151
|
Palit P, Kudapa H, Zougmore R, Kholova J, Whitbread A, Sharma M, Varshney RK. An integrated research framework combining genomics, systems biology, physiology, modelling and breeding for legume improvement in response to elevated CO 2 under climate change scenario. CURRENT PLANT BIOLOGY 2020; 22:100149. [PMID: 32494569 PMCID: PMC7233140 DOI: 10.1016/j.cpb.2020.100149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 05/24/2023]
Abstract
How unprecedented changes in climatic conditions will impact yield and productivity of some crops and their response to existing stresses, abiotic and biotic interactions is a key global concern. Climate change can also alter natural species' abundance and distribution or favor invasive species, which in turn can modify ecosystem dynamics and the provisioning of ecosystem services. Basic anatomical differences in C3 and C4 plants lead to their varied responses to climate variations. In plants having a C3 pathway of photosynthesis, increased atmospheric carbon dioxide (CO2) positively regulates photosynthetic carbon (C) assimilation and depresses photorespiration. Legumes being C3 plants, they may be in a favorable position to increase biomass and yield through various strategies. This paper comprehensively presents recent progress made in the physiological and molecular attributes in plants with special emphasis on legumes under elevated CO2 conditions in a climate change scenario. A strategic research framework for future action integrating genomics, systems biology, physiology and crop modelling approaches to cope with changing climate is also discussed. Advances in sequencing and phenotyping methodologies make it possible to use vast genetic and genomic resources by deploying high resolution phenotyping coupled with high throughput multi-omics approaches for trait improvement. Integrated crop modelling studies focusing on farming systems design and management, prediction of climate impacts and disease forecasting may also help in planning adaptation. Hence, an integrated research framework combining genomics, plant molecular physiology, crop breeding, systems biology and integrated crop-soil-climate modelling will be very effective to cope with climate change.
Collapse
Affiliation(s)
- Paramita Palit
- Research Program- Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Himabindu Kudapa
- Research Program- Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Robert Zougmore
- CGIAR Research Program on Climate Change, Agriculture and Food Security program (CCAFS), Bamako, Mali
- Research Program- West & Central Africa, ICRISAT, Bamako, Mali
| | - Jana Kholova
- Research Program- Innovation System for Drylands, ICRISAT, Patancheru, India
| | - Anthony Whitbread
- Research Program- Innovation System for Drylands, ICRISAT, Patancheru, India
| | - Mamta Sharma
- Research Program- Asia, ICRISAT, Patancheru, India
| | - Rajeev K Varshney
- Research Program- Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
152
|
Genomic Analysis of Vavilov's Historic Chickpea Landraces Reveals Footprints of Environmental and Human Selection. Int J Mol Sci 2020; 21:ijms21113952. [PMID: 32486400 PMCID: PMC7313079 DOI: 10.3390/ijms21113952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
A defining challenge of the 21st century is meeting the nutritional demands of the growing human population, under a scenario of limited land and water resources and under the specter of climate change. The Vavilov seed bank contains numerous landraces collected nearly a hundred years ago, and thus may contain ‘genetic gems’ with the potential to enhance modern breeding efforts. Here, we analyze 407 landraces, sampled from major historic centers of chickpea cultivation and secondary diversification. Genome-Wide Association Studies (GWAS) conducted on both phenotypic traits and bioclimatic variables at landraces sampling sites as extended phenotypes resulted in 84 GWAS hits associated to various regions. The novel haploblock-based test identified haploblocks enriched for single nucleotide polymorphisms (SNPs) associated with phenotypes and bioclimatic variables. Subsequent bi-clustering of traits sharing enriched haploblocks underscored both non-random distribution of SNPs among several haploblocks and their association with multiple traits. We hypothesize that these clusters of pleiotropic SNPs represent co-adapted genetic complexes to a range of environmental conditions that chickpea experienced during domestication and subsequent geographic radiation. Linking genetic variation to phenotypic data and a wealth of historic information preserved in historic seed banks are the keys for genome-based and environment-informed breeding intensification.
Collapse
|
153
|
Xanthopoulou A, Manioudaki M, Bazakos C, Kissoudis C, Farsakoglou AM, Karagiannis E, Michailidis M, Polychroniadou C, Zambounis A, Kazantzis K, Tsaftaris A, Madesis P, Aravanopoulos F, Molassiotis A, Ganopoulos I. Whole genome re-sequencing of sweet cherry ( Prunus avium L.) yields insights into genomic diversity of a fruit species. HORTICULTURE RESEARCH 2020; 7:60. [PMID: 32377351 PMCID: PMC7193578 DOI: 10.1038/s41438-020-0281-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 02/18/2020] [Indexed: 05/30/2023]
Abstract
Sweet cherries, Prunus avium L. (Rosaceae), are gaining importance due to their perenniallity and nutritional attributes beneficial for human health. Interestingly, sweet cherry cultivars exhibit a wide range of phenotypic diversity in important agronomic traits, such as flowering time and defense reactions against pathogens. In this study, whole-genome resequencing (WGRS) was employed to characterize genetic variation, population structure and allelic variants in a panel of 20 sweet cherry and one wild cherry genotypes, embodying the majority of cultivated Greek germplasm and a representative of a local wild cherry elite phenotype. The 21 genotypes were sequenced in an average depth of coverage of 33.91×. and effective mapping depth, to the genomic reference sequence of 'Satonishiki' cultivar, between 22.21× to 36.62×. Discriminant analysis of principal components (DAPC) with SNPs revealed two clusters of genotypes. There was a rapid linkage disequilibrium decay, as the majority of SNP pairs with r2 in near complete disequilibrium (>0.8) were found at physical distances less than 10 kb. Functional analysis of the variants showed that the genomic ratio of non-synonymous/synonymous (dN/dS) changes was 1.78. The higher dN frequency in the Greek cohort of sweet cherry could be the result of artificial selection pressure imposed by breeding, in combination with the vegetative propagation of domesticated cultivars through grafting. The majority of SNPs with high impact (e.g., stop codon gaining, frameshift), were identified in genes involved in flowering time, dormancy and defense reactions against pathogens, providing promising resources for future breeding programs. Our study has established the foundation for further large scale characterization of sweet cherry germplasm, enabling breeders to incorporate diverse germplasm and allelic variants to fine tune flowering and maturity time and disease resistance in sweet cherry cultivars.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| | | | - Anna-Maria Farsakoglou
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Polychroniadou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | - Konstantinos Kazantzis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | | | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki, 570 01 Greece
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| |
Collapse
|
154
|
Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M, Gaur PM, Chaturvedi SK, Fikre A, Hamwieh A, Kumar S, Sachdeva S, Ojiewo CO, Tar'an B, Wordofa NG, Singh NP, Siddique KHM, Varshney RK. Integrating genomics for chickpea improvement: achievements and opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1703-1720. [PMID: 32253478 PMCID: PMC7214385 DOI: 10.1007/s00122-020-03584-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/18/2020] [Indexed: 05/19/2023]
Abstract
Integration of genomic technologies with breeding efforts have been used in recent years for chickpea improvement. Modern breeding along with low cost genotyping platforms have potential to further accelerate chickpea improvement efforts. The implementation of novel breeding technologies is expected to contribute substantial improvements in crop productivity. While conventional breeding methods have led to development of more than 200 improved chickpea varieties in the past, still there is ample scope to increase productivity. It is predicted that integration of modern genomic resources with conventional breeding efforts will help in the delivery of climate-resilient chickpea varieties in comparatively less time. Recent advances in genomics tools and technologies have facilitated the generation of large-scale sequencing and genotyping data sets in chickpea. Combined analysis of high-resolution phenotypic and genetic data is paving the way for identifying genes and biological pathways associated with breeding-related traits. Genomics technologies have been used to develop diagnostic markers for use in marker-assisted backcrossing programmes, which have yielded several molecular breeding products in chickpea. We anticipate that a sequence-based holistic breeding approach, including the integration of functional omics, parental selection, forward breeding and genome-wide selection, will bring a paradigm shift in development of superior chickpea varieties. There is a need to integrate the knowledge generated by modern genomics technologies with molecular breeding efforts to bridge the genome-to-phenome gap. Here, we review recent advances that have led to new possibilities for developing and screening breeding populations, and provide strategies for enhancing the selection efficiency and accelerating the rate of genetic gain in chickpea.
Collapse
Affiliation(s)
- Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia.
| | | | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Girish P Dixit
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pooran M Gaur
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Asnake Fikre
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Addis Ababa, Ethiopia
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Cairo, Egypt
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Supriya Sachdeva
- ICAR-Indian Agricultural Research Institute (IARI), Delhi, India
| | - Chris O Ojiewo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia.
| |
Collapse
|
155
|
Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM, Nayyar H. Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2020; 10:1759. [PMID: 32161601 PMCID: PMC7052492 DOI: 10.3389/fpls.2019.01759] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/16/2019] [Indexed: 05/19/2023]
Abstract
Chickpea is one of the most economically important food legumes, and a significant source of proteins. It is cultivated in more than 50 countries across Asia, Africa, Europe, Australia, North America, and South America. Chickpea production is limited by various abiotic stresses (cold, heat, drought, salt, etc.). Being a winter-season crop in northern south Asia and some parts of the Australia, chickpea faces low-temperature stress (0-15°C) during the reproductive stage that causes substantial loss of flowers, and thus pods, to inhibit its yield potential by 30-40%. The winter-sown chickpea in the Mediterranean, however, faces cold stress at vegetative stage. In late-sown environments, chickpea faces high-temperature stress during reproductive and pod filling stages, causing considerable yield losses. Both the low and the high temperatures reduce pollen viability, pollen germination on the stigma, and pollen tube growth resulting in poor pod set. Chickpea also experiences drought stress at various growth stages; terminal drought, along with heat stress at flowering and seed filling can reduce yields by 40-45%. In southern Australia and northern regions of south Asia, lack of chilling tolerance in cultivars delays flowering and pod set, and the crop is usually exposed to terminal drought. The incidences of temperature extremes (cold and heat) as well as inconsistent rainfall patterns are expected to increase in near future owing to climate change thereby necessitating the development of stress-tolerant and climate-resilient chickpea cultivars having region specific traits, which perform well under drought, heat, and/or low-temperature stress. Different approaches, such as genetic variability, genomic selection, molecular markers involving quantitative trait loci (QTLs), whole genome sequencing, and transcriptomics analysis have been exploited to improve chickpea production in extreme environments. Biotechnological tools have broadened our understanding of genetic basis as well as plants' responses to abiotic stresses in chickpea, and have opened opportunities to develop stress tolerant chickpea.
Collapse
Affiliation(s)
- Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Uday Chand Jha
- Department of Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Himachal Pradesh Agricultural University, Palampur, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
156
|
Optimization of Hairy Root Transformation for the Functional Genomics in Chickpea: A Platform for Nodule Developmental Studies. Methods Mol Biol 2020; 2107:335-348. [PMID: 31893457 DOI: 10.1007/978-1-0716-0235-5_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chickpea is a major protein source in low socio-economic classes and cultivated in marginal soil without fertilizer or irrigation. As a result of its root nodule formation capacity chickpea can directly use atmospheric nitrogen. Chickpea is recalcitrant to stable transformation, particularly root regeneration efficiency of chickpea is low. The composite plant-based system with a non-transformed shoot and transformed root is particularly important for root biologist and this approach has already been used successfully for root nodule symbiosis, arbuscular mycorrhizal symbiosis, and other root-related studies. Use of fluorescent marker-based approach can accurately identify the transformed root from its non-transgenic counterpart. RNAi-based gene knockout, overexpression of genes, promoter GUS analysis to understand tissue specific expression and localization of protein can be achieved using the hairy root-based system. We have already published a hairy root-based transformation and composite plant regeneration protocol of chickpea. Here we are describing the recent modification that we have made to increase the transformation frequency and nodule morphology. Further, we have developed a pouch based artificial system, large number of plants can be scored for its nodule developmental phenotype, by using this system.
Collapse
|
157
|
Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, Zhang J, Tang Y, Chen M, Zhu J, Lei L, Geng Q, Liu C, Wu L, Li X, Wang X, Wang Q, Wang Z, Xing S, Zhang H, Blair MW, Wang S. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 2019; 52:118-125. [PMID: 31873299 DOI: 10.1038/s41588-019-0546-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stresses. A total of 505 loci were associated with yield components, of which seed size, flowering time and harvest maturity traits were stable across years and environments. Some loci aligned with candidate genes controlling these traits. Yield components were observed to have strong associations with a gene-rich region on the long arm of chromosome 1. Manipulation of seed size, through selection of seed length versus seed width and height, was deemed possible, providing a genome-based means to select for important yield components. This study shows that evaluation of large germplasm collections across north-south geographic clines is useful in the detection of marker associations that determine grain yield in pulses.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibao Chen
- Key Laboratory of Water Ecological Security for Water Region of Mid-line Project of South-to-North Water Diversion, Nanyang Normal University, Nanyang, China
| | - Shuhong Wei
- Institute of Crop Germplasm, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shilong Zhang
- Bijie Academy of Agricultural Sciences, Bijie, China
| | - Jie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Mingli Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jifeng Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Lei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunliang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoli Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Wang
- Institute of Crop Germplasm, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhaoli Wang
- Bijie Academy of Agricultural Sciences, Bijie, China
| | | | | | - Matthew W Blair
- Department of Agricultural & Environmental Sciences, Tennessee State University, Nashville, TN, USA.
| | - Shumin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
158
|
Afzal M, Alghamdi SS, Migdadi HH, Khan MA, Nurmansyah, Mirza SB, El-Harty E. Legume genomics and transcriptomics: From classic breeding to modern technologies. Saudi J Biol Sci 2019; 27:543-555. [PMID: 31889880 PMCID: PMC6933173 DOI: 10.1016/j.sjbs.2019.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
Legumes are essential and play a significant role in maintaining food standards and augmenting physiochemical soil properties through the biological nitrogen fixation process. Biotic and abiotic factors are the main factors limiting legume production. Classical breeding methodologies have been explored extensively about the problem of truncated yield in legumes but have not succeeded at the desired rate. Conventional breeding improved legume genotypes but with more resources and time. Recently, the invention of next-generation sequencing (NGS) and high-throughput methods for genotyping have opened new avenues for research and developments in legume studies. During the last decade, genome sequencing for many legume crops documented. Sequencing and re-sequencing of important legume species have made structural variation and functional genomics conceivable. NGS and other molecular techniques such as the development of markers; genotyping; high density genetic linkage maps; quantitative trait loci (QTLs) identification, expressed sequence tags (ESTs), single nucleotide polymorphisms (SNPs); and transcription factors incorporated into existing breeding technologies have made possible the accurate and accelerated delivery of information for researchers. The application of genome sequencing, RNA sequencing (transcriptome sequencing), and DNA sequencing (re-sequencing) provide considerable insights for legume development and improvement programs. Moreover, RNA-Seq helps to characterize genes, including differentially expressed genes, and can be applied for functional genomics studies, especially when there is limited information available for the studied genomes. Genome-based crop development studies and the availability of genomics data as well as decision-making gears look be specific for breeding programs. This review mainly presents an overview of the path from classical breeding to new emerging genomics tools, which will trigger and accelerate genomics-assisted breeding for recognition of novel genes for yield and quality characters for sustainable legume crop production.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussein H Migdadi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nurmansyah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shaher Bano Mirza
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University (BAU), Istanbul, Turkey.,Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Chak Shahzad, Islamabad, Pakistan
| | - Ehab El-Harty
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
159
|
MaizeSNPDB: A comprehensive database for efficient retrieve and analysis of SNPs among 1210 maize lines. Comput Struct Biotechnol J 2019; 17:1377-1383. [PMID: 31762961 PMCID: PMC6861670 DOI: 10.1016/j.csbj.2019.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
With the rapid decreasing of sequencing cost, large volume of genotype data has been generated in many organisms based on high-throughput sequencing, which was utilized in various fields of biological studies in the post-genome era. The raw sequencing data were usually deposited in the NCBI SRA database. Construction of the database to store and analyze the processed genotype data is an essential step for the utilization of the genotype data by the community. Up to now, a comprehensive genotype database is still missing from maize, which is an important crop of the world. We report the construction of the MaizeSNPDB database using genotype data of 1210 maize line across 35,370,939 SNP sites refined from a large set of genomic variations reported by the maize HapMap 3 project. We further implemented several genetic analysis programs as graphical interfaces in the MaizeSNPDB database. SNPs in user-specified genomic regions could be easily extracted and analyzed in MaizeSNPDB. The whole dataset and code of MaizeSNPDB is available at https://github.com/venyao/MaizeSNPDB. MaizeSNPDB is deployed at http://150.109.59.144:3838/MaizeSNPDB/ for online use. The MaizeSNPDB database is of great value to future maize functional genomic studies, which can also facilitate marker-assisted breeding in maize.
Collapse
|
160
|
Varshney RK, Ojiewo C, Monyo E. A decade of Tropical Legumes projects: Development and adoption of improved varieties, creation of market-demand to benefit smallholder farmers and empowerment of national programmes in sub-Saharan Africa and South Asia. PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2019; 138:379-388. [PMID: 31762525 PMCID: PMC6853253 DOI: 10.1111/pbr.12744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 05/17/2023]
Abstract
This article highlights 12 years (2007-2019) of research, achievements, lessons learned, challenges and gaps in discovery-to-delivery research in legumes emanating from three projects, collectively called Tropical Legumes (TL) with a total investment of about US$ 67 million funded by the Bill & Melinda Gates Foundation. These projects were implemented by three CGIAR centres (ICRISAT, CIAT and IITA) together with 15 national agricultural research system partners in sub-Saharan Africa and South Asia. The TL projects together with some of their precursors and complementary projects from other agencies, facilitated the development of 266 improved legume varieties and the production of about 497,901 tons of certified seeds of the target legume crops in the focus countries. The certified seeds have been planted on about 5.0 million ha by more than 25 million smallholder farmers in the 15 countries and beyond, producing about 6.1 million tons of grain worth US$ 3.2 billion. Furthermore, the projects also trained 52 next generation scientists that included 10 women, by supporting 34 Masters degrees and 18 PhD degrees.
Collapse
Affiliation(s)
- Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Chris Ojiewo
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)NairobiKenya
| | - Emmanuel Monyo
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)NairobiKenya
| |
Collapse
|
161
|
Zwart RS, Thudi M, Channale S, Manchikatla PK, Varshney RK, Thompson JP. Resistance to Plant-Parasitic Nematodes in Chickpea: Current Status and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2019; 10:966. [PMID: 31428112 PMCID: PMC6689962 DOI: 10.3389/fpls.2019.00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Plant-parasitic nematodes constrain chickpea (Cicer arietinum) production, with annual yield losses estimated to be 14% of total global production. Nematode species causing significant economic damage in chickpea include root-knot nematodes (Meloidogyne artiella, M. incognita, and M. javanica), cyst nematode (Heterodera ciceri), and root-lesion nematode (Pratylenchus thornei). Reduced functionality of roots from nematode infestation leads to water stress and nutrient deficiency, which in turn lead to poor plant growth and reduced yield. Integration of resistant crops with appropriate agronomic practices is recognized as the safest and most practical, economic and effective control strategy for plant-parasitic nematodes. However, breeding for resistance to plant-parasitic nematodes has numerous challenges that originate from the narrow genetic diversity of the C. arietinum cultigen. While levels of resistance to M. artiella, H. ciceri, and P. thornei have been identified in wild Cicer species that are superior to resistance levels in the C. arietinum cultigen, barriers to interspecific hybridization restrict the use of these crop wild relatives, as sources of nematode resistance. Wild Cicer species of the primary genepool, C. reticulatum and C. echinospermum, are the only species that have been used to introgress resistance genes into the C. arietinum cultigen. The availability of genomic resources, including genome sequence and re-sequence information, the chickpea reference set and mini-core collections, and new wild Cicer collections, provide unprecedented opportunities for chickpea improvement. This review surveys progress in the identification of novel genetic sources of nematode resistance in international germplasm collections and recommends genome-assisted breeding strategies to accelerate introgression of nematode resistance into elite chickpea cultivars.
Collapse
Affiliation(s)
- Rebecca S. Zwart
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Mahendar Thudi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sonal Channale
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Praveen K. Manchikatla
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - John P. Thompson
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|