteins to undergo LLPS.
Collapse
|
193
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
194
|
Zhu S, Gu J, Yao J, Li Y, Zhang Z, Xia W, Wang Z, Gui X, Li L, Li D, Zhang H, Liu C. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Dev Cell 2022; 57:583-597.e6. [DOI: 10.1016/j.devcel.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 12/28/2022]
|
195
|
Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Comput Biol 2022; 18:e1009810. [PMID: 35108264 PMCID: PMC8896709 DOI: 10.1371/journal.pcbi.1009810] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/04/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jerelle A. Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
196
|
Welsh TJ, Krainer G, Espinosa JR, Joseph JA, Sridhar A, Jahnel M, Arter WE, Saar KL, Alberti S, Collepardo-Guevara R, Knowles TPJ. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. NANO LETTERS 2022; 22:612-621. [PMID: 35001622 DOI: 10.1021/acs.nanolett.1c03138] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liquid-liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions that in general have a propensity to fuse and coalesce; however, many condensates persist as independent droplets in the test tube and inside cells. This stability is crucial for their function, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modeling, we investigate how the nanoscale forces that sustain condensates impact their stability against fusion. By comparing peptide-RNA (PR25:PolyU) and proteinaceous (FUS) condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity. Moreover, measurements of single condensate zeta potentials reveal that such systems can constitute classically stable emulsions. Taken together, these results highlight the role of passive stabilization mechanisms in protecting biomolecular condensates against coalescence.
Collapse
Affiliation(s)
- Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jorge R Espinosa
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Jerelle A Joseph
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Akshay Sridhar
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
- Cluster of Excellence "Physics of Life", TU Dresden, Dresden 01307, Germany
| | - William E Arter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, U.K
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
197
|
DNA-induced spatial entrapment of general transcription machinery can stabilize gene expression in a nondividing cell. Proc Natl Acad Sci U S A 2022; 119:2116091119. [PMID: 35074915 PMCID: PMC8795562 DOI: 10.1073/pnas.2116091119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
How differentiated cells such as muscle or nerve maintain their gene expression for prolonged times is currently elusive. Here, using Xenopus oocyte, we have shown that the stability of gene expression in nondividing cells may arise due to the local entrapment of transcriptional machinery to specific gene transcription start sites. We found that within the same nucleus active versus inactive versions of the same gene are spatially segregated through liquid–liquid phase separation. We further observe that silent genes are associated with RNA-Pol-II phosphorylated on Ser5 but fails to attract RNA-Pol-II elongation factors. We propose that liquid–liquid phase separation mediated entrapment of limiting transcriptional machinery factors maintain stable expression of some genes in nondividing cells. An important characteristic of cell differentiation is its stability. Only rarely do cells or their stem cell progenitors change their differentiation pathway. If they do, it is often accompanied by a malfunction such as cancer. A mechanistic understanding of the stability of differentiated states would allow better prospects of alleviating the malfunctioning. However, such complete information is yet elusive. Earlier experiments performed in Xenopus oocytes to address this question suggest that a cell may maintain its gene expression by prolonged binding of cell type–specific transcription factors. Here, using DNA competition experiments, we show that the stability of gene expression in a nondividing cell could be caused by the local entrapment of part of the general transcription machinery in transcriptionally active regions. Strikingly, we found that transcriptionally active and silent forms of the same DNA template can stably coexist within the same nucleus. Both DNA templates are associated with the gene-specific transcription factor Ascl1, the core factor TBP2, and the polymerase II (Pol-II) ser5 C-terminal domain (CTD) phosphorylated form, while Pol-II ser2 CTD phosphorylation is restricted to the transcriptionally dominant template. We discover that the active and silent DNA forms are physically separated in the oocyte nucleus through partition into liquid–liquid phase-separated condensates. Altogether, our study proposes a mechanism of transcriptional regulation involving a spatial entrapment of general transcription machinery components to stabilize the active form of a gene in a nondividing cell.
Collapse
|
198
|
Lin YH, Wu H, Jia B, Zhang M, Chan HS. Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding. Biophys J 2022; 121:157-171. [PMID: 34637756 PMCID: PMC8758407 DOI: 10.1016/j.bpj.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023] Open
Abstract
The assembly of functional biomolecular condensates often involves liquid-liquid phase separation (LLPS) of proteins with multiple modular domains, which can be folded or conformationally disordered to various degrees. To understand the LLPS-driving domain-domain interactions, a fundamental question is how readily the interactions in the condensed phase can be inferred from interdomain interactions in dilute solutions. In particular, are the interactions leading to LLPS exclusively those underlying the formation of discrete interdomain complexes in homogeneous solutions? We address this question by developing a mean-field LLPS theory of two stoichiometrically constrained solute species. The theory is applied to the neuronal proteins SynGAP and PSD-95, whose complex coacervate serves as a rudimentary model for neuronal postsynaptic densities (PSDs). The predicted phase behaviors are compared with experiments. Previously, a three SynGAP/two PSD-95 ratio was determined for SynGAP/PSD-95 complexes in dilute solutions. However, when this 3:2 stoichiometry is uniformly imposed in our theory encompassing both dilute and condensed phases, the tie-line pattern of the predicted SynGAP/PSD-95 phase diagram differs drastically from that obtained experimentally. In contrast, theories embodying alternate scenarios postulating auxiliary SynGAP-PSD-95 as well as SynGAP-SynGAP and PSD-95-PSD-95 interactions, in addition to those responsible for stoichiometric SynGAP/PSD-95 complexes, produce tie-line patterns consistent with experiment. Hence, our combined theoretical-experimental analysis indicates that weaker interactions or higher-order complexes beyond the 3:2 stoichiometry, but not yet documented, are involved in the formation of SynGAP/PSD-95 condensates, imploring future efforts to ascertain the nature of these auxiliary interactions in PSD-like LLPS and underscoring a likely general synergy between stoichiometric, structurally specific binding and stochastic, multivalent "fuzzy" interactions in the assembly of functional biomolecular condensates.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haowei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Bowen Jia
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China,School of Life Sciences, Southern University of Science and Technology, Shenzhen, China,Corresponding author
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Corresponding author
| |
Collapse
|
199
|
Saraiva MA, Florêncio MH. Buffering capacity is determinant for restoring early α-synuclein aggregation. Biophys Chem 2022; 282:106760. [DOI: 10.1016/j.bpc.2022.106760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
|
200
|
Heinrich S, Hondele M. Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo. Methods Mol Biol 2022; 2537:307-333. [PMID: 35895272 DOI: 10.1007/978-1-0716-2521-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomolecular condensates and the concept of liquid-liquid phase separation (LLPS) have transformed cell biology in recent years. Condensates organize cellular content and compartmentalize biochemical reactions, in particular many processes involving RNA. This protocol is aimed at readers new to the LLPS field who want to test their protein or cellular structure of interest. We describe the basic principles of liquid-liquid phase separation, and outline initial approaches-both in vitro and in yeast cells-for the characterization of a candidate cellular condensate. First, we focus on strategies to purify phase-separating proteins and to reconstitute condensates from recombinant proteins in vitro for observation by light microscopy. Second, we describe in vivo experiments (including fluorescence recovery after photobleaching (FRAP) microscopy and 1,6-Hexanediol treatment) to test whether a subcellular structure displays liquid-like behavior in cells.
Collapse
Affiliation(s)
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|