151
|
Cheng Y, Sun F, D'Souza A, Dhakal B, Pisano M, Chhabra S, Stolley M, Hari P, Janz S. Autonomic nervous system control of multiple myeloma. Blood Rev 2020; 46:100741. [PMID: 32807576 DOI: 10.1016/j.blre.2020.100741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
The autonomic nervous system (ANS), which consists of antagonistic sympathetic (adrenergic) and parasympathetic (cholinergic) arms, has emerged as an important regulator of neoplastic development, yet little is known about its role in multiple myeloma (MM). Clinical findings that anti-adrenergic β-blocker intake reduces risk of disease-specific death and overall mortality in patients with MM have indicated that adrenergic input may worsen myeloma outcome. However, preclinical studies using β-adrenergic receptor agonists or antagonists produced controversial results as to whether sympathetic pathways promote or inhibit myeloma. Retrospective outcome data demonstrating that high message levels of cholinergic receptor genes predict inferior survival in the Multiple Myeloma Research Foundation CoMMpass trial suggest that parasympathetic input may drive myeloma progression in a subset of patients. Here we review the ill-defined role of the ANS in MM, put myeloma in the context of other cancers, and discuss knowledge gaps that may afford exciting research opportunities going forward.
Collapse
Affiliation(s)
- Yan Cheng
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Fumou Sun
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Anita D'Souza
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Binod Dhakal
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Michael Pisano
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Melinda Stolley
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA.
| |
Collapse
|
152
|
Lyons CE, Bartolomucci A. Stress and Alzheimer's disease: A senescence link? Neurosci Biobehav Rev 2020; 115:285-298. [PMID: 32461080 PMCID: PMC7483955 DOI: 10.1016/j.neubiorev.2020.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress has been shown to promote numerous aging-related diseases, and to accelerate the aging process itself. Of particular interest is the impact of stress on Alzheimer's disease (AD), the most prevalent form of dementia. The vast majority of AD cases have no known genetic cause, making it vital to identify the environmental factors involved in the onset and progression of the disease. Age is the greatest risk factor for AD, and measures of biological aging such as shorter telomere length, significantly increase likelihood for developing AD. Stress is also considered a crucial contributor to AD, as indicated by a formidable body of research, although the mechanisms underlying this association remain unclear. Here we review human and animal literature on the impact of stress on AD and discuss the mechanisms implicated in the interaction. In particular we will focus on the burgeoning body of research demonstrating that senescent cells, which accumulate with age and actively drive a number of aging-related diseases, may be a key mechanism through which stress drives AD.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, United States; Graduate Program in Neuroscience, University of Minnesota, United States.
| | | |
Collapse
|
154
|
Liang Y, Meyer A, Kratochwil CF. Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish. Sci Rep 2020; 10:12329. [PMID: 32704058 PMCID: PMC7378239 DOI: 10.1038/s41598-020-69239-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
155
|
Shwartz Y, Gonzalez-Celeiro M, Chen CL, Pasolli HA, Sheu SH, Fan SMY, Shamsi F, Assaad S, Lin ETY, Zhang B, Tsai PC, He M, Tseng YH, Lin SJ, Hsu YC. Cell Types Promoting Goosebumps Form a Niche to Regulate Hair Follicle Stem Cells. Cell 2020; 182:578-593.e19. [PMID: 32679029 DOI: 10.1016/j.cell.2020.06.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.
Collapse
Affiliation(s)
- Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Meryem Gonzalez-Celeiro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Chih-Lung Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sabrina Mai-Yi Fan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven Assaad
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Edrick Tai-Yu Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Pai-Chi Tsai
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Hua Tseng
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 100, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
156
|
Tapanes E, Anestis S, Kamilar JM, Bradley BJ. Does facial hair greying in chimpanzees provide a salient progressive cue of aging? PLoS One 2020; 15:e0235610. [PMID: 32663207 PMCID: PMC7360037 DOI: 10.1371/journal.pone.0235610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/18/2020] [Indexed: 11/19/2022] Open
Abstract
The greying of human head hair is arguably the most salient marker of human aging. In wild mammal populations, greying can change with life history or environmental factors (e.g., sexual maturity in silverback gorillas). Yet, whether humans are unique in our pattern of age-related hair depigmentation is unclear. We examined the relationship between pigmentation loss in facial hair (greying) to age, population, and sex in wild and captive chimpanzees (Pan troglodytes). Digital facial photographs representing three chimpanzee populations (N = 145; ages 1–60 years) were scored for hair greying on a scale of one [~100% pigmented] to six [~0% pigmented]. Our data suggest that chimpanzee head and facial hair generally greys with age prior to mid-life (~30 years old), but afterwards, greying ceases to increase incrementally. Our results highlight that chimpanzee pigmentation likely exhibits substantial variation between populations, and that both 'grey' and pigmented phenotypes exist across various age classes. Thus, chimpanzee facial hair greying is unlikely a progressive indicator of age beyond mid-life, and thus facial greying in chimpanzees seems different from the pattern observed in humans. Whether this reflects neutral differences in senescence, or potential differences in selection pressures (e.g. related to conspecific communication), is unclear and worthy of more detailed examination across populations and taxa.
Collapse
Affiliation(s)
- Elizabeth Tapanes
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States of America
- * E-mail:
| | - Stephanie Anestis
- Department of Anthropology, Yale University, New Haven, CT, United States of America
| | - Jason M. Kamilar
- Department of Anthropology, University of Massachusetts Amherst, Amherst, MA, United States of America
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Brenda J. Bradley
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
157
|
Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature 2020; 583:441-446. [PMID: 32641826 PMCID: PMC7367767 DOI: 10.1038/s41586-020-2474-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.
Collapse
|
159
|
Mendelsohn AR, Larrick JW. The Danger of Being Too Sympathetic: Norepinephrine in Alzheimer's Disease and Graying of Hair. Rejuvenation Res 2020; 23:68-72. [PMID: 31989871 DOI: 10.1089/rej.2020.2309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although alterations in the sympathetic nervous system (SNS) with age have been reported, and serious degenerative diseases of the autonomic nervous system such as multiple system atrophy are more likely to strike older people, connections between dysregulated adrenergic receptors and age-associated diseases and phenotypes have not been well studied. Two recent reports suggest that SNS may be more closely connected than previously appreciated. First, low nanomolar concentrations of Alzheimer's disease (AD)-associated Aβ42-amyloid oligomers alter signaling by SNS neurotransmitter norepinephrine (NE) to sufficiently activate kinase GSK3β to hyperphosphorylate tau, a key mediator of neurotoxicity in AD. Connecting beta-amyloid to tau in AD has been a key quest in understanding AD and developing therapeutics. The α2 adrenergic receptor inhibitory drug idazoxan reduces GSK3β activity and tau phosphorylation in AD mice with improved cognitive function, even in the presence of beta-amyloid deposits. In this study, SNS activation in the brain coupled with problematic Aβ42-amyloid oligomers result in serious consequences that can be ameliorated by reducing SNS signaling. A second example of the detrimental effects of increased SNS signaling is the premature graying of hair in response to stress. Secretion of NE resulting from stress causes differentiation of most hair pigment melanocyte stem cells (MeSCs) into melanocytes, rapidly depleting the hair follicle of pigment-producing cells as mature melanocytes undergo apoptosis and MeSCs are eventually eliminated. Blockade of NE SNS signaling preserves hair coloration in stressed animals. Increased SNS activation has serious apparently irreversible effects on homeostasis in both situations. Although neither report directly addresses aging, given that AD and the loss of hair pigmentation have strong age associations, it is of interest to better understand the role that SNS has in promoting age-associated phenotypes generally and determine if tuning the SNS through drug-mediated attenuation of SNS signaling may be of medical benefit.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Regenerative Sciences Institute, Sunnyvale, California.,Panorama Research Institute, Sunnyvale, California
| | - James W Larrick
- Regenerative Sciences Institute, Sunnyvale, California.,Panorama Research Institute, Sunnyvale, California
| |
Collapse
|