151
|
Magri MS, Jiménez-Gancedo S, Bertrand S, Madgwick A, Escrivà H, Lemaire P, Gómez-Skarmeta JL. Assaying Chromatin Accessibility Using ATAC-Seq in Invertebrate Chordate Embryos. Front Cell Dev Biol 2020; 7:372. [PMID: 32039199 PMCID: PMC6992535 DOI: 10.3389/fcell.2019.00372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 01/30/2023] Open
Abstract
Cis-regulatory elements (CREs) are non-coding DNA regions involved in the spatio-temporal regulation of gene expression. Gene regulatory changes drive animal development and play major roles during evolution of animal body plans. Therefore, we believe that determining CREs at different developmental stages and across animal lineages is critical to understand how evolution operates through development. The Assay for Transposase-Accessible Chromatin followed by high-throughput sequencing (ATAC-seq) is a powerful technique for the study of CREs that takes advantage of Tn5 transposase activity. Starting from fewer than 105 cells, in a 1-day procedure, it is possible to detect, at a genome-wide level, CREs located in open chromatin regions with high resolution. Here, we describe a detailed step-by-step ATAC-seq protocol for invertebrate chordate marine embryos. We have successfully applied this technique to amphioxus and two species of tunicate embryos. We also show an easy workflow to analyze data generated with this technique. Moreover, we point out that this method and our bioinformatic pipeline are efficient to detect CREs associated with Wnt signaling pathway by simply using embryos treated with a drug that perturbs this pathway. This approach can be extended to other signaling pathways and also to embryo mutants for critical genes. Our results therefore demonstrate the power of ATAC-seq for the identification of CREs that play essential functions during animal development in a wide range of invertebrate or vertebrate animals.
Collapse
Affiliation(s)
- Marta Silvia Magri
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, UMR 7232, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Alicia Madgwick
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Hector Escrivà
- Sorbonne Université, CNRS, UMR 7232, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Patrick Lemaire
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
152
|
York JR, McCauley DW. The origin and evolution of vertebrate neural crest cells. Open Biol 2020; 10:190285. [PMID: 31992146 PMCID: PMC7014683 DOI: 10.1098/rsob.190285] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
The neural crest is a vertebrate-specific migratory stem cell population that generates a remarkably diverse set of cell types and structures. Because many of the morphological, physiological and behavioural novelties of vertebrates are derived from neural crest cells, it is thought that the origin of this cell population was an important milestone in early vertebrate history. An outstanding question in the field of vertebrate evolutionary-developmental biology (evo-devo) is how this cell type evolved in ancestral vertebrates. In this review, we briefly summarize neural crest developmental genetics in vertebrates, focusing in particular on the gene regulatory interactions instructing their early formation within and migration from the dorsal neural tube. We then discuss how studies searching for homologues of neural crest cells in invertebrate chordates led to the discovery of neural crest-like cells in tunicates and the potential implications this has for tracing the pre-vertebrate origins of the neural crest population. Finally, we synthesize this information to propose a model to explain the origin of neural crest cells. We suggest that at least some of the regulatory components of early stages of neural crest development long pre-date vertebrate origins, perhaps dating back to the last common bilaterian ancestor. These components, originally directing neuroectodermal patterning and cell migration, served as a gene regulatory 'scaffold' upon which neural crest-like cells with limited migration and potency evolved in the last common ancestor of tunicates and vertebrates. Finally, the acquisition of regulatory programmes controlling multipotency and long-range, directed migration led to the transition from neural crest-like cells in invertebrate chordates to multipotent migratory neural crest in the first vertebrates.
Collapse
Affiliation(s)
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
153
|
Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas. Sci Rep 2019; 9:19559. [PMID: 31863055 PMCID: PMC6925180 DOI: 10.1038/s41598-019-56085-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Pax6 is crucial for the development of the central nervous system, eye, olfactory system and pancreas, and is implicated in human disease. While a single Pax6 gene exists in human and chicken, Pax6 occurs as a gene family in other vertebrates, with two members in elephant shark, Xenopus tropicalis and Anolis lizard and three members in teleost fish such as stickleback and medaka. However, the complement of Pax6 genes in jawless vertebrates (cyclostomes), the sister group of jawed vertebrates (gnathostomes), is unknown. Using a combination of BAC sequencing and genome analysis, we discovered three Pax6 genes in lampreys. Unlike the paired-less Pax6 present in some gnathostomes, all three lamprey Pax6 have a highly conserved full-length paired domain. All three Pax6 genes are expressed in the eye and brain, with variable expression in other tissues. Notably, lamprey Pax6α transcripts are found in the pancreas, a vertebrate-specific organ, indicating the involvement of Pax6 in development of the pancreas in the vertebrate ancestor. Multi-species sequence comparisons revealed only a single conserved non-coding element, in the lamprey Pax6β locus, with similarity to the PAX6 neuroretina enhancer. Using a transgenic zebrafish enhancer assay we demonstrate functional conservation of this element over 500 million years of vertebrate evolution.
Collapse
|
154
|
Lütkenhaus R, Traeger S, Breuer J, Carreté L, Kuo A, Lipzen A, Pangilinan J, Dilworth D, Sandor L, Pöggeler S, Gabaldón T, Barry K, Grigoriev IV, Nowrousian M. Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics 2019; 213:1545-1563. [PMID: 31604798 PMCID: PMC6893386 DOI: 10.1534/genetics.119.302749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefanie Traeger
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, 37077 Göttingen, Germany
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Kerrie Barry
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
155
|
de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol 2019:S0022-2836(19)30659-X. [PMID: 31726061 DOI: 10.1016/j.jmb.2019.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Alex de Mendoza
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia.
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
156
|
Coppola U, Ristoratore F, Albalat R, D'Aniello S. The evolutionary landscape of the Rab family in chordates. Cell Mol Life Sci 2019; 76:4117-4130. [PMID: 31028425 PMCID: PMC11105323 DOI: 10.1007/s00018-019-03103-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy
- Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale 1, 80121, Naples, Italy.
| |
Collapse
|
157
|
de Mendoza A, Hatleberg WL, Pang K, Leininger S, Bogdanovic O, Pflueger J, Buckberry S, Technau U, Hejnol A, Adamska M, Degnan BM, Degnan SM, Lister R. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat Ecol Evol 2019; 3:1464-1473. [PMID: 31558833 PMCID: PMC6783312 DOI: 10.1038/s41559-019-0983-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022]
Abstract
Vertebrates have highly methylated genomes at CpG positions, whereas invertebrates have sparsely methylated genomes. This increase in methylation content is considered a major regulatory innovation of vertebrate genomes. However, here we report that a sponge, proposed as the potential sister group to the rest of animals, has a highly methylated genome. Despite major differences in genome size and architecture, we find similarities between the independent acquisitions of the hypermethylated state. Both lineages show genome-wide CpG depletion, conserved strong transcription factor methyl-sensitivity and developmental methylation dynamics at 5-hydroxymethylcytosine enriched regions. Together, our findings trace back patterns associated with DNA methylation in vertebrates to the early steps of animal evolution. Thus, the sponge methylome challenges previous hypotheses concerning the uniqueness of vertebrate genome hypermethylation and its implications for regulatory complexity.
Collapse
Affiliation(s)
- Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| | - William L Hatleberg
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sven Leininger
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Sam Buckberry
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Australian Research Council Centre for Excellence for Coral Reef Studies, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.
| |
Collapse
|
158
|
Zhang QL, Wang H, Zhu QH, Wang XX, Li YM, Chen JY, Morikawa H, Yang LF, Wang YJ. Genome-Wide Identification and Transcriptomic Analysis of MicroRNAs Across Various Amphioxus Organs Using Deep Sequencing. Front Genet 2019; 10:877. [PMID: 31616471 PMCID: PMC6775235 DOI: 10.3389/fgene.2019.00877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/21/2019] [Indexed: 01/28/2023] Open
Abstract
Amphioxus is the closest living invertebrate proxy of the vertebrate ancestor. Systematic gene identification and expression profile analysis of amphioxus organs are thus important for clarifying the molecular mechanisms of organ function formation and further understanding the evolutionary origin of organs and genes in vertebrates. The precise regulation of microRNAs (miRNAs) is crucial for the functional specification and differentiation of organs. In particular, those miRNAs that are expressed specifically in organs (OSMs) play key roles in organ identity, differentiation, and function. In this study, the genome-wide miRNA transcriptome was analyzed in eight organs of adult amphioxus Branchiostoma belcheri using deep sequencing. A total of 167 known miRNAs and 23 novel miRNAs (named novel_mir), including 139 conserved miRNAs, were discovered, and 79 of these were identified as OSMs. Additionally, analyses of the expression patterns of eight randomly selected known miRNAs demonstrated the accuracy of the miRNA deep sequencing that was used in this study. Furthermore, potentially OSM-regulated genes were predicted for each organ type. Functional enrichment of these predicted targets, as well as further functional analyses of known OSMs, was conducted. We found that the OSMs were potentially to be involved in organ-specific functions, such as epidermis development, gonad development, muscle cell development, proteolysis, lipid metabolism, and generation of neurons. Moreover, OSMs with non-organ-specific functions were detected and primarily include those related to innate immunity and response to stimuli. These findings provide insights into the regulatory roles of OSMs in various amphioxus organs.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | | | - Xiao-Xue Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Yi-Min Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| | - Jun-Yuan Chen
- Evo-devo Institute, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hideaki Morikawa
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | | | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
159
|
Sachkova M, Burkhardt P. Exciting times to study the identity and evolution of cell types. Development 2019; 146:146/18/dev178996. [DOI: 10.1242/dev.178996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The EMBO/EMBL Symposium on ‘The Identity and Evolution of Cell Types’ took place in Heidelberg, Germany, on 15-19 May 2019. The symposium, which brought together a diverse group of speakers addressing a wide range of questions in multiple model systems, provided a platform to discuss how the concept of a cell type should be considered in the era of single cell omics techniques and how cell type evolution can be studied.
Collapse
Affiliation(s)
- Maria Sachkova
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| |
Collapse
|
160
|
Cheung M, Tai A, Lu PJ, Cheah KS. Acquisition of multipotent and migratory neural crest cells in vertebrate evolution. Curr Opin Genet Dev 2019; 57:84-90. [PMID: 31470291 DOI: 10.1016/j.gde.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022]
Abstract
The emergence of multipotent and migratory neural crest (NC) cells defines a key evolutionary transition from invertebrates to vertebrates. Studies in vertebrates have identified a complex gene regulatory network that governs sequential stages of NC ontogeny. Comparative analysis has revealed extensive conservation of the overall architecture of the NC gene regulatory network between jawless and jawed vertebrates. Among invertebrates, urochordates express putative NC gene homologs in the neural plate border region, but these NC-like cells do not have migratory capacity, whereas cephalochordates contain no NC cells but its genome contains most homologs of vertebrate NC genes. Whether the absence of migratory NC cells in invertebrates is due to differences in enhancer elements or an intrinsic limitation in potency remains unclear. We provide a brief overview of mechanisms that might explain how ancestral NC-like cells acquired the multipotency and migratory capacity seen in vertebrates.
Collapse
Affiliation(s)
- Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Peter Jianning Lu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn Se Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
161
|
Herrera-Úbeda C, Marín-Barba M, Navas-Pérez E, Gravemeyer J, Albuixech-Crespo B, Wheeler GN, Garcia-Fernàndez J. Microsyntenic Clusters Reveal Conservation of lncRNAs in Chordates Despite Absence of Sequence Conservation. BIOLOGY 2019; 8:E61. [PMID: 31450588 PMCID: PMC6784235 DOI: 10.3390/biology8030061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/10/2023]
Abstract
Homologous long non-coding RNAs (lncRNAs) are elusive to identify by sequence similarity due to their fast-evolutionary rate. Here we develop LincOFinder, a pipeline that finds conserved intergenic lncRNAs (lincRNAs) between distant related species by means of microsynteny analyses. Using this tool, we have identified 16 bona fide homologous lincRNAs between the amphioxus and human genomes. We characterized and compared in amphioxus and Xenopus the expression domain of one of them, Hotairm1, located in the anterior part of the Hox cluster. In addition, we analyzed the function of this lincRNA in Xenopus, showing that its disruption produces a severe headless phenotype, most probably by interfering with the regulation of the Hox cluster. Our results strongly suggest that this lincRNA has probably been regulating the Hox cluster since the early origin of chordates. Our work pioneers the use of syntenic searches to identify non-coding genes over long evolutionary distances and helps to further understand lncRNA evolution.
Collapse
Affiliation(s)
- Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Marta Marín-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Enrique Navas-Pérez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jan Gravemeyer
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - Beatriz Albuixech-Crespo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
162
|
Santos-Pereira JM, Gallardo-Fuentes L, Neto A, Acemel RD, Tena JJ. Pioneer and repressive functions of p63 during zebrafish embryonic ectoderm specification. Nat Commun 2019; 10:3049. [PMID: 31296872 PMCID: PMC6624255 DOI: 10.1038/s41467-019-11121-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factor p63 is a master regulator of ectoderm development. Although previous studies show that p63 triggers epidermal differentiation in vitro, the roles of p63 in developing embryos remain poorly understood. Here, we use zebrafish embryos to analyze in vivo how p63 regulates gene expression during development. We generate tp63-knock-out mutants that recapitulate human phenotypes and show down-regulated epidermal gene expression. Following p63-binding dynamics, we find two distinct functions clearly separated in space and time. During early development, p63 binds enhancers associated to neural genes, limiting Sox3 binding and reducing neural gene expression. Indeed, we show that p63 and Sox3 are co-expressed in the neural plate border. On the other hand, p63 acts as a pioneer factor by binding non-accessible chromatin at epidermal enhancers, promoting their opening and epidermal gene expression in later developmental stages. Therefore, our results suggest that p63 regulates cell fate decisions during vertebrate ectoderm specification.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
163
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
164
|
Aldea D, Subirana L, Keime C, Meister L, Maeso I, Marcellini S, Gomez-Skarmeta JL, Bertrand S, Escriva H. Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol 2019; 3:1233-1240. [PMID: 31263232 DOI: 10.1038/s41559-019-0933-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new 'head'.
Collapse
Affiliation(s)
- Daniel Aldea
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258, CNRS, UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
165
|
Chen J, Kuhn LA. Deciphering the three-domain architecture in schlafens and the structures and roles of human schlafen12 and serpinB12 in transcriptional regulation. J Mol Graph Model 2019; 90:59-76. [PMID: 31026779 PMCID: PMC6657700 DOI: 10.1016/j.jmgm.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
Schlafen proteins are important in cell differentiation and defense against viruses, and yet this family of vertebrate proteins is just beginning to be understood at the molecular level. Here, the three-dimensional architecture and molecular interfaces of human schlafen12 (hSLFN12), which promotes intestinal stem cell differentiation, are analyzed by sequence conservation and structural modeling in light of the functions of its homologs and binding partners. Our analysis shows that the schlafen or divergent AAA ATPase domain described in the N-terminal region of schlafens in databases and the literature is a misannotation. This N-terminal region is conclusively an AlbA_2 DNA/RNA binding domain, forming the conserved core of schlafens and their sequence homologs from bacteria through mammals. Group III schlafens additionally contain a AAA NTPase domain in their C-terminal helicase region. In hSLFN12, we have uncovered a domain matching rho GTPases, which directly follows the AlbA_2 domain in all group II-III schlafens. Potential roles for the GTPase-like domain include antiviral activity and cytoskeletal interactions that contribute to nucleocytoplasmic shuttling and cell polarization during differentiation. Based on features conserved with rSlfn13, the AlbA_2 region in hSLFN12 is likely to bind RNA, possibly as a ribonuclease. We hypothesize that RNA binding by hSLFN12 contributes to an RNA-induced transcriptional silencing/E3 ligase complex, given the functions of hSLFN12's partners, SUV39H1, JMJD6, and PDLIM7. hSLFN12's partner hSerpinB12 may contribute to heterochromatin formation, based on its homology to MENT, or directly regulate transcription via its binding to RNA polymerase II. The analysis presented here provides clear architectural and transcriptional regulation hypotheses to guide experimental design for hSLFN12 and the thousands of schlafens that share its motifs.
Collapse
Affiliation(s)
- Jiaxing Chen
- Protein Structural Analysis and Design Lab, Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824-1319, USA
| | - Leslie A Kuhn
- Protein Structural Analysis and Design Lab, Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824-1319, USA.
| |
Collapse
|
166
|
Vázquez-Marín J, Gutiérrez-Triana JA, Almuedo-Castillo M, Buono L, Gómez-Skarmeta JL, Mateo JL, Wittbrodt J, Martínez-Morales JR. yap1b, a divergent Yap/Taz family member, cooperates with yap1 in survival and morphogenesis via common transcriptional targets. Development 2019; 146:dev.173286. [PMID: 31142542 DOI: 10.1242/dev.173286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/17/2019] [Indexed: 11/20/2022]
Abstract
Yap1/Taz are well-known Hippo effectors triggering complex transcriptional programs controlling growth, survival and cancer progression. Here, we describe yap1b, a new Yap1/Taz family member with a unique transcriptional activation domain that cannot be phosphorylated by Src/Yes kinases. We show that yap1b evolved specifically in euteleosts (i.e. including medaka but not zebrafish) by duplication and adaptation of yap1. Using DamID-seq, we generated maps of chromatin occupancy for Yap1, Taz (Wwtr1) and Yap1b in gastrulating zebrafish and medaka embryos. Our comparative analyses uncover the genetic programs controlled by Yap family proteins during early embryogenesis, and show largely overlapping targets for Yap1 and Yap1b. CRISPR/Cas9-induced mutation of yap1b in medaka does not result in an overt phenotype during embryogenesis or adulthood. However, yap1b mutation strongly enhances the embryonic malformations observed in yap1 mutants. Thus yap1 -/-; yap1b -/- double mutants display more severe body flattening, eye misshaping and increased apoptosis than yap1 -/- single mutants, thus revealing overlapping gene functions. Our results indicate that, despite its divergent transactivation domain, Yap1b cooperates with Yap1 to regulate cell survival and tissue morphogenesis during early development.
Collapse
Affiliation(s)
| | - José Arturo Gutiérrez-Triana
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.,Escuela de Microbiología, Facultad de la Salud, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia
| | | | - Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Seville, Spain
| | | | - Juan Luis Mateo
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.,Departamento de Informática, Universidad de Oviedo, Oviedo 33005, Spain
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
167
|
TET enzymes, DNA demethylation and pluripotency. Biochem Soc Trans 2019; 47:875-885. [DOI: 10.1042/bst20180606] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases (TET1, TET2, TET3) actively cause demethylation of 5-methylcytosine (5mC) and produce and safeguard hypomethylation at key regulatory regions across the genome. This 5mC erasure is particularly important in pluripotent embryonic stem cells (ESCs) as they need to maintain self-renewal capabilities while retaining the potential to generate different cell types with diverse 5mC patterns. In this review, we discuss the multiple roles of TET proteins in mouse ESCs, and other vertebrate model systems, with a particular focus on TET functions in pluripotency, differentiation, and developmental DNA methylome reprogramming. Furthermore, we elaborate on the recently described non-catalytic roles of TET proteins in diverse biological contexts. Overall, TET proteins are multifunctional regulators that through both their catalytic and non-catalytic roles carry out myriad functions linked to early developmental processes.
Collapse
|
168
|
Chen Z, Omori Y, Koren S, Shirokiya T, Kuroda T, Miyamoto A, Wada H, Fujiyama A, Toyoda A, Zhang S, Wolfsberg TG, Kawakami K, Phillippy AM, Mullikin JC, Burgess SM. De novo assembly of the goldfish ( Carassius auratus) genome and the evolution of genes after whole-genome duplication. SCIENCE ADVANCES 2019; 5:eaav0547. [PMID: 31249862 PMCID: PMC6594761 DOI: 10.1126/sciadv.aav0547] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
For over a thousand years, the common goldfish (Carassius auratus) was raised throughout Asia for food and as an ornamental pet. As a very close relative of the common carp (Cyprinus carpio), goldfish share the recent genome duplication that occurred approximately 14 million years ago in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies provides an exciting opportunity to link genotype to phenotype and to understand the dynamics of genome evolution and speciation. We generated a high-quality draft sequence and gene annotations of a "Wakin" goldfish using 71X PacBio long reads. The two subgenomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged substantially across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression levels across all tissues, while loss of conserved noncoding elements determined expression variance between different tissues. This assembly provides an important resource for comparative genomics and understanding the causes of goldfish variants.
Collapse
Affiliation(s)
- Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Takuya Shirokiya
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Takuo Kuroda
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Atsushi Miyamoto
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Hironori Wada
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Tyra G. Wolfsberg
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Adam M. Phillippy
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | - James C. Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, Bethesda, MD, USA
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- Corresponding author.
| |
Collapse
|
169
|
Nakayama S, Sekiguchi T, Ogasawara M. Molecular and evolutionary aspects of the protochordate digestive system. Cell Tissue Res 2019; 377:309-320. [PMID: 31049686 DOI: 10.1007/s00441-019-03035-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
The digestive system is a functional unit consisting of an endodermal tubular structure (alimentary canal) and accessory organs that function in nutrition processing in most triploblastic animals. Various morphologies and apparatuses are formed depending on the phylogenetical relationship and food habits of the specific species. Nutrition processing and morphogenesis of the alimentary canal and accessory organs have both been investigated in vertebrates, mainly humans and mammals. When attempting to understand the evolutionary processes that led to the vertebrate digestive system, however, it is useful to examine other chordates, specifically protochordates, which share fundamental functional and morphogenetic molecules with vertebrates, which also possess non-duplicated genomes. In protochordates, basic anatomical and physiological studies have mainly described the characteristic traits of suspension feeders. Recent progress in genome sequencing has allowed researchers to comprehensively detail protochordate genes and has compared the genetic backgrounds among chordate nutrition processing and alimentary canal/accessory organ systems based on genomic information. Gene expression analyses have revealed spatiotemporal gene expression profiles in protochordate alimentary canals. Additionally, to investigate the basis of morphological diversity in the chordate alimentary canal and accessory organs, evolutionary developmental research has examined developmental transcription factors related to morphogenesis and anterior-posterior pattering of the alimentary canal and accessory organs. In this review, we summarize the current knowledge of molecules involved in nutrition processing and the development of the alimentary canal and accessory organs with innate immune and endocrine roles in protochordates and we explore the molecular basis for understanding the evolution of the chordate digestive system.
Collapse
Affiliation(s)
- Satoshi Nakayama
- The Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Toshio Sekiguchi
- The Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Hosu-gun, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- The Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
170
|
Pinzón N, Bertrand S, Subirana L, Busseau I, Escrivá H, Seitz H. Functional lability of RNA-dependent RNA polymerases in animals. PLoS Genet 2019; 15:e1007915. [PMID: 30779744 PMCID: PMC6396948 DOI: 10.1371/journal.pgen.1007915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/01/2019] [Accepted: 12/24/2018] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) requires RNA-dependent RNA polymerases (RdRPs) in many eukaryotes, and RNAi amplification constitutes the only known function for eukaryotic RdRPs. Yet in animals, classical model organisms can elicit RNAi without possessing RdRPs, and only nematode RNAi was shown to require RdRPs. Here we show that RdRP genes are much more common in animals than previously thought, even in insects, where they had been assumed not to exist. RdRP genes were present in the ancestors of numerous clades, and they were subsequently lost at a high frequency. In order to probe the function of RdRPs in a deuterostome (the cephalochordate Branchiostoma lanceolatum), we performed high-throughput analyses of small RNAs from various Branchiostoma developmental stages. Our results show that Branchiostoma RdRPs do not appear to participate in RNAi: we did not detect any candidate small RNA population exhibiting classical siRNA length or sequence features. Our results show that RdRPs have been independently lost in dozens of animal clades, and even in a clade where they have been conserved (cephalochordates) their function in RNAi amplification is not preserved. Such a dramatic functional variability reveals an unexpected plasticity in RNA silencing pathways. RNA interference (RNAi) is a conserved gene regulation system in eukaryotes. In non-animal eukaryotes, it necessitates RNA-dependent RNA polymerases (“RdRPs”). Among animals, only nematodes appear to require RdRPs for RNAi. Yet additional animal clades have RdRPs and it is assumed that they participate in RNAi. Here, we find that RdRPs are much more common in animals than previously thought, but their genes were independently lost in many lineages. Focusing on a species with RdRP genes (a cephalochordate), we found that it does not use them for RNAi. While RNAi is the only known function for eukaryotic RdRPs, our results suggest additional roles. Eukaryotic RdRPs thus have a complex evolutionary history in animals, with frequent independent losses and apparent functional diversification.
Collapse
Affiliation(s)
- Natalia Pinzón
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Isabelle Busseau
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Hector Escrivá
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
- * E-mail:
| |
Collapse
|
171
|
Yasuoka Y, Tando Y, Kubokawa K, Taira M. Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. ZOOLOGICAL LETTERS 2019; 5:27. [PMID: 31388442 PMCID: PMC6679436 DOI: 10.1186/s40851-019-0143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 07/12/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND In cephalochordates (amphioxus), the notochord runs along the dorsal to the anterior tip of the body. In contrast, the vertebrate head is formed anterior to the notochord, as a result of head organizer formation in anterior mesoderm during early development. A key gene for the vertebrate head organizer, goosecoid (gsc), is broadly expressed in the dorsal mesoderm of amphioxus gastrula. Amphioxus gsc expression subsequently becomes restricted to the posterior notochord from the early neurula. This has prompted the hypothesis that a change in expression patterns of gsc led to development of the vertebrate head during chordate evolution. However, molecular mechanisms of head organizer evolution involving gsc have never been elucidated. RESULTS To address this question, we compared cis-regulatory modules of vertebrate organizer genes between amphioxus, Branchiostoma japonicum, and frogs, Xenopus laevis and Xenopus tropicalis. Here we show conservation and diversification of gene regulatory mechanisms through cis-regulatory modules for gsc, lim1/lhx1, and chordin in Branchiostoma and Xenopus. Reporter analysis using Xenopus embryos demonstrates that activation of gsc by Nodal/FoxH1 signal through the 5' upstream region, that of lim1 by Nodal/FoxH1 signal through the first intron, and that of chordin by Lim1 through the second intron, are conserved between amphioxus and Xenopus. However, activation of gsc by Lim1 and Otx through the 5' upstream region in Xenopus are not conserved in amphioxus. Furthermore, the 5' region of amphioxus gsc recapitulated the amphioxus-like posterior mesoderm expression of the reporter gene in transgenic Xenopus embryos. CONCLUSIONS On the basis of this study, we propose a model, in which the gsc gene acquired the cis-regulatory module bound with Lim1 and Otx at its 5' upstream region to be activated persistently in anterior mesoderm, in the vertebrate lineage. Because Gsc globally represses trunk (notochord) genes in the vertebrate head organizer, this cooption of gsc in vertebrates appears to have resulted in inhibition of trunk genes and acquisition of the head organizer and its derivative prechordal plate.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yukiko Tando
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Kaoru Kubokawa
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: SIRC, Teikyo University, 2-11-1, Itabashi-ku, Tokyo, 173-8605 Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present address: Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan
| |
Collapse
|
172
|
Uesaka M, Kuratani S, Takeda H, Irie N. Recapitulation-like developmental transitions of chromatin accessibility in vertebrates. ZOOLOGICAL LETTERS 2019; 5:33. [PMID: 31807314 PMCID: PMC6857340 DOI: 10.1186/s40851-019-0148-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/06/2019] [Indexed: 05/09/2023]
Abstract
The relationship between development and evolution has been a central theme in evolutionary developmental biology. Across the vertebrates, the most highly conserved gene expression profiles are found at mid-embryonic, organogenesis stages, whereas those at earlier and later stages are more diverged. This hourglass-like pattern of divergence does not necessarily rule out the possibility that gene expression profiles that are more evolutionarily derived appear at later stages of development; however, no molecular-level evidence of such a phenomenon has been reported. To address this issue, we compared putative gene regulatory elements among different species within a phylum. We made a genome-wide assessment of accessible chromatin regions throughout embryogenesis in three vertebrate species (mouse, chicken, and medaka) and estimated the evolutionary ages of these regions to define their evolutionary origins on the phylogenetic tree. In all the three species, we found that genomic regions tend to become accessible in an order that parallels their phylogenetic history, with evolutionarily newer gene regulations activated at later developmental stages. This tendency was restricted only after the mid-embryonic, phylotypic periods. Our results imply a phylogenetic hierarchy of putative regulatory regions, in which their activation parallels the phylogenetic order of their appearance. One evolutionary mechanism that may explain this phenomenon is that newly introduced regulatory elements are more likely to survive if activated at later stages of embryogenesis. Possible relationships between this phenomenon and the so-called recapitulation are discussed.
Collapse
Affiliation(s)
- Masahiro Uesaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Naoki Irie
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|