151
|
Zhao J, Ji S, Guo C, Li H, Dong J, Guo P, Wang D, Li Y, Toste FD. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat Catal 2021. [DOI: 10.1038/s41929-021-00637-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Liu J, Zou Y, Cruz D, Savateev A, Antonietti M, Vilé G. Ligand-Metal Charge Transfer Induced via Adjustment of Textural Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25858-25867. [PMID: 34028257 PMCID: PMC8289176 DOI: 10.1021/acsami.1c02243] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 05/03/2023]
Abstract
Because of their peculiar nitrogen-rich structure, carbon nitrides are convenient polydentate ligands for designing single atom-dispersed photocatalysts. However, the relation between catalysts' textural properties and their photophysical-photocatalytic properties is rarely elaborated. Herein, we report the preparation and characterization of a series of single-atom heterogeneous catalysts featuring highly dispersed Ag and Cu species on mesoporous graphitic C3N4. We show that adjustment of materials textural properties and therefore metal single-atom coordination mode enables ligand-to-metal charge transfer (LMCT) or ligand-to-metal-to-ligand charge transfer (LMLCT), properties that were long speculated in single-atom catalysis but never observed. We employ the developed materials in the degradation of organic pollutants under irradiation with visible light. Kinetic investigations under flow conditions show that single atoms of Ag and Cu decrease the number of toxic organic fragmentation products while leading to a higher selectivity toward full degradation. The results correlate with the selected mode of charge transfer in the designed photocatalysts and provide a new understanding of how the local environment of a single-atom catalyst affects the surface structure and reactivity. The concepts can be exploited further to rationally design and optimize other single-atom materials.
Collapse
Affiliation(s)
- Jiaxu Liu
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
- State
Key Laboratory of Fine Chemicals, Department of Catalytic Chemistry
and Engineering, Dalian University of Technology, Ganjingzi District, Linggong Road
2, Dalian 116024, China
| | - Yajun Zou
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Potsdam-Golm Science Park, Am Mühlenberg
1 OT Golm, Potsdam 14476, Germany
| | - Daniel Cruz
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Aleksandr Savateev
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Potsdam-Golm Science Park, Am Mühlenberg
1 OT Golm, Potsdam 14476, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Potsdam-Golm Science Park, Am Mühlenberg
1 OT Golm, Potsdam 14476, Germany
| | - Gianvito Vilé
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| |
Collapse
|
153
|
Patel A, Patel A. Designing of Stabilized Palladium Nanoclusters: Characterization, Effect of Support and Acidity on C–C cross coupling. Catal Letters 2021. [DOI: 10.1007/s10562-021-03658-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
154
|
Kress P, Réocreux R, Hannagan R, Thuening T, Boscoboinik JA, Stamatakis M, Sykes ECH. Mechanistic insights into carbon-carbon coupling on NiAu and PdAu single-atom alloys. J Chem Phys 2021; 154:204701. [PMID: 34241183 DOI: 10.1063/5.0048977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbon-carbon coupling is an important step in many catalytic reactions, and performing sp3-sp3 carbon-carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C-I cleavage and selective sp3-sp3 carbon-carbon coupling to produce ethane. Furthermore, we perform ab initio kinetic Monte Carlo simulations that include the effect of the iodine atom, which was previously considered a bystander species. We find that model NiAu surfaces exhibit a similar chemistry to PdAu, but the reason for the similarity is due to the role the iodine atoms play in terms of blocking the Ni atom active sites. Specifically, on NiAu SAAs, the iodine atoms outcompete the methyl groups for occupancy of the Ni sites leaving the Me groups on Au, while on PdAu SAAs, the binding strengths of methyl groups and iodine atoms at the Pd atom active site are more similar. These simulations shed light on the mechanism of this important sp3-sp3 carbon-carbon coupling chemistry on SAAs. Furthermore, we discuss the effect of the iodine atoms on the reaction energetics and make an analogy between the effect of iodine as an active site blocker on this model heterogeneous catalyst and homogeneous catalysts in which ligands must detach in order for the active site to be accessed by the reactants.
Collapse
Affiliation(s)
- Paul Kress
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - Romain Réocreux
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - Ryan Hannagan
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - Theodore Thuening
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - J Anibal Boscoboinik
- Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton, New York 11973, USA
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
155
|
Shi W, Niu Y, Li S, Zhang L, Zhang Y, Botton GA, Wan Y, Zhang B. Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy. ACS NANO 2021; 15:8621-8637. [PMID: 33960778 DOI: 10.1021/acsnano.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki-Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.
Collapse
Affiliation(s)
- Wen Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shunlin Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ying Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario Canada L8S 4M1
| | - Ying Wan
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
156
|
Sahoo L, Mondal S, Nayana CB, Gautam UK. Facile d-band tailoring in Sub-10 nm Pd cubes by in-situ grafting on nitrogen-doped graphene for highly efficient organic transformations. J Colloid Interface Sci 2021; 590:175-185. [PMID: 33548601 DOI: 10.1016/j.jcis.2020.12.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
We demonstrate for the first time the in-situ synthesis of Pd nanocubes (PdNC) on nitrogen-doped reduced graphene oxide (NRGO) for facile organic transformations wherein the cubic morphology of Pd can only be realized by precision-controlled acid additions in the tune of 0.02 pH variations in the reaction medium. Due to the intimate contact arising from atom-by-atom addition of Pd on NRGO, the composite has exhibited a pronounced catalyst to support charge transfer effect, shift in the d-band center, and lowering of charge-transfer resistance when compared with PdNC-NRGO ex-situ composites prepared by mixing of the preformed components of PdNC and NRGO or PdNCs alone. The activities of these catalysts were tested for the Suzuki coupling and nitroarene reduction reactions using water as an industry-friendly solvent. In both, the in-situ deposited sample exhibited substantially higher catalytic activity as well as stability when compared with an ex-situ sample or pure PdNCs. We show that a very high turnover frequency of ~31300 h-1 and ~900 h-1 are achievable by using the in-situ deposited PdNC-NRGO composite for Suzuki coupling reactions and nitroarene reduction respectively, better than the state-of-the-art catalysts developed recently, in addition to high recyclability.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - C B Nayana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
157
|
Zhang M, Liu Y, Zhao H, Tao J, Geng N, Li W, Zhai Y. Pd Anchored on a Phytic Acid/Thiourea Polymer as a Highly Active and Stable Catalyst for the Reduction of Nitroarene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19904-19914. [PMID: 33896165 DOI: 10.1021/acsami.0c23007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A kind of N, P, C, O-containing polymer was easily prepared via microwave heating of phytic acid and thiourea just for 90 s. After impregnation and reduction of H2PdCl4, highly dispersed Pd single atoms/sub-nano clusters loaded on the phytic acid/thiourea polymer (Pd-CNSP) were successfully obtained. Owing to the synergetic effect of the polymer support and Pd, the catalyst Pd-CNSP achieves a great atomic efficiency of Pd species and exhibits an outstanding catalytic ability in the reduction of 4-nitrophenol. The k value of the catalyst Pd-CNSP (2.17 min-1 mg-1) is about 19 times higher than that of the commercial Pd/C (5 wt %) catalyst. The turnover frequency value is as high as 848 min-1, which is the highest value reported so far. Pd-CNSP also has good selectivity for the reduction of halogen-substituted (Cl and Br) nitroaromatics. It is expected to be mass-produced and used in other industrial hydrogenation reactions.
Collapse
Affiliation(s)
- Meng Zhang
- Green Catalysis Center, the College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yonggang Liu
- Institute of Atmospheric Environment, the College of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hao Zhao
- Green Catalysis Center, the College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jianli Tao
- Green Catalysis Center, the College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ningbo Geng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Yunpu Zhai
- Green Catalysis Center, the College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
158
|
Li D, Li C, Wang H, Li J, Zhao Y, Jiang X, Wen G, Liang A, Jiang Z. Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants. Mikrochim Acta 2021; 188:175. [PMID: 33893886 DOI: 10.1007/s00604-021-04828-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Bisphenol A (BPA), as a typical endocrine disruptor, poses a serious threat to human health. Therefore, it is urgent to establish a rapid, sensitive, and simple method for the determination of BPA. In this paper, based on the aptamer-mediated single-atom Fe carbon dot catalyst (SAFe) catalyzing the HAuCl4-ethylene glycol (EG) nanoreaction, a new SERS/RRS di-mode detection method for BPA was established. The results show that SAFe exhibits a strong catalytic effect on the HAuCl4-EG nanoreaction, which could generate purple gold nanoparticles (AuNPs) with resonance Rayleigh scattering (RRS) signals and surface-enhanced Raman scattering (SERS) effects. After the addition of BPA aptamer (Apt), it could encapsulate SAFe through intermolecular interaction, thus inhibiting its catalytic action, resulting in the reduction of AuNPs generated and the decrease of RRS and SERS signals of the system. With the addition of BPA, Apt was specifically combined with BPA, and SAFe was re-released to restore the catalytic ability; the generated AuNPs increased. As a result of this RRS and SERS signals of the system recovered, and their increment was linear with the concentration of BPA. Thus, the quantification of 0.1-4.0 nM (RRS) and 0.1-12.0 nM (SERS) BPA was realized, and the detection limits were 0.08 nM and 0.03 nM, respectively. At the same time, we used molecular spectroscopy and electron microscopy to study the SAFe-HAuCl4-ethylene glycol indicator reaction, and proposed a reasonable SAFe catalytic reaction mechanism. Based on Apt-mediated SAFe catalysis gold nanoreaction amplification, a SERS/RRS di-mode analytical platform was established for targets such as BPA.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Haolin Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Jiao Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Yuxiang Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Xin Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
| |
Collapse
|
159
|
Sun X, Li S, Cao J, Wang Y, Yang W, Zhang L, Liu Y, Qiu J, Tao S. A Hierarchical-Structured Impeller with Engineered Pd Nanoparticles Catalyzing Suzuki Coupling Reactions for High-Purity Biphenyl. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17429-17438. [PMID: 33827215 DOI: 10.1021/acsami.0c22284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suzuki cross-coupling reactions catalyzed by palladium are authoritative protocols in fine-chemical synthesis. Mass transfer and catalyst activity are both significant factors affecting the reaction efficiency in heterogeneous reactions. Although the holistic catalysts hold great promise in heterogeneous reactions due to the enhanced mass transport and convenient recycling, the unsatisfied catalytic activity has impeded further large-scale applications. In addition, another pronounced barrier is the product separation in the intricate system. Here, the catalytic production and separation of biphenyl (purity of 99.7%) were achieved by integrating the Suzuki cross-coupling reactions and the crystallization separation for the first time. A hierarchical-structured impeller with Pd nanoparticles (NPs) loaded on the Ni(OH)2 nanosheets was prepared to catalyze the Suzuki reactions for bromobenzene, which exhibits a high turnover frequency (TOF) value of 25,976 h-1 and a yield of 99.5%. The X-ray absorption fine structure (XAFS) analysis has unveiled that the electron transfer between the Pd NPs and Ni(OH)2 accounts for the greatly enhanced catalytic activity. The findings inspire new insights toward rational engineering of highly efficient holistic catalysts for Suzuki reaction, and the innovative integrated technology offers an avenue for the separation and collection of products.
Collapse
Affiliation(s)
- Xueyan Sun
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shaofeng Li
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinzhe Cao
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuchao Wang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenbo Yang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lijing Zhang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shengyang Tao
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
160
|
Sahoo L, Dhindsa PK, P NC, Gautam UK. 'Pre-optimization' of the solvent of nanoparticle synthesis for superior catalytic efficiency: a case study with Pd nanocrystals. NANOSCALE ADVANCES 2021; 3:2366-2376. [PMID: 36133759 PMCID: PMC9417607 DOI: 10.1039/d0na01006e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 06/16/2023]
Abstract
In view of a limited rationale available for designing metal nanocrystals (NCs) to achieve high catalytic activities across various chemical transformations, we offer a new perspective on the optimization of the 'solvent-of-nanocrystal-synthesis' that, to an extent, would help bypass the tedious characterization needs. A systematic improvement in a catalyst is hindered because (i) it relies on size & shape control protocols, surface characterization, understanding molecular transformation mechanisms, and the energetics of the reactant-catalyst interactions, requiring the involvement of different domains experts, and (ii) the insights developed using model reactions may not easily extend to other reactions, although the current studies count on such a hypothesis. In support of (ii), by taking Pd NCs as catalysts and two distinct reaction types, viz. Suzuki coupling and nitroarene reduction, we show to what great extent the reaction rates may vary even for the seemingly similar reactions by using the same NCs. More importantly, for challenge (i), we demonstrate how the addition of a single-step to the current protocol of 'catalyst-synthesis and activity test' can potentially lead to the development of highly active catalysts by first finding a suitable solvent for the NC synthesis, while such solvent-effects are barely considered unlike the same in organic transformation reactions as a matter of routine, for example.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali Sector 81 SAS Nagar Mohali Punjab 140306 India
| | - Parmeet Kaur Dhindsa
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali Sector 81 SAS Nagar Mohali Punjab 140306 India
| | - Nihal C P
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali Sector 81 SAS Nagar Mohali Punjab 140306 India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali Sector 81 SAS Nagar Mohali Punjab 140306 India
| |
Collapse
|
161
|
Lagoda NA, Larina EV, Vidyaeva EV, Kurokhtina AA, Schmidt AF. Activation of Aryl Chlorides in the Suzuki-Miyaura Reaction by “Ligand-Free” Pd Species through a Homogeneous Catalytic Mechanism: Distinguishing between Homogeneous and Heterogeneous Catalytic Mechanisms. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nadezhda A. Lagoda
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Elizaveta V. Larina
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Elena V. Vidyaeva
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Anna A. Kurokhtina
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Alexander F. Schmidt
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| |
Collapse
|
162
|
Vijeta A, Casadevall C, Roy S, Reisner E. Visible-Light Promoted C-O Bond Formation with an Integrated Carbon Nitride-Nickel Heterogeneous Photocatalyst. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:8575-8580. [PMID: 38505321 PMCID: PMC10947600 DOI: 10.1002/ange.202016511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/11/2022]
Abstract
Ni-deposited mesoporous graphitic carbon nitride (Ni-mpg-CNx) is introduced as an inexpensive, robust, easily synthesizable and recyclable material that functions as an integrated dual photocatalytic system. This material overcomes the need of expensive photosensitizers, organic ligands and additives as well as limitations of catalyst deactivation in the existing photo/Ni dual catalytic cross-coupling reactions. The dual catalytic Ni-mpg-CNx is demonstrated for C-O coupling between aryl halides and aliphatic alcohols under mild condition. The reaction affords the ether product in good-to-excellent yields (60-92 %) with broad substrate scope, including heteroaryl and aryl halides bearing electron-withdrawing, -donating and neutral groups. The heterogeneous Ni-mpg-CNx can be easily recovered from the reaction mixture and reused over multiple cycles without loss of activity. The findings highlight exciting opportunities for dual catalysis promoted by a fully heterogeneous system.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Carla Casadevall
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Souvik Roy
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Current address: School of ChemistryUniversity of LincolnJoseph Banks LaboratoriesLincolnLN6 7DLUK
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
163
|
Vijeta A, Casadevall C, Roy S, Reisner E. Visible-Light Promoted C-O Bond Formation with an Integrated Carbon Nitride-Nickel Heterogeneous Photocatalyst. Angew Chem Int Ed Engl 2021; 60:8494-8499. [PMID: 33559927 PMCID: PMC8048670 DOI: 10.1002/anie.202016511] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/10/2022]
Abstract
Ni-deposited mesoporous graphitic carbon nitride (Ni-mpg-CNx ) is introduced as an inexpensive, robust, easily synthesizable and recyclable material that functions as an integrated dual photocatalytic system. This material overcomes the need of expensive photosensitizers, organic ligands and additives as well as limitations of catalyst deactivation in the existing photo/Ni dual catalytic cross-coupling reactions. The dual catalytic Ni-mpg-CNx is demonstrated for C-O coupling between aryl halides and aliphatic alcohols under mild condition. The reaction affords the ether product in good-to-excellent yields (60-92 %) with broad substrate scope, including heteroaryl and aryl halides bearing electron-withdrawing, -donating and neutral groups. The heterogeneous Ni-mpg-CNx can be easily recovered from the reaction mixture and reused over multiple cycles without loss of activity. The findings highlight exciting opportunities for dual catalysis promoted by a fully heterogeneous system.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Carla Casadevall
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Souvik Roy
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Current address: School of ChemistryUniversity of LincolnJoseph Banks LaboratoriesLincolnLN6 7DLUK
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
164
|
Colombari FM, da Silva MAR, Homsi MS, de Souza BRL, Araujo M, Francisco JL, da Silva GTST, Silva IF, de Moura AF, Teixeira IF. Graphitic carbon nitrides as platforms for single-atom photocatalysis. Faraday Discuss 2021; 227:306-320. [PMID: 33305778 DOI: 10.1039/c9fd00112c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we demonstrate that adding single atoms of selected transition metals to graphitic carbon nitrides allows the tailoring of the electronic and chemical properties of these 2D nanomaterials, directly impacting their usage in photocatalysis. These single-atom photocatalysts were successfully prepared with Ni2+, Pt2+ or Ru3+ by cation exchange, using poly(heptazine imides) (PHI) as the 2D layered platform. Differences in photocatalytic performance for these metals were assessed using rhodamine-B (RhB) and methyl orange (MO) as model compounds for degradation. We have demonstrated that single atoms may either improve or impair the degradation of RhB and MO, depending on the proper matching of the net charge of these molecules and the surface potential of the catalyst, which in turn is responsive to the metal incorporated into the PHI nanostructures. Computer simulations demonstrated that even one transition metal cation caused dramatic changes in the electronic structure of PHI, especially regarding light absorption, which was extended all along the visible up to the near IR region. Besides introducing new quantum states, the metal atoms strongly polarized the molecular orbitals across the PHI and electrostatic fields arising from the electronic transitions became at least tenfold stronger. This simple proof of concept demonstrates that these new materials hold promise as tools for many important photocatalytic reactions that are strongly dependent on our ability to control surface charge and its polarization under illumination, such as H2 evolution, CO2 reduction and photooxidation in general.
Collapse
Affiliation(s)
- Felippe M Colombari
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, 13083-970, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Singh B, Sharma V, Gaikwad RP, Fornasiero P, Zbořil R, Gawande MB. Single-Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006473. [PMID: 33624397 DOI: 10.1002/smll.202006473] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A heterogeneous catalyst is a backbone of modern sustainable green industries; and understanding the relationship between its structure and properties is the key for its advancement. Recently, many upscaling synthesis strategies for the development of a variety of respectable control atomically precise heterogeneous catalysts are reported and explored for various important applications in catalysis for energy and environmental remediation. Precise atomic-scale control of catalysts has allowed to significantly increase activity, selectivity, and in some cases stability. This approach has proved to be relevant in various energy and environmental related technologies such as fuel cell, chemical reactors for organic synthesis, and environmental remediation. Therefore, this review aims to critically analyze the recent progress on single-atom catalysts (SACs) application in oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and chemical and/or electrochemical organic transformations. Finally, opportunities that may open up in the future are summarized, along with suggesting new applications for possible exploitation of SACs.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro, 3810-193, Portugal
| | - Vikas Sharma
- Centre for Converging Technologies, University of Rajasthan, Jaipur, 302004, India
| | - Rahul P Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Trieste, I-34127, Italy
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| |
Collapse
|
166
|
Deraet X, Turek J, Alonso M, Tielens F, Cottenier S, Ayers PW, Weckhuysen BM, De Proft F. Reactivity of Single Transition Metal Atoms on a Hydroxylated Amorphous Silica Surface: A Periodic Conceptual DFT Investigation. Chemistry 2021; 27:6050-6063. [PMID: 33368741 DOI: 10.1002/chem.202004660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Indexed: 11/08/2022]
Abstract
The drive to develop maximal atom-efficient catalysts coupled to the continuous striving for more sustainable reactions has led to an ever-increasing interest in single-atom catalysis. Based on a periodic conceptual density functional theory (cDFT) approach, fundamental insights into the reactivity and adsorption of single late transition metal atoms supported on a fully hydroxylated amorphous silica surface have been acquired. In particular, this investigation revealed that the influence of van der Waals dispersion forces is especially significant for a silver (98 %) or gold (78 %) atom, whereas the oxophilicity of the Group 8-10 transition metals plays a major role in the interaction strength of these atoms on the irreducible SiO2 support. The adsorption energies for the less-electronegative row 4 elements (Fe, Co, Ni) ranged from -1.40 to -1.92 eV, whereas for the heavier row 5 and 6 metals, with the exception of Pd, these values are between -2.20 and -2.92 eV. The deviating behavior of Pd can be attributed to a fully filled d-shell and, hence, the absence of the hybridization effects. Through a systematic analysis of cDFT descriptors determined by using three different theoretical schemes, the Fermi weighted density of states approach was identified as the most suitable for describing the reactivity of the studied systems. The main advantage of this scheme is the fact that it is not influenced by fictitious Coulomb interactions between successive, charged reciprocal cells. Moreover, the contribution of the energy levels to the reactivity is simultaneously scaled based on their position relative to the Fermi level. Finally, the obtained Fermi weighted density of states reactivity trends show a good agreement with the chemical characteristics of the investigated metal atoms as well as the experimental data.
Collapse
Affiliation(s)
- Xavier Deraet
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Jan Turek
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Mercedes Alonso
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Frederik Tielens
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| | - Stefaan Cottenier
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium.,Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Frank De Proft
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussels, Belgium
| |
Collapse
|
167
|
Luo Z, Xiang D, Pei X, Wang L, Zhao Z, Sun W, Ran M, Dai T. Enhanced Performance of Palladium Catalyst Confined Within Carbon Nanotubes for Heck Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03577-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
168
|
Sahoo L, Mondal S, Beena NC, Gloskovskii A, Manju U, Topwal D, Gautam UK. 3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10120-10130. [PMID: 33617231 DOI: 10.1021/acsami.1c00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The efficient recovery of noble metal nanocrystals used in heterogeneous organic transformations has remained a significant challenge, hindering their use in industry. Herein, highly catalytic Pd nanoparticles (NPs) were first prepared having a yield of >98% by a novel hydrothermal method using PVP as the reducing cum stabilizing agent that exhibited excellent turnover frequencies of ∼38,000 h-1 for Suzuki-Miyaura cross-coupling and ∼1200 h-1 for catalytic reduction of nitroarene compounds in a benign aqueous reaction medium. The Pd NPs were more efficient for cross-coupling of aryl compounds with electron-donating substituents than with electron-donating ones. Further, to improve their recyclability, a strategy was developed to embed these Pd NPs on mechanically robust polyurethane foam (PUF) for the first time and a "dip-catalyst" (Pd-PUF) containing 3D interconnected 100-500 μm pores was constructed. The PUF was chosen as the support with an expectation to reduce the fabrication cost of the "dip-catalyst" as the production of PUF is already commercialized. Pd-PUF could be easily separated from the reaction aliquot and reused without any loss of activity because the leaching of Pd NPs was found to be negligible in the various reaction mixtures. We show that the Pd-PUF could be reused for over 50 catalytic cycles maintaining a similar activity. We further demonstrate a scale-up reaction with a single-reaction 1.5 g yield for the Suzuki-Miyaura cross-coupling reaction.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Nayana Christudas Beena
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - A Gloskovskii
- DESY Photon Science, Deutsches Elektronen-Synchrotron, 22603 Hamburg, Germany
| | - Unnikrishnan Manju
- CSIR -Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - D Topwal
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| |
Collapse
|
169
|
Niknam E, Panahi F, Khalafi-Nezhad A. Immobilized Pd on a NHC-functionalized metal-organic FrameworkMIL-101(Cr): An efficient heterogeneous catalyst in the heck and copper-free Sonogashira coupling reactions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
170
|
Affiliation(s)
- Hideo Hosono
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Masaaki Kitano
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
171
|
Patel A, Patel A. Synthesis and characterization of supported stabilized palladium nanoparticles for selective hydrogenation in water at low temperature. RSC Adv 2021; 11:8218-8227. [PMID: 35423350 PMCID: PMC8695083 DOI: 10.1039/d1ra00239b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Zirconia supported vacant phosphotungstate stabilized Pd nanoparticles (Pd-PW11/ZrO2) were prepared using a simple impregnation and post reduction method, characterized and their efficiency for selective C[double bond, length as m-dash]C hydrogenation of unsaturated compounds explored. The establishment of a hydrogenation strategy at low temperature using water as solvent under mild conditions makes the present system environmentally benign and green. The catalyst shows outstanding activity (96% conversion) with just a small amount of Pd(0) (0.0034 mol%) with high substrate/catalyst ratio (29 177/1), TON (28 010) and TOF (14 005 h-1) for cyclohexene (as a model substrate) hydrogenation. The catalyst was recovered by simple centrifugation and reused for up to five catalytic cycles without alteration in its activity. The present catalyst was found to be viable towards different substrates with excellent activity and TON (18 000 to 28 800). A study on the effect of addenda atom shows that the efficiency of the catalyst can be enhanced greatly by increasing the number of counter protons. This challenging strategy would greatly benefit sustainable development in chemistry as it diminishes the use of organic solvents and offers economic and environmental benefits as water is cheap and non-toxic.
Collapse
Affiliation(s)
- Anish Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara-390002 Gujarat India
| | - Anjali Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara-390002 Gujarat India
| |
Collapse
|
172
|
Li S, Cao R, Xu M, Deng Y, Lin L, Yao S, Liang X, Peng M, Gao Z, Ge Y, Liu JX, Li WX, Zhou W, Ma D. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. Natl Sci Rev 2021; 9:nwab026. [PMID: 35111329 PMCID: PMC8794590 DOI: 10.1093/nsr/nwab026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Synthesis of atomically dispersed catalysts with high metal loading and thermal stability is challenging but particularly valuable for industrial application in heterogeneous catalysis. Here, we report a facile synthesis of a thermally stable atomically dispersed Ir/α-MoC catalyst with metal loading as high as 4 wt%, an unusually high value for carbide supported metal catalysts. The strong interaction between Ir and the α-MoC substrate enables high dispersion of Ir on the α-MoC surface, and modulates the electronic structure of the supported Ir species. Using quinoline hydrogenation as a model reaction, we demonstrate that this atomically dispersed Ir/α-MoC catalyst exhibits remarkable reactivity, selectivity and stability, for which the presence of high-density isolated Ir atoms is the key to achieving high metal-normalized activity and mass-specific activity. We also show that the water-promoted quinoline hydrogenation mechanism is preferred over the Ir/α-MoC, and contributes to high selectivity towards 1,2,3,4-tetrahydroquinoline. The present work demonstrates a new strategy in constructing a high-loading atomically dispersed catalyst for the hydrogenation reaction.
Collapse
Affiliation(s)
- Siwei Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Ruochen Cao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Mingquan Xu
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Lili Lin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Siyu Yao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Xuan Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Yuzhen Ge
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Jin-Xun Liu
- School of Chemistry and Materials Science, CAS Excellence Center for Nanoscience, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Xue Li
- School of Chemistry and Materials Science, CAS Excellence Center for Nanoscience, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| |
Collapse
|
173
|
Appa RM, Raghavendra P, Lakshmidevi J, Naidu BR, Sarma LS, Venkateswarlu K. Structure controlled Au@Pd NPs/rGO as robust heterogeneous catalyst for Suzuki coupling in biowaste‐derived water extract of pomegranate ash. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rama Moorthy Appa
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Padmasale Raghavendra
- Nanoelectrochemistry Laboratory, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Jangam Lakshmidevi
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Bandameeda Ramesh Naidu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Loka Subramanyam Sarma
- Nanoelectrochemistry Laboratory, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Katta Venkateswarlu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| |
Collapse
|
174
|
Mitchell S, Qin R, Zheng N, Pérez-Ramírez J. Nanoscale engineering of catalytic materials for sustainable technologies. NATURE NANOTECHNOLOGY 2021; 16:129-139. [PMID: 33230317 DOI: 10.1038/s41565-020-00799-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Nanostructured materials of diverse architecture are ubiquitous in industrial catalysis. They offer exciting prospects to tackle various sustainability challenges faced by society. Since the introduction of the concept a century ago, researchers aspire to control the chemical identity, local environment and electronic properties of active sites on catalytic surfaces to optimize their reactivity in given applications. Nowadays, numerous strategies exist to tailor these characteristics with varying levels of atomic precision. Making headway relies upon the existence of analytical approaches able to resolve relevant structural features and remains challenging due to the inherent complexity even of the simplest heterogeneous catalysts, and to dynamic effects often occurring under reaction conditions. Computational methods play a complementary and ever-increasing role in pushing forward the design. Here, we examine how nanoscale engineering can enhance the selectivity and stability of catalysts. We highlight breakthroughs towards their commercialization and identify directions to guide future research and innovation.
Collapse
Affiliation(s)
- Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
175
|
Xiong Y, Wang S, Chen W, Zhang J, Li Q, Hu HS, Zheng L, Yan W, Gu L, Wang D, Li Y. Construction of Dual-Active-Site Copper Catalyst Containing both CuN 3 and CuN 4 Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006834. [PMID: 33522142 DOI: 10.1002/smll.202006834] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Clear recognition and rational construction of suitable active center for specific reaction is always of great significance in designing highly efficient catalysts. Herein, a dual-active-site copper catalyst (DAS-Cu) containing both CuN3 and CuN4 sites is reported. Such catalysts show extremely high catalytic performance (yield: up to 97%) toward oxyphosphorylation of alkenes, while catalysts with single active site (CuN3 or CuN4 ) are chemically inert in this reaction. Combined with theoretical and experimental results, the different roles of two different Cu active sites in this reaction are further identified. CuN3 site captures the oxygen and trigger further oxidizing process, while CuN4 site provides moderate adsorption sites for the protection of phosphonyl radicals. This work deeply discloses the significant cooperated role with two single-atomic sites in one catalytic active center and brings up a valuable clue for the rational design of better-performing heterogeneous catalyst.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shibin Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenxing Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiheng Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Han-Shi Hu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
176
|
Magnetic PdOx/NiFe2O4 hybrid nanofibers with high catalysis and reusability for Suzuki coupling reactions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
177
|
Yu QY, Su H, Zhai GY, Zhang SN, Sun LH, Chen JS, Li XH. Designed electron-deficient gold nanoparticles for a room-temperature C sp3-C sp3 coupling reaction. Chem Commun (Camb) 2021; 57:741-744. [PMID: 33346273 DOI: 10.1039/d0cc06764d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stille cross-coupling reactions catalysed by an ideal catalyst combining the high activity of homogeneous catalysts and the reusability of heterogeneous catalysts are of great interest for C-C bond formation, which is a widely used reaction in fine chemistry. Despite great effort to increase the utilization ratio of surface metal atoms, the activity of heterogeneous catalysts under mild conditions remains unsatisfactory. Herein, we design a proof-of-concept strategy to trigger the room-temperature activity of heterogeneous Au catalysts by decreasing the electron density at the interface of a rationally designed Schottky heterojunction of Au metals and boron-doped carbons. The electron-deficient Au nanoparticles formed as a result of the rectifying contact with boron-doped carbons facilitate the autocleavage of C-Br bonds for highly efficient C-C coupling reactions of alkylbromides and allylstannanes with a TOF value of 5199 h-1 at room temperature, surpassing that of the state-of-the-art homogeneous catalyst.
Collapse
Affiliation(s)
- Qiu-Ying Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Hui Su
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Guang-Yao Zhai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Lu-Han Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
178
|
Zhao Y, Zhou H, Zhu X, Qu Y, Xiong C, Xue Z, Zhang Q, Liu X, Zhou F, Mou X, Wang W, Chen M, Xiong Y, Lin X, Lin Y, Chen W, Wang HJ, Jiang Z, Zheng L, Yao T, Dong J, Wei S, Huang W, Gu L, Luo J, Li Y, Wu Y. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat Catal 2021. [DOI: 10.1038/s41929-020-00563-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
179
|
Sonei S, Taghavi F, Khojastehnezhad A, Gholizadeh M. Copper‐Functionalized Silica‐Coated Magnetic Nanoparticles for an Efficient Suzuki Cross‐Coupling Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202004148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samin Sonei
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Faezeh Taghavi
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Mostafa Gholizadeh
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
180
|
Magnetic covalently immobilized nickel complex: A new and efficient method for the Suzuki cross‐coupling reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
181
|
|
182
|
Rayadurgam J, Sana S, Sasikumar M, Gu Q. Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Org Chem Front 2021. [DOI: 10.1039/d0qo01146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Some of the most prominent and promising catalysts in organic synthesis for the requisite construction of C–C and C–N bonds are palladium (Pd) catalysts, which play a pivotal role in pharmaceutical and medicinal chemistry.
Collapse
Affiliation(s)
- Jayachandra Rayadurgam
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| | - Sravani Sana
- Alder Research Chemicals Private Limited
- CSIR-IICT
- Hyderabad
- India
| | - M. Sasikumar
- Department of Chemistry
- Indian Institute of Science Education and Research
- Tirupati
- India
| | - Qiong Gu
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| |
Collapse
|
183
|
Bai Y, Zheng Y, Wang Z, Hong Q, Liu S, Shen Y, Zhang Y. Metal-doped carbon nitrides: synthesis, structure and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02148f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective provides a comprehensive overview of the latest progress of M–CN, which would promote further development, such as for single-atom catalysis and nanozymatic reactions.
Collapse
Affiliation(s)
- Yuhan Bai
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Zhuang Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| |
Collapse
|
184
|
Kadu BS. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02059a] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suzuki–Miyaura cross coupling reaction (SMCR) – A milestone in the synthesis of C–C coupled compounds.
Collapse
|
185
|
Sivo A, Galaverna RDS, Gomes GR, Pastre JC, Vilé G. From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00411a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We review the emerging use of flow technologies for circular chemistry and material manufacturing, highlighting advances, challenges, and future directions.
Collapse
Affiliation(s)
- Alessandra Sivo
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| | | | | | | | - Gianvito Vilé
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| |
Collapse
|
186
|
Feng S, Lin X, Song X, Mei B, Mu J, Li J, Liu Y, Jiang Z, Ding Y. Constructing Efficient Single Rh Sites on Activated Carbon via Surface Carbonyl Groups for Methanol Carbonylation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Siquan Feng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiangsong Lin
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingwei Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Liu
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
187
|
Li Z, Dong X, Zhang M, Leng L, Chen W, Horton JH, Wang J, Li Z, Wu W. Selective Hydrogenation on a Highly Active Single-Atom Catalyst of Palladium Dispersed on Ceria Nanorods by Defect Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57569-57577. [PMID: 33296190 DOI: 10.1021/acsami.0c17009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-atom catalysis represents a new frontier that integrates the merits of homogeneous and heterogeneous catalysis to afford exceptional atom efficiency, activity, and selectivity for a range of catalytic systems. Herein we describe a simple defect engineering strategy to construct an atomically dispersed palladium catalyst (Pdδ+, 0 < δ < 2) by anchoring the palladium atoms on oxygen vacancies created in CeO2 nanorods. This was confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurement. The as-prepared catalyst showed exceptional catalytic performance in the hydrogenation of styrene (99% conversion, TOF of 2410 h-1), cinnamaldehyde (99% conversion, 99% selectivity, TOF of 968 h-1), as well as oxidation of triethoxysilane (99% conversion, 79 selectivity, TOF of 10 000 h-1). This single-atom palladium catalyst can be reused at least five times with negligible activity decay. The palladium atoms retained their dispersion on the support at the atomic level after thermal stability testing in Ar at 773 K. Most importantly, this synthetic method can be scaled up while maintaining catalytic performance. We anticipate that this method will expedite access to single-atom catalysts with high activity and excellent resistance to sintering, significantly impacting the performance of this class of catalysts.
Collapse
Affiliation(s)
- Zhijun Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Xiuli Dong
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Mingyang Zhang
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Leipeng Leng
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - J Hugh Horton
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
| | - Jun Wang
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China
| | - Wei Wu
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China
| |
Collapse
|
188
|
Affiliation(s)
- Honghui Ou
- Department of Chemistry Tsinghua University Beijing China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
189
|
Zhao X, Deng C, Meng D, Ji H, Chen C, Song W, Zhao J. Nickel-Coordinated Carbon Nitride as a Metallaphotoredox Platform for the Cross-Coupling of Aryl Halides with Alcohols. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04725] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|
190
|
Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts 2020. [DOI: 10.3390/catal10121407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-atom catalysts (SACs), consisting of metals atomically dispersed on a support, are considered as advanced materials bridging homogeneous and heterogeneous catalysis, representing the catalysis at the limit. The enhanced performance of these catalysts is due to the combination of distinct factors such as well-defined active sites, comprising metal single atoms in different coordination environments also varying its valence state and strongly interacting with the support, in this case porous carbons, maximizing then the metal efficiency in comparison with other metal surfaces consisting of metal clusters and/or metal nanoparticles. The purpose of this review is to summarize the most recent advances in terms of both synthetic strategies of producing porous carbon-derived SACs but also its application to green synthesis of highly valuable compounds, an area in which the homogeneous catalysts are classically used. Porous carbon-derived SACs emerge as a type of new and eco-friendly catalysts with great potential. Different types of carbon forms, such as multi-wall carbon nanotubes (MWCNTs), graphene and graphitic carbon nitride or even others porous carbons derived from Metal–Organic-Frameworks (MOFs) are recognized. Although it represents an area of expansion, experimentally and theoretically, much more future efforts are needed to explore them in green fine chemical synthesis.
Collapse
|
191
|
Yang ZN, Hou YN, Zhang B, Cheng HY, Yong YC, Liu WZ, Han JL, Liu SJ, Wang AJ. Insights into palladium nanoparticles produced by Shewanella oneidensis MR-1: Roles of NADH dehydrogenases and hydrogenases. ENVIRONMENTAL RESEARCH 2020; 191:110196. [PMID: 32919957 DOI: 10.1016/j.envres.2020.110196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Biologically synthesized palladium nanoparticles (bio-Pd) have attracted considerable interest as promising green catalysts for environmental remediation. However, the mechanisms by which microorganisms produce bio-Pd remain unclear. In the present study, we investigated the roles of Shewanella oneidensis MR-1 and its NADH dehydrogenases and hydrogenases (HydA and HyaB) in bio-Pd production using formate as the electron donor. The roles of NADH dehydrogenases and hydrogenases were studied by inhibiting NADH dehydrogenases and using hydrogenase mutants (ΔhydA, ΔhyaB, and ΔhydAΔhyaB), respectively. The results showed ~97% reduction of palladium by S. oneidensis MR-1 after 24 h using 250 μM palladium and 500 μM formate. Electron microscopy images showed the presence of bio-Pd on both the outer and cytoplasmic membranes of S. oneidensis MR-1. However, the inhibition of NADH dehydrogenases in S. oneidensis MR-1 resulted in only ~61% reduction of palladium after 24 h, and bio-Pd were not found on the outer membrane. The mutants lacking one or two hydrogenases removed 91-96% of palladium ions after 24 h and showed more cytoplasmic bio-Pd but less periplasmic bio-Pd. To the best of our knowledge, this is the first study to demonstrate the role of NADH dehydrogenases of S. oneidensis MR-1 in the formation of bio-Pd on the outer membrane. It also demonstrates that the hydrogenases (especially HyaB) of S. oneidensis MR-1 contribute to the formation of bio-Pd in the periplasmic space. This study provides mechanistic insights into the production of biogenic metal nanoparticles towards their possible use in industrial and environmental applications.
Collapse
Affiliation(s)
- Zhen-Ni Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Hou
- China Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuang-Jiang Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
192
|
Velpula VRK, Peesapati S, Enumula SS, Burri DR, Ketike T, Narani A. Biomass waste rice husk derived silica supported palladium nanoparticles: an efficient catalyst for Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03920-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
193
|
Huang Y, Liu J, Zhao C, Jia X, Ma M, Qian Y, Yang C, Liu K, Tan F, Wang Z, Li X, Qu S, Wang Z. Facile Synthesis of Defect-Modified Thin-Layered and Porous g-C 3N 4 with Synergetic Improvement for Photocatalytic H 2 Production. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52603-52614. [PMID: 33174414 DOI: 10.1021/acsami.0c14262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modulating and optimizing the diverse parameters of photocatalysts synergistically as well as exerting these advantages fully in photocatalytic reactions are crucial for the sufficient utilization of solar energy but still face various challenges. Herein, a novel and facile urea- and KOH-assisted thermal polymerization (UKATP) strategy is first developed for the preparation of defect-modified thin-layered and porous g-C3N4 (DTLP-CN), wherein the thickness of g-C3N4 was dramatically decreased, and cyano groups, nitrogen vacancies, and mesopores were simultaneously introduced into g-C3N4. Importantly, the roles of thickness, pores, and defects can be targetedly modulated and optimized by changing the mass ratio of urea, KOH, and melamine. This can remarkably increase the specific area, improve the light-harvesting capability, and enhance separation efficiency of photoexcited charge carriers, strengthening the mass transfer in g-C3N4. Consequently, the photocatalytic hydrogen evolution efficiency of the DTLP-CN (1.557 mmol h-1 g-1, λ > 420 nm) was significantly improved more than 48.5 times with the highest average apparent quantum yield (AQY) of 18.5% and reached as high as 0.82% at 500 nm. This work provides an effective strategy for synergistically regulating the properties of g-C3N4, and opens a new horizon to design g-C3N4-based catalysts for highly efficient solar-energy conversion.
Collapse
Affiliation(s)
- Yanbin Huang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Mathematical Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jun Liu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhao
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohao Jia
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Ma
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Qian
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Yang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong Liu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furui Tan
- Key Laboratory of Photovoltaic Materials, Department of Physics and Electronics, Henan University, Kaifeng 475004, Henan, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobao Li
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengchun Qu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanguo Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
194
|
Lu Y, Ye TN, Park SW, Li J, Sasase M, Abe H, Niwa Y, Kitano M, Hosono H. Intermetallic ZrPd3-Embedded Nanoporous ZrC as an Efficient and Stable Catalyst of the Suzuki Cross-Coupling Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yangfan Lu
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tian-Nan Ye
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Sang-Won Park
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- The International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jiang Li
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masato Sasase
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hitoshi Abe
- High Energy Accelerator Research Organization, KEK, 1-1, Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Graduate School of Science and Technology, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yasuhiro Niwa
- High Energy Accelerator Research Organization, KEK, 1-1, Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masaaki Kitano
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hideo Hosono
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- The International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
195
|
Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc Natl Acad Sci U S A 2020; 117:29462-29468. [PMID: 33172992 PMCID: PMC7703585 DOI: 10.1073/pnas.2015108117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present-day industrial ammonia synthesis is overreliance on the Haber–Bosch process, yet consumes more than 1% of the global energy supply along with gigatonne greenhouse-gas emission per year. Electrochemical nitrogen reduction reaction (ENRR) offers a sustainable path to produce ammonia under mild conditions, while its efficiency achieved by far is fairly low, which requires the development of both catalysts and electrolyzers. Here, by the cooperation of densely populated metal single atoms on graphdiyne substrate with the pressurized electrocatalytic system, the kinetics and the thermodynamic driving force of ENRR are effectively regulated, leading to a record-high ammonia yield rate. This work motivates the technological and material coevolution for the ENRR toward its envisioned application. Using renewable electricity to synthesize ammonia from nitrogen paves a sustainable route to making value-added chemicals but yet requires further advances in electrocatalyst development and device integration. By engineering both electrocatalyst and electrolyzer to simultaneously regulate chemical kinetics and thermodynamic driving forces of the electrocatalytic nitrogen reduction reaction (ENRR), we report herein stereoconfinement-induced densely populated metal single atoms (Rh, Ru, Co) on graphdiyne (GDY) matrix (formulated as M SA/GDY) and realized a boosted ENRR activity in a pressurized reaction system. Remarkably, under the pressurized environment, the hydrogen evolution reaction of M SA/GDY was effectively suppressed and the desired ENRR activity was strongly amplificated. As a result, the pressurized ENRR activity of Rh SA/GDY at 55 atm exhibited a record-high NH3 formation rate of 74.15 μg h−1⋅cm−2, a Faraday efficiency of 20.36%, and a NH3 partial current of 0.35 mA cm−2 at −0.20 V versus reversible hydrogen electrode, which, respectively, displayed 7.3-, 4.9-, and 9.2-fold enhancements compared with those obtained under ambient conditions. Furthermore, a time-independent ammonia yield rate using purified 15N2 confirmed the concrete ammonia electroproduction. Theoretical calculations reveal that the driving force for the formation of end-on N2* on Rh SA/GDY increased by 9.62 kJ/mol under the pressurized conditions, facilitating the ENRR process. We envisage that the cooperative regulations of catalysts and electrochemical devices open up the possibilities for industrially viable electrochemical ammonia production.
Collapse
|
196
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
197
|
Wan W, Triana CA, Lan J, Li J, Allen CS, Zhao Y, Iannuzzi M, Patzke GR. Bifunctional Single Atom Electrocatalysts: Coordination-Performance Correlations and Reaction Pathways. ACS NANO 2020; 14:13279-13293. [PMID: 33048543 DOI: 10.1021/acsnano.0c05088] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single atom catalysts (SACs) are ideal model systems in catalysis research. Here we employ SACs to address the fundamental catalytic challenge of generating well-defined active metal centers to elucidate their interactions with coordinating atoms, which define their catalytic performance. We introduce a soft-landing molecular strategy for tailored SACs based on metal phthalocyanines (MPcs, M = Ni, Co, Fe) on graphene oxide (GO) layers to generate well-defined model targets for mechanistic studies. The formation of electronic channels through π-π conjugation with the graphene sheets enhances the MPc-GO performance in both oxygen evolution and reduction reactions (OER and ORR). Density functional theory (DFT) calculations unravel that the outstanding ORR activity of FePc-GO among the series is due to the high affinity of Fe atoms toward O2 species. Operando X-ray absorption spectroscopy and DFT studies demonstrate that the OER performance of the catalysts relates to thermodynamic or kinetic control at low- or high-potential ranges, respectively. We furthermore provide evidence that the participation of ligating N and C atoms around the metal centers provides a wider selection of active OER sites for both NiPc-GO and CoPc-GO. Our strategy promotes the understanding of coordination-activity relationships of high-performance SACs and their optimization for different processes through tailored combinations of metal centers and suitable ligand environments.
Collapse
Affiliation(s)
- Wenchao Wan
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jinggang Lan
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jingguo Li
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Department of Materials, University of Oxford, Oxford OX1 3HP, United Kingdom
| | - Yonggui Zhao
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marcella Iannuzzi
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
198
|
Suzuki–Miyaura Reactions of (4-bromophenyl)-4,6-dichloropyrimidine through Commercially Available Palladium Catalyst: Synthesis, Optimization and Their Structural Aspects Identification through Computational Studies. Processes (Basel) 2020. [DOI: 10.3390/pr8111342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
5-(4-bromophenyl)-4,6-dichloropyrimidine was arylated with several aryl/heteroaryl boronic acids via the Suzuki cross-coupling reaction by using Pd(0) catalyst to yield novel pyrimidine analogs (3a-h). It was optimized so that good yields were obtained when 5 mol % Pd(PPh3)4 was used along with K3PO4 and 1,4-Dioxane. Electron-rich boronic acids were succeeded to produce good yields of products. Density functional theory (DFT) calculations were also applied on these new compounds to analyze their reactivity descriptors and electronic and structural relationship. According to DFT studies, compound 3f is the most reactive one, while 3g is the most stable one. As per DFT studies, the hyperpolarizability (β) values of these compounds do not show them as very good non-linear optical (NLO) materials. Compound 3f has the highest β value among all the compounds under study but still it is not high enough to render it a potent NLO material.
Collapse
|
199
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
200
|
Jian M, Zhao C, Li WX. Ligand Stabilized Ni 1 Catalyst for Efficient CO Oxidation. Chemphyschem 2020; 21:2417-2425. [PMID: 33063907 DOI: 10.1002/cphc.202000730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Supported single transition metal (TM1 ) catalysts have attracted broad attention in academia recently. Still, their corresponding reactivity and stability under reaction conditions are critical but have not well explored at the fundamental level. Herein, we use density functional theory calculation and ab initio molecular dynamics simulation to investigate the role of reactants and ligands on the reactivity and stability of graphitic carbon nitride (g-C3 N4 ) supported Ni1 for CO oxidation. We find out that supported bare Ni1 atoms are only metastable on the surface and tend to diffuse into the interlayer of g-C3 N4 . Though Ni1 is catalytically active at moderate temperatures, CO adsorption induced dimerization deactivates the catalyst. Hydroxyl groups not only are able to stabilize the supported Ni1 atom, but also increase the reactivity by participating directly in the reaction. Our results provide valuable insights on improving the chemical stability of TM1 by ligands without sacrificing the reactivity, which are helpful for the rational design of highly loaded atomically dispersed supported metal catalysts.
Collapse
Affiliation(s)
- Minzhen Jian
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuanlin Zhao
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei-Xue Li
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|