151
|
Cupp-Sutton KA, Welborn T, Fang M, Langford JB, Wang Z, Smith K, Wu S. The Deuterium Calculator: An Open-Source Tool for Hydrogen-Deuterium Exchange Mass Spectrometry Analysis. J Proteome Res 2023; 22:532-538. [PMID: 36695755 DOI: 10.1021/acs.jproteome.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful protein footprinting technique to study protein dynamics and binding; however, HDX-MS data analysis is often challenging and time-consuming. Moreover, the HDX community is expanding to investigate multiprotein and highly complex protein systems which further complicates data analysis. Thus, a simple, open-source software package designed to analyze large and highly complex protein systems is needed. In this vein, we have developed "The Deuterium Calculator", a Python-based software package for HDX-MS data analysis. The Deuterium Calculator is capable of differential and nondifferential HDX-MS analysis, produces standardized data files according to recommendations from the International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX) to increase transparency in data analysis, and generates Woods' plots for statistical analysis and data visualization. This standard output can be used to perform time dependent deuteration studies and for the study of protein folding kinetics or differential uptake. Moreover, The Deuterium Calculator is capable of performing these analyses on large HDX-MS data sets (e.g., LC-HDX-MS from cell lysate digest). The Deuterium Calculator is freely available for download at https://github.com/OUWuLab/TheDeuteriumCalculator.git. Data are available via ProteomeXchange with identifier PXD036813.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Thomas Welborn
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Joel B Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| |
Collapse
|
152
|
Hydrogen-deuterium exchange coupled to mass spectrometry: A multifaceted tool to decipher the molecular mechanism of transporters. Biochimie 2023; 205:95-101. [PMID: 36037883 DOI: 10.1016/j.biochi.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Transporters regulate trafficking through the biological membrane of living cells and organelles. Therefore, these proteins play an important role in key cellular processes. Obtaining a molecular-level description of the mechanism of transporters is highly desirable to understand and modulate such processes. Different challenges currently complicate this effort, mostly due to transporters' intrinsic properties. They are dynamic and often averse to in vitro characterization. The crossing of the membrane via a transporter depends on both global and local structural changes that will enable substrate binding from one side of the membrane and release on the other. Dedicated approaches are required to monitor these dynamic changes, ideally within the complex membrane environment. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has recently emerged as a powerful biophysical tool to understand transporters' mechanism. This mini-review aims to offer to the reader an overview of the field of HDX-MS applied to transporters. It first summarizes the current workflow for HDX-MS measurements on transporters. It then provides illustrative examples on the molecular insights that are accessible thanks to the technique; following conformational transitions between different states, observing structural changes upon ligand binding and finally understanding the role of lipid-protein interactions.
Collapse
|
153
|
Okamoto R, Orii R, Shibata H, Maki Y, Tsuda S, Kajihara Y. Regulating Antifreeze Activity through Water: Latent Functions of the Sugars of Antifreeze Glycoprotein Revealed by Total Chemical Synthesis. Chemistry 2023; 29:e202203553. [PMID: 36722034 DOI: 10.1002/chem.202203553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Antifreeze glycoprotein (AFGP), which inhibits the freezing of water, is highly O-glycosylated with a disaccharide, d-Galβ1-3-d-GalNAcα (GalGalNAc). To elucidate the function of the sugar residues for antifreeze activity at the molecular level, we conducted a total chemical synthesis of partially sugar deleted AFGP derivatives, and unnatural forms of AFGPs incorporating glucose (Glc)-type sugars instead of galactose (Gal)-type sugars. These elaborated AFGP derivatives demonstrated that the stereochemistry of each sugar residue on AFGPs precisely correlates with the antifreeze activity. A hydrogen-deuterium exchange experiment using synthetic AFGPs revealed a different dynamic behavior of water around sugar residues depending on the sugar structures. These results indicate that sugar residues on AFGP form a unique dynamic water phase that disturbs the absorbance of water molecules onto the ice surface, thereby inhibiting freezing.
Collapse
Affiliation(s)
- Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Orii
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroyuki Shibata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido, 0628517, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
154
|
Polakowska M, Steczkiewicz K, Szczepanowski RH, Wysłouch-Cieszyńska A. Toward an understanding of the conformational plasticity of S100A8 and S100A9 Ca 2+-binding proteins. J Biol Chem 2023; 299:102952. [PMID: 36731796 PMCID: PMC10124908 DOI: 10.1016/j.jbc.2023.102952] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
S100A8 and S100A9 are small, human, Ca2+-binding proteins with multiple intracellular and extracellular functions in signaling, regulation, and defense. The two proteins are not detected as monomers but form various noncovalent homo- or hetero-oligomers related to specific activities in human physiology. Because of their significant roles in numerous medical conditions, there has been intense research on the conformational properties of various S100A8 and S100A9 proteoforms as essential targets of drug discovery. NMR or crystal structures are currently available only for mutated or truncated protein complexes, mainly with bound metal ions, that may well reflect the proteins' properties outside cells but not in other biological contexts in which they perform. Here, we used structural mass spectrometry methods combined with molecular dynamics simulations to compare the conformations of wild-type full-length S100A8 and S100A9 subunits in biologically relevant homo- and hetero-dimers and in higher oligomers formed in the presence of calcium or zinc ions. We provide, first, rationales for their functional response to changing environmental conditions, by elucidating differences between proteoforms in flexible protein regions that may provide the plasticity of the binding sites for the multiple targets, and second, the key factors contributing to the variable stability of the oligomers. The described methods and a systematic view of the conformational properties of S100A8 and S100A9 complexes provide a basis for further research to characterize and modulate their functions for basic science and therapies.
Collapse
Affiliation(s)
- Magdalena Polakowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena Street, 02-109 Warsaw, Poland
| | | |
Collapse
|
155
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D’Arcy S. Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525896. [PMID: 36747879 PMCID: PMC9901172 DOI: 10.1101/2023.01.27.525896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9. Significance Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.
Collapse
Affiliation(s)
- Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Oladimeji S. Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| |
Collapse
|
156
|
Pushparaj P, Nicoletto A, Sheward DJ, Das H, Castro Dopico X, Perez Vidakovics L, Hanke L, Chernyshev M, Narang S, Kim S, Fischbach J, Ekström S, McInerney G, Hällberg BM, Murrell B, Corcoran M, Karlsson Hedestam GB. Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Immunity 2023; 56:193-206.e7. [PMID: 36574772 PMCID: PMC9742198 DOI: 10.1016/j.immuni.2022.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
- Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrea Nicoletto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Julian Fischbach
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Simon Ekström
- Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
157
|
Fang M, Wu O, Cupp-Sutton KA, Smith K, Wu S. Elucidating Protein-Ligand Interactions in Cell Lysates Using High-Throughput Hydrogen-Deuterium Exchange Mass Spectrometry with Integrated Protein Thermal Depletion. Anal Chem 2023; 95:10.1021/acs.analchem.2c04266. [PMID: 36608260 PMCID: PMC10323047 DOI: 10.1021/acs.analchem.2c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is a powerful technique for the characterization of protein-ligand interactions. Currently, there is a growing need for breakthroughs in the application of HDX-MS analysis to protein-ligand interactions in highly complex biological samples such as cell lysates. However, HDX-MS analysis in such systems suffers from extreme spectral complexity as a result of high sample complexity and limited LC separation power due to the traditional use of short LC gradients. Here, we introduced protein thermal depletion (PTD) to reduce protein complexity in E. coli cell lysate for our subzero-temperature long gradient UPLC-HDX-MS platform (PTD-HDX-MS) to facilitate high-throughput analysis of protein-ligand interactions in cell lysates. We spiked bovine carbonic anhydrase II (CaII) and its inhibitor acetazolamide (AZM) into E. coli cell lysate as a model system in our study. We demonstrated that PTD at 60 °C greatly reduces protein complexity in cell lysates, while the AZM-targeted CaII complex remains in solution due to improved thermal stability upon binding. Using both PTD to reduce sample complexity and subzero-temperature long gradient UPLC to boost LC separation power, we successfully elucidated the interaction sites between AZM and CaII in E. coli cell lysate from the high-throughput HDX-MS analysis of thousands of deuterated peptides from hundreds of proteins. Our results highlight the great promise of the PTD-HDX-MS platform for the identification of ligand targets and characterization of protein-ligand interactions in highly complex biological samples such as cell lysates.
Collapse
Affiliation(s)
- Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Oliver Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | | | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
158
|
Kalaninová Z, Fojtík L, Chmelík J, Novák P, Volný M, Man P. Probing Antibody Structures by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2023; 2718:303-334. [PMID: 37665467 DOI: 10.1007/978-1-0716-3457-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Hydrogen/deuterium exchange (HDX) followed by mass spectrometry detection (MS) provides a fast, reliable, and detailed solution for the assessment of a protein structure. It has been widely recognized as an indispensable tool and already approved by several regulatory agencies as a structural technique for the validation of protein biopharmaceuticals, including antibody-based drugs. Antibodies are of a key importance in life and medical sciences but considered to be challenging analytical targets because of their compact structure stabilized by disulfide bonds and due to the presence of glycosylation. Despite these difficulties, there are already numerous excellent studies describing MS-based antibody structure characterization. In this chapter, we describe a universal HDX-MS workflow. Deeper attention is paid to sample handling, optimization procedures, and feasibility stages, as these elements of the HDX experiment are crucial for obtaining reliable detailed and spatially well-resolved information.
Collapse
Affiliation(s)
- Zuzana Kalaninová
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Fojtík
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michael Volný
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Man
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
159
|
Uhrik L, Henek T, Planas-Iglesias J, Kucera J, Damborsky J, Marek M, Hernychova L. Study of Protein Conformational Dynamics Using Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2023; 2652:293-318. [PMID: 37093484 DOI: 10.1007/978-1-0716-3147-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Intrinsic protein dynamics contribute to their biological functions. Rational engineering of protein dynamics is extremely challenging with only a handful of successful examples. Hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) represents a powerful technique for quantitative analysis of protein dynamics. Here we provide a detailed description of the preparation of protein samples, collection of high-quality data, and their in-depth analysis using various computational tools. We illustrate the application of HDX-MS for the study of protein dynamics in the rational engineering of flexible loops in the reconstructed ancestor of haloalkane dehalogenase and Renilla luciferase. These experiments provided unique and valuable data rigorously describing the modification of protein dynamics upon grafting of the loop-helix element. Tips and tricks are provided to stimulate the wider use of HDX-MS to study and engineer protein dynamics.
Collapse
Affiliation(s)
- Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Tomas Henek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Josef Kucera
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
160
|
Singh JP, Chen YY, Huang YT, Hsu STD, Meng TC. Application of hybrid biophysical-biochemical methods to unravel the molecular basis for auto-inhibition and activation of protein tyrosine phosphatase TCPTP/PTPN2. Methods Enzymol 2023; 682:351-374. [PMID: 36948707 DOI: 10.1016/bs.mie.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the discovery of protein tyrosine phosphorylation as one of the critical post-translational modifications, it has been well known that the activity of protein tyrosine kinases (PTKs) is tightly regulated. On the other hand, protein tyrosine phosphatases (PTPs) are often regarded to act constitutively active, but recently we and others have shown that many PTPs are expressed in an inactive form due to allosteric inhibition by their unique structural features. Furthermore, their cellular activity is highly regulated in a spatiotemporal manner. In general, PTPs share a conserved catalytic domain comprising about 280 residues that is flanked by either an N-terminal or a C-terminal non-catalytic segment, which differs significantly in size and structure from each other and is known to regulate specific PTP's catalytic activity. The well-characterized non-catalytic segments can be globular or intrinsically disordered. In this work, we have focused on the T-Cell Protein Tyrosine Phosphatase (TCPTP/PTPN2) and demonstrated how the hybrid biophysical-biochemical methods can be applied to unravel the underlying mechanism through which TCPTP's catalytic activity is regulated by the non-catalytic C-terminal segment. Our analysis showed that TCPTP is auto-inhibited by its intrinsically disordered tail and trans-activated by Integrin alpha-1's cytosolic region.
Collapse
Affiliation(s)
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Taipei, Taiwan
| | - Yu-Ting Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
161
|
Klinman JP. Dynamical activation of function in metalloenzymes. FEBS Lett 2023; 597:79-91. [PMID: 36239559 PMCID: PMC9839491 DOI: 10.1002/1873-3468.14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Formulations of hydrogen tunneling in enzyme-catalysed C-H activation reactions indicate enthalpic barriers to reaction that are independent of chemical steps and dependent on the protein scaffold. A tool to identify catalytically relevant site-specific protein thermal networks has emerged from temperature-dependent hydrogen deuterium exchange (TDHDX). Focusing on mutant enzyme forms with altered activation energies for catalysis, TDHDX provides a comparative analysis of the impact of mutation on Ea for local protein unfolding. Identified thermal networks appear unrelated to protein scaffold conservation and track to the dictates of the catalysed reaction, including sites for metal binding. The positions of thermal networks provide a framework for further understanding of time-dependent, functionally relevant protein motions. Measurement of nanosecond Stokes shifts at the surface of the thermal network in soybean lipoxygenase yields activation energies that are identical to Ea values measured for kcat . This finding identifies a rapid (> nanosecond), long-range and cooperative structural reorganization as the thermal barrier to catalysis. A model for protein dynamics is put forward that integrates broadly distributed protein conformational sampling with protein embedded thermal networks.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
162
|
Ow SY, Kapp EA, Tomasetig V, Zalewski A, Simmonds J, Panousis C, Wilson MJ, Nash AD, Pelzing M. HDX-MS study on garadacimab binding to activated FXII reveals potential binding interfaces through differential solvent exposure. MAbs 2023; 15:2163459. [PMID: 36628468 PMCID: PMC9839371 DOI: 10.1080/19420862.2022.2163459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hageman factor (FXII) is an essential component in the intrinsic coagulation cascade and a therapeutic target for the prophylactic treatment of hereditary angioedema (HAE). CSL312 (garadacimab) is a novel high-affinity human antibody capable of blocking activated FXII activity that is currently undergoing Phase 3 clinical trials in HAE. Structural studies using hydrogen/deuterium exchange coupled to mass spectrometry revealed evidence of interaction between the antibody and regions surrounding the S1 specificity pocket of FXII, including the 99-loop, 140-loop, 180-loop, and neighboring regions. We propose complementarity-determining regions (CDRs) in heavy-chain CDR2 and CDR3 as potential paratopes on garadacimab, and the 99-loop, 140-loop, 180-loop, and 220-loop as binding sites on the beta chain of activated FXII (β-FXIIa).
Collapse
Affiliation(s)
- Saw Yen Ow
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Eugene A. Kapp
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Vesna Tomasetig
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Anton Zalewski
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Jason Simmonds
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Con Panousis
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Michael J. Wilson
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Andrew D. Nash
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Matthias Pelzing
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia,CONTACT Matthias Pelzing CSL Limited, 30 Flemington Road, Parkville, Victoria3010, Australia
| |
Collapse
|
163
|
Thibodeau MC, Harris NJ, Jenkins ML, Parson MAH, Evans JT, Scott MK, Shaw AL, Pokorný D, Leonard TA, Burke JE. Molecular basis for the recruitment of the Rab effector protein WDR44 by the GTPase Rab11. J Biol Chem 2023; 299:102764. [PMID: 36463963 PMCID: PMC9808001 DOI: 10.1016/j.jbc.2022.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.
Collapse
Affiliation(s)
- Matthew C Thibodeau
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John T Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Pokorný
- Max Perutz Labs, Department of Structural and Computational Biology, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Thomas A Leonard
- Max Perutz Labs, Department of Structural and Computational Biology, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
164
|
Vávra J, Sergunin A, Stráňava M, Kádek A, Shimizu T, Man P, Martínková M. Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins. Methods Mol Biol 2023; 2648:99-122. [PMID: 37039988 DOI: 10.1007/978-1-0716-3080-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Hydrogen/deuterium exchange (HDX) is a well-established analytical technique that enables monitoring of protein dynamics and interactions by probing the isotope exchange of backbone amides. It has virtually no limitations in terms of protein size, flexibility, or reaction conditions and can thus be performed in solution at different pH values and temperatures under controlled redox conditions. Thanks to its coupling with mass spectrometry (MS), it is also straightforward to perform and has relatively high throughput, making it an excellent complement to the high-resolution methods of structural biology. Given the recent expansion of artificial intelligence-aided protein structure modeling, there is considerable demand for techniques allowing fast and unambiguous validation of in silico predictions; HDX-MS is well-placed to meet this demand. Here we present a protocol for HDX-MS and illustrate its use in characterizing the dynamics and structural changes of a dimeric heme-containing oxygen sensor protein as it responds to changes in its coordination and redox state. This allowed us to propose a mechanism by which the signal (oxygen binding to the heme iron in the sensing domain) is transduced to the protein's functional domain.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Stráňava
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alan Kádek
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic.
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
165
|
Shin G, Lim SI. Unveiling the biological interface of protein complexes by mass spectrometry-coupled methods. Proteins 2022; 91:593-607. [PMID: 36573681 DOI: 10.1002/prot.26459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Most biomolecules become functional and bioactive by forming protein complexes through interaction with ligands that are diverse in size, shape, and physicochemical properties. In the complex biological milieu, the interaction is ligand-specific, driven by molecular sensing, and involves the recognition of a binding interface localized within a protein structure. Mapping interfaces of protein complexes is a highly sought area of research as it delivers fundamental insights into proteomes and pathology and hence strategies for therapeutics. While X-ray crystallography and electron microscopy remain the gold standard for structural elucidation of protein complexes, their artificial and static analytic nature often produces a non-native interface that otherwise might be negligible or non-existent in a biological environment. Recently, the mass spectrometry-coupled approaches, chemical crosslinking (CLMS) and hydrogen-deuterium exchange (HDMS) have become valuable analytic complements to the traditional techniques. These methods explicitly identify hot residues and motifs embedded in binding interfaces, especially when the interaction is predominantly dynamic, transient, and/or caused by an intrinsically disordered domain. Here, we review the principal role of CLMS and HDMS in protein structural biology with a particular emphasis on the contribution of recent examples to exploring biological interfaces. Additionally, we describe recent studies that utilized these methods to expand our understanding of protein complex formation and the related biological processes, to increase the probability of structure-based drug design.
Collapse
Affiliation(s)
- Goeun Shin
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| |
Collapse
|
166
|
A conformation-specific nanobody targeting the nicotinamide mononucleotide-activated state of SARM1. Nat Commun 2022; 13:7898. [PMID: 36550129 PMCID: PMC9780360 DOI: 10.1038/s41467-022-35581-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Sterile alpha (SAM) and Toll/interleukin-1 receptor (TIR) motif containing 1 (SARM1) is an autoinhibitory NAD-consuming enzyme that is activated by the accumulation of nicotinamide mononucleotide (NMN) during axonal injury. Its activation mechanism is not fully understood. Here, we generate a nanobody, Nb-C6, that specifically recognizes NMN-activated SARM1. Nb-C6 stains only the activated SARM1 in cells stimulated with CZ-48, a permeant mimetic of NMN, and partially activates SARM1 in vitro and in cells. Cryo-EM of NMN/SARM1/Nb-C6 complex shows an octameric structure with ARM domains bending significantly inward and swinging out together with TIR domains. Nb-C6 binds to SAM domain of the activated SARM1 and stabilized its ARM domain. Mass spectrometry analyses indicate that the activated SARM1 in solution is highly dynamic and that the neighboring TIRs form transient dimers via the surface close to one BB loop. We show that Nb-C6 is a valuable tool for studies of SARM1 activation.
Collapse
|
167
|
Aerts J, Andrén PE, Jansson ET. Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry. Anal Chem 2022; 95:1149-1158. [PMID: 36546842 PMCID: PMC9850406 DOI: 10.1021/acs.analchem.2c03893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, fast liquid chromatographic separations at low temperatures are exclusively used for the separation of peptides generated in hydrogen deuterium exchange (HDX) workflows. However, it has been suggested that capillary electrophoresis may be a better option for use with HDX. We performed in solution HDX on peptides and bovine hemoglobin (Hb) followed by quenching, pepsin digestion, and cold capillary electrophoretic separation coupled with mass spectrometry (MS) detection for benchmarking a laboratory-built HDX-MS platform. We found that capillaries with a neutral coating to eliminate electroosmotic flow and adsorptive processes provided fast separations with upper limit peak capacities surpassing 170. In contrast, uncoated capillaries achieved 30% higher deuterium retention for an angiotensin II peptide standard owing to faster separations but with only half the peak capacity of coated capillaries. Data obtained using two different separation conditions on peptic digests of Hb showed strong agreement of the relative deuterium uptake between methods. Processed data for denatured versus native Hb after deuterium labeling for the longest timepoint in this study (50,000 s) also showed agreement with subunit interaction sites determined by crystallographic methods. All proteomic data are available under DOI: 10.6019/PXD034245.
Collapse
Affiliation(s)
- Jordan
T. Aerts
- Department
of Pharmaceutical Biosciences, Uppsala University, Uppsala751 24, Sweden
| | - Per E. Andrén
- Department
of Pharmaceutical Biosciences, Uppsala University, Uppsala751 24, Sweden,Science
for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala751 24, Sweden
| | - Erik T. Jansson
- Department
of Pharmaceutical Biosciences, Uppsala University, Uppsala751 24, Sweden,
| |
Collapse
|
168
|
Haque HME, Ejemel M, Vance DJ, Willsey G, Rudolph MJ, Cavacini LA, Wang Y, Mantis NJ, Weis DD. Human B Cell Epitope Map of the Lyme Disease Vaccine Antigen, OspA. ACS Infect Dis 2022; 8:2515-2528. [PMID: 36350351 DOI: 10.1021/acsinfecdis.2c00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Lyme disease (LD) vaccine formerly approved for use in the United States consisted of recombinant outer surface protein A (OspA) from Borrelia burgdorferi sensu stricto (ss), the bacterial genospecies responsible for the vast majority of LD in North America. OspA is an ∼30 kDa lipoprotein made up of 21 antiparallel β-strands and a C-terminal α-helix. In clinical trials, protection against LD following vaccination correlated with serum antibody titers against a single epitope near the C-terminus of OspA, as defined by the mouse monoclonal antibody (MAb), LA-2. However, the breadth of the human antibody response to OspA following vaccination remains undefined even as next-generation multivalent OspA-based vaccines are under development. In this report, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes recognized by a unique panel of OspA human MAbs, including four shown to passively protect mice against experimental B. burgdorferi infection and one isolated from a patient with antibiotic refractory Lyme arthritis. The epitopes grouped into three spatially distinct bins that, together, encompass more than half the surface-exposed area of OspA. The bins corresponded to OspA β-strands 8-10 (bin 1), 11-13 (bin 2), and 16-20 plus the C-terminal α-helix (bin 3). Bin 3 was further divided into sub-bins relative to LA-2's epitope. MAbs with complement-dependent borreliacidal activity, as well as B. burgdorferi transmission-blocking activity in the mouse model were found within each bin. Therefore, the resulting B cell epitope map encompasses functionally important targets on OspA that likely contribute to immunity to B. burgdorferi.
Collapse
Affiliation(s)
- H M Emranul Haque
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Monir Ejemel
- MassBiologics, Boston, Massachusetts02126, United States
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - Graham Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - Michael J Rudolph
- New York Structural Biology Center, New York, New York10027, United States
| | | | - Yang Wang
- MassBiologics, Boston, Massachusetts02126, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
169
|
Renawala HK, Topp EM. Fibrillation of human insulin B-chain by pulsed hydrogen-deuterium exchange mass spectrometry. Biophys J 2022; 121:4505-4516. [PMID: 36325616 PMCID: PMC9748358 DOI: 10.1016/j.bpj.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/15/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin forms amyloid fibrils under slightly destabilizing conditions, and B-chain residues are thought to play an important role in insulin fibrillation. Here, pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS), far-UV circular dichroism spectroscopy, thioflavin T (ThioT) fluorescence, turbidity, and soluble fraction measurements were used to monitor the kinetics and mechanisms of fibrillation of human insulin B-chain (INSB) in acidic solution (1 mg/mL, pH 4.5) under stressed conditions (40°C, continuous shaking). Initially, INSB rapidly formed β-sheet-rich oligomers that were protected from HD exchange and showed weak ThioT binding. Subsequent fibril growth and maturation was accompanied by even greater protection from HD exchange and stronger ThioT binding. With peptic digestion of deuterated INSB, HDX-MS suggested early involvement of the N-terminal (1-11, 1-15) and central (12-15, 16-25) fragments in fibril-forming interactions, whereas the C-terminal fragment (25-30) showed limited involvement. The results provide mechanistic understanding of the intermolecular interactions and structural changes during INSB fibrillation under stressed conditions and demonstrate the application of pulsed HDX-MS to probe peptide fibrillation.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana; National Institute for Bioprocessing Research and Training, Dublin, Ireland.
| |
Collapse
|
170
|
Burke MJ, Scott JNF, Minshull TC, Gao Z, Manfield I, Savic S, Stockley PG, Calabrese AN, Boyes J. A bovine antibody possessing an ultralong complementarity-determining region CDRH3 targets a highly conserved epitope in sarbecovirus spike proteins. J Biol Chem 2022; 298:102624. [PMID: 36272646 PMCID: PMC9678781 DOI: 10.1016/j.jbc.2022.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Broadly neutralizing antibodies have huge potential as novel antiviral therapeutics due to their ability to recognize highly conserved epitopes that are seldom mutated in viral variants. A subset of bovine antibodies possess an ultralong complementarity-determining region (CDR)H3 that is highly adept at recognizing such conserved epitopes, but their reactivity against Sarbecovirus Spike proteins has not been explored previously. Here, we use a SARS-naïve library to isolate a broadly reactive bovine CDRH3 that binds the receptor-binding domain of SARS-CoV, SARS-CoV-2, and all SARS-CoV-2 variants. We show further that it neutralizes viruses pseudo-typed with SARS-CoV Spike, but this is not by competition with angiotensin-converting enzyme 2 (ACE2) binding. Instead, using differential hydrogen-deuterium exchange mass spectrometry, we demonstrate that it recognizes the major site of vulnerability of Sarbecoviruses. This glycan-shielded cryptic epitope becomes available only transiently via interdomain movements of the Spike protein such that antibody binding triggers destruction of the prefusion complex. This proof of principle study demonstrates the power of in vitro expressed bovine antibodies with ultralong CDRH3s for the isolation of novel, broadly reactive tools to combat emerging pathogens and to identify key epitopes for vaccine development.
Collapse
Affiliation(s)
- Matthew J Burke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - James N F Scott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Thomas C Minshull
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Zeqian Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Iain Manfield
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sinisa Savic
- National Institute for Health Research, Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
| | - Peter G Stockley
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Antonio N Calabrese
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
171
|
Hayashi D, Mouchlis VD, Okamoto S, Namba T, Wang L, Li S, Ueda S, Yamanoue M, Tachibana H, Arai H, Ashida H, Dennis EA, Shirai Y. Vitamin E functions by association with a novel binding site on the 67 kDa laminin receptor activating diacylglycerol kinase. J Nutr Biochem 2022; 110:109129. [PMID: 35977663 PMCID: PMC10243646 DOI: 10.1016/j.jnutbio.2022.109129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/27/2022] [Accepted: 07/16/2022] [Indexed: 01/13/2023]
Abstract
It is generally recognized that the main function of α-tocopherol (αToc), which is the most active form of vitamin E, is its antioxidant effect, while non-antioxidant effects have also been reported. We previously found that αToc ameliorates diabetic nephropathy via diacylglycerol kinase alpha (DGKα) activation in vivo, and the activation was not related to the antioxidant effect. However, the underlying mechanism of how αToc activates DGKα have been enigmatic. We report that the membrane-bound 67 kDa laminin receptor (67LR), which has previously been shown to serve as a receptor for epigallocatechin gallate (EGCG), also contains a novel binding site for vitamin E, and its association with Vitamin E mediates DGKα activation by αToc. We employed hydrogen-deuterium exchange mass spectrometry (HDX/MS) and molecular dynamics (MD) simulations to identify the specific binding site of αToc on the 67LR and discovered the conformation of the specific hydrophobic pocket that accommodates αToc. Also, HDX/MS and MD simulations demonstrated the detailed binding of EGCG to a water-exposed hydrophilic site on 67LR, while in contrast αToc binds to a distinct hydrophobic site. We demonstrated that 67LR triggers an important signaling pathway mediating non-antioxidant effects of αToc, such as DGKα activation. This is the first evidence demonstrating a membrane receptor for αToc and one of the underlying mechanisms of a non-antioxidant function for αToc.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan; Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Varnavas D Mouchlis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Seika Okamoto
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Tomoka Namba
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Liuqing Wang
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo Japan
| | - Hitoshi Ashida
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Edward A Dennis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan.
| |
Collapse
|
172
|
Investigating how intrinsically disordered regions contribute to protein function using HDX-MS. Biochem Soc Trans 2022; 50:1607-1617. [DOI: 10.1042/bst20220206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
A large amount of the human proteome is composed of highly dynamic regions that do not adopt a single static conformation. These regions are defined as intrinsically disordered, and they are found in a third of all eukaryotic proteins. They play instrumental roles in many aspects of protein signaling, but can be challenging to characterize by biophysical methods. Intriguingly, many of these regions can adopt stable secondary structure upon interaction with a variety of binding partners, including proteins, lipids, and ligands. This review will discuss the application of Hydrogen-deuterium exchange mass spectrometry (HDX-MS) as a powerful biophysical tool that is particularly well suited for structural and functional characterization of intrinsically disordered regions in proteins. A focus will be on the theory of hydrogen exchange, and its practical application to identify disordered regions, as well as characterize how they participate in protein–protein and protein–membrane interfaces. A particular emphasis will be on how HDX-MS data can be presented specifically tailored for analysis of intrinsically disordered regions, as well as the technical aspects that are critical to consider when designing HDX-MS experiments for proteins containing intrinsically disordered regions.
Collapse
|
173
|
Smets D, Tsirigotaki A, Smit JH, Krishnamurthy S, Portaliou AG, Vorobieva A, Vranken W, Karamanou S, Economou A. Evolutionary adaptation of the protein folding pathway for secretability. EMBO J 2022; 41:e111344. [PMID: 36031863 PMCID: PMC9713715 DOI: 10.15252/embj.2022111344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 01/15/2023] Open
Abstract
Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.
Collapse
Affiliation(s)
- Dries Smets
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Jochem H Smit
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassia Vorobieva
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Wim Vranken
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in BrusselsFree University of BrusselsBrusselsBelgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| |
Collapse
|
174
|
Biochemical Characterization of the TINTIN Module of the NuA4 Complex Reveals Allosteric Regulation of Nucleosome Interaction. Mol Cell Biol 2022; 42:e0017022. [PMID: 36190236 PMCID: PMC9670870 DOI: 10.1128/mcb.00170-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trimer Independent of NuA4 involved in Transcription Interactions with Nucleosomes (TINTIN) is an integral module of the essential yeast lysine acetyltransferase complex NuA4 that plays key roles in transcription regulation and DNA repair. Composed of Eaf3, Eaf5, and Eaf7, TINTIN mediates targeting of NuA4 to chromatin through the chromodomain-containing subunit Eaf3 that is shared with the Rpd3S histone deacetylase complex. How Eaf3 mediates chromatin interaction in the context of TINTIN and how is it different from what has been observed in Rpd3S is unclear. Here, we reconstituted recombinant TINTIN and its subassemblies and characterized their biochemical and structural properties. Our coimmunoprecipitation, AlphaFold2 modeling, and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses revealed that the Eaf3 MRG domain contacts Eaf7 and this binding induces conformational changes throughout Eaf3. Nucleosome-binding assays showed that Eaf3 and TINTIN interact non-specifically with the DNA on nucleosomes. Furthermore, integration into TINTIN enhances the affinity of Eaf3 toward nucleosomes and this improvement is a result of allosteric activation of the Eaf3 chromodomain. Negative stain electron microscopy (EM) analysis revealed that TINTIN binds to the edge of nucleosomes with increased specificity in the presence of H3K36me3. Collectively, our work provides insights into the dynamics of TINTIN and the mechanism by which its interactions with chromatin are regulated.
Collapse
|
175
|
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nat Commun 2022; 13:6791. [PMID: 36357385 PMCID: PMC9649653 DOI: 10.1038/s41467-022-34398-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat non-small cell lung cancers (NSCLC) driven by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain (TKD). TKI responses vary across tumors driven by the heterogeneous group of exon 19 deletions and mutations, but the molecular basis for these differences is not understood. Using purified TKDs, we compared kinetic properties of several exon 19 variants. Although unaltered for the second generation TKI afatinib, sensitivity varied significantly for both the first and third generation TKIs erlotinib and osimertinib. The most sensitive variants showed reduced ATP-binding affinity, whereas those associated with primary resistance retained wild type ATP-binding characteristics (and low KM, ATP). Through crystallographic and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies, we identify possible origins for the altered ATP-binding affinity underlying TKI sensitivity and resistance, and propose a basis for classifying uncommon exon 19 variants that may have predictive clinical value.
Collapse
|
176
|
Du S, Alvarado JJ, Wales TE, Moroco JA, Engen JR, Smithgall TE. ATP-site inhibitors induce unique conformations of the acute myeloid leukemia-associated Src-family kinase, Fgr. Structure 2022; 30:1508-1517.e3. [PMID: 36115344 PMCID: PMC9637690 DOI: 10.1016/j.str.2022.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
The Src-family kinase Fgr is expressed primarily in myeloid hematopoietic cells and contributes to myeloid leukemia. Here, we present X-ray crystal structures of Fgr bound to the ATP-site inhibitors A-419259 and TL02-59, which show promise as anti-leukemic agents. A-419259 induces a closed Fgr conformation, with the SH3 and SH2 domains engaging the SH2-kinase linker and C-terminal tail, respectively. In the Fgr:A-419259 complex, the activation loop of one monomer inserts into the active site of the other, providing a snapshot of trans-autophosphorylation. By contrast, TL02-59 binding induced SH2 domain displacement from the C-terminal tail and SH3 domain release from the linker. Solution studies using HDX MS were consistent with the crystal structures, with A-419259 reducing and TL02-59 enhancing solvent exposure of the SH3 domain. These structures demonstrate that allosteric connections between the kinase and regulatory domains of Src-family kinases are regulated by the ligand bound to the active site.
Collapse
Affiliation(s)
- Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jamie A Moroco
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
177
|
Tajoddin NN, Konermann L. Structural Dynamics of a Thermally Stressed Monoclonal Antibody Characterized by Temperature-Dependent H/D Exchange Mass Spectrometry. Anal Chem 2022; 94:15499-15509. [DOI: 10.1021/acs.analchem.2c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nastaran N. Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
178
|
Bizzarri AR. Conformational Heterogeneity and Frustration of the Tumor Suppressor p53 as Tuned by Punctual Mutations. Int J Mol Sci 2022; 23:12636. [PMID: 36293489 PMCID: PMC9604312 DOI: 10.3390/ijms232012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational heterogeneity of the p53 tumor suppressor, the wild-type (p53wt) and mutated forms, was investigated by a computational approach, including the modeling and all atoms of the molecular dynamics (MD) simulations. Four different punctual mutations (p53R175H, p53R248Q, p53R273H, and p53R282W) which are known to affect the DNA binding and belong to the most frequent hot-spot mutations in human cancers, were taken into consideration. The MD trajectories of the wild-type and mutated p53 forms were analyzed by essential dynamics to extract the relevant collective motions and by the frustration method to evaluate the degeneracy of the energy landscape. We found that p53 is characterized by wide collective motions and its energy landscape exhibits a rather high frustration level, especially in the regions involved in the binding to physiological ligands. Punctual mutations give rise to a modulation of both the collective motions and the frustration of p53, with different effects depending on the mutation. The regions of p53wt and of the mutated forms characterized by a high frustration level are also largely involved in the collective motions. Such a correlation is discussed also in connection with the intrinsic disordered character of p53 and with its central functional role.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| |
Collapse
|
179
|
Xu Z, Ismanto HS, Zhou H, Saputri DS, Sugihara F, Standley DM. Advances in antibody discovery from human BCR repertoires. FRONTIERS IN BIOINFORMATICS 2022; 2:1044975. [PMID: 36338807 PMCID: PMC9631452 DOI: 10.3389/fbinf.2022.1044975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Antibodies make up an important and growing class of compounds used for the diagnosis or treatment of disease. While traditional antibody discovery utilized immunization of animals to generate lead compounds, technological innovations have made it possible to search for antibodies targeting a given antigen within the repertoires of B cells in humans. Here we group these innovations into four broad categories: cell sorting allows the collection of cells enriched in specificity to one or more antigens; BCR sequencing can be performed on bulk mRNA, genomic DNA or on paired (heavy-light) mRNA; BCR repertoire analysis generally involves clustering BCRs into specificity groups or more in-depth modeling of antibody-antigen interactions, such as antibody-specific epitope predictions; validation of antibody-antigen interactions requires expression of antibodies, followed by antigen binding assays or epitope mapping. Together with innovations in Deep learning these technologies will contribute to the future discovery of diagnostic and therapeutic antibodies directly from humans.
Collapse
Affiliation(s)
- Zichang Xu
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hao Zhou
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department Systems Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
180
|
Fundamentals of HDX-MS. Essays Biochem 2022; 67:301-314. [PMID: 36251047 PMCID: PMC10070489 DOI: 10.1042/ebc20220111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is becoming part of the standard repertoire of techniques used by molecular biologists to investigate protein structure and dynamics. This is partly due to the increased use of automation in all stages of the technique and its versatility of application-many proteins that present challenges with techniques such as X-ray crystallography and cryoelectron microscopy are amenable to investigation with HDX-MS. The present review is aimed at scientists who are curious about the technique, and how it may aid their research. It describes the fundamental basis of solvent exchange, the basics of a standard HDX-MS experiment, as well as highlighting emerging novel experimental advances, which point to where the field is heading.
Collapse
|
181
|
Fujinami D, Hayashi S, Kohda D. Retrospective study for the universal applicability of the residue-based linear free energy relationship in the two-state exchange of protein molecules. Sci Rep 2022; 12:16843. [PMID: 36207470 PMCID: PMC9546931 DOI: 10.1038/s41598-022-21226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Multiprobe measurements, such as NMR and hydrogen exchange studies, can provide the equilibrium constant, K, and rate constants for forward and backward processes, k and k′, of the two-state structural changes of a polypeptide on a per-residue basis. We previously found a linear relationship between log K and log k and between log K and log k′ for the topological exchange of a 27-residue bioactive peptide. To test the general applicability of the residue-based linear free energy relationship (rbLEFR), we performed a literature search to collect residue-specific K, k, and k′ values in various exchange processes, including folding-unfolding equilibrium, coupled folding and binding of intrinsically disordered peptides, and structural fluctuations of folded proteins. The good linearity in a substantial number of the log–log plots proved that the rbLFER holds for the structural changes in a wide variety of protein-related phenomena. Among the successful cases, the hydrogen exchange study of apomyoglobin folding intermediates is particularly interesting. We found that the residues that deviated from the linear relationship corresponded to the α-helix, for which transient translocation had been identified by other experiments. Thus, the rbLFER is useful for studying the structures and energetics of the dynamic states of protein molecules.
Collapse
Affiliation(s)
- Daisuke Fujinami
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
182
|
Effect of α-helical domain of Gi/o α subunit on GDP/GTP turnover. Biochem J 2022; 479:1843-1855. [PMID: 36000572 DOI: 10.1042/bcj20220163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, β, and γ subunits, and Gα has a GDP/GTP-binding pocket. When a guanine nucleotide exchange factor (GEF) interacts with Gα, GDP is released, and GTP interacts to Gα. The GTP-bound activated Gα dissociates from GEF and Gβγ, mediating the induction of various intracellular signaling pathways. Depending on the sequence similarity and cellular function, Gα subunits are subcategorized into four subfamilies: Gαi/o, Gαs, Gαq/11, and Gα12/13. Although the Gαi/o subtype family proteins, Gαi3 and GαoA, share similar sequences and functions, they differ in their GDP/GTP turnover profiles, with GαoA possessing faster rates than Gαi3. The structural factors responsible for these differences remain unknown. In this study, we employed hydrogen/deuterium exchange mass spectrometry and mutational studies to investigate the factors responsible for these functional differences. The Gα subunit consists of a Ras-like domain (RD) and an α-helical domain (AHD). The RD has GTPase activity and receptor-binding and effector-binding regions; however, the function of the AHD has not yet been extensively studied. In this study, the chimeric construct containing the RD of Gαi3 and the AHD of GαoA showed a GDP/GTP turnover profile similar to that of GαoA, suggesting that the AHD is the major regulator of the GDP/GTP turnover profile. Additionally, site-directed mutagenesis revealed the importance of the N-terminal part of αA and αA/αB loops in the AHD for the GDP/GTP exchange. These results suggest that the AHD regulates the nucleotide exchange rate within the Gα subfamily.
Collapse
|
183
|
Young SG, Song W, Yang Y, Birrane G, Jiang H, Beigneux AP, Ploug M, Fong LG. A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2022; 119:e2211136119. [PMID: 36037340 PMCID: PMC9457329 DOI: 10.1073/pnas.2211136119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
GPIHBP1, a protein of capillary endothelial cells (ECs), is a crucial partner for lipoprotein lipase (LPL) in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1, which contains a three-fingered cysteine-rich LU (Ly6/uPAR) domain and an intrinsically disordered acidic domain (AD), captures LPL from within the interstitial spaces (where it is secreted by parenchymal cells) and shuttles it across ECs to the capillary lumen. Without GPIHBP1, LPL remains stranded within the interstitial spaces, causing severe hypertriglyceridemia (chylomicronemia). Biophysical studies revealed that GPIHBP1 stabilizes LPL structure and preserves LPL activity. That discovery was the key to crystallizing the GPIHBP1-LPL complex. The crystal structure revealed that GPIHBP1's LU domain binds, largely by hydrophobic contacts, to LPL's C-terminal lipid-binding domain and that the AD is positioned to project across and interact, by electrostatic forces, with a large basic patch spanning LPL's lipid-binding and catalytic domains. We uncovered three functions for GPIHBP1's AD. First, it accelerates the kinetics of LPL binding. Second, it preserves LPL activity by inhibiting unfolding of LPL's catalytic domain. Third, by sheathing LPL's basic patch, the AD makes it possible for LPL to move across ECs to the capillary lumen. Without the AD, GPIHBP1-bound LPL is trapped by persistent interactions between LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the abluminal surface of ECs. The AD interrupts the HSPG interactions, freeing LPL-GPIHBP1 complexes to move across ECs to the capillary lumen. GPIHBP1 is medically important; GPIHBP1 mutations cause lifelong chylomicronemia, and GPIHBP1 autoantibodies cause some acquired cases of chylomicronemia.
Collapse
Affiliation(s)
- Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Anne P. Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen 2200N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G. Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
184
|
Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR, Wolynes PG, Komives EA. An intrinsically disordered transcription activation domain increases the DNA binding affinity and reduces the specificity of NFκB p50/RelA. J Biol Chem 2022; 298:102349. [PMID: 35934050 PMCID: PMC9440430 DOI: 10.1016/j.jbc.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Many transcription factors contain intrinsically disordered transcription activation domains (TADs), which mediate interactions with coactivators to activate transcription. Historically, DNA-binding domains and TADs have been considered as modular units, but recent studies have shown that TADs can influence DNA binding. Whether these results can be generalized to more TADs is not clear. Here, we biophysically characterized the NFκB p50/RelA heterodimer including the RelA TAD and investigated the TAD's influence on NFκB-DNA interactions. In solution, we show the RelA TAD is disordered but compact, with helical tendency in two regions that interact with coactivators. We determined that the presence of the TAD increased the stoichiometry of NFκB-DNA complexes containing promoter DNA sequences with tandem κB recognition motifs by promoting the binding of NFκB dimers in excess of the number of κB sites. In addition, we measured the binding affinity of p50/RelA for DNA containing tandem κB sites and single κB sites. While the presence of the TAD enhanced the binding affinity of p50/RelA for all κB sequences tested, it also increased the affinity for nonspecific DNA sequences by over 10-fold, leading to an overall decrease in specificity for κB DNA sequences. In contrast, previous studies have generally reported that TADs decrease DNA-binding affinity and increase sequence specificity. Our results reveal a novel function of the RelA TAD in promoting binding to nonconsensus DNA, which sheds light on previous observations of extensive nonconsensus DNA binding by NFκB in vivo in response to strong inflammatory signals.
Collapse
Affiliation(s)
- Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Dominic Narang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Amalia C Villagrán Suárez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Joan Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Maxwell J Bachochin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
185
|
Gao S, Zhang W, Barrow SL, Iavarone AT, Klinman JP. Temperature-dependent hydrogen deuterium exchange shows impact of analog binding on adenosine deaminase flexibility but not embedded thermal networks. J Biol Chem 2022; 298:102350. [PMID: 35933011 PMCID: PMC9483566 DOI: 10.1016/j.jbc.2022.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Samuel L Barrow
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
186
|
Reiter KH, Zelter A, Janowska MK, Riffle M, Shulman N, MacLean BX, Tamura K, Chambers MC, MacCoss MJ, Davis TN, Guttman M, Brzovic PS, Klevit RE. Cullin-independent recognition of HHARI substrates by a dynamic RBR catalytic domain. Structure 2022; 30:1269-1284.e6. [PMID: 35716664 PMCID: PMC9444911 DOI: 10.1016/j.str.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
Abstract
RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.
Collapse
Affiliation(s)
- Katherine H Reiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kaipo Tamura
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Chambers
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
187
|
Lin X, Zmyslowski AM, Gagnon IA, Nakamoto RK, Sosnick TR. Development of in vivo HDX-MS with applications to a TonB-dependent transporter and other proteins. Protein Sci 2022; 31:e4402. [PMID: 36040258 PMCID: PMC9382693 DOI: 10.1002/pro.4402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful tool that monitors protein dynamics in solution. However, the reversible nature of HDX labels has largely limited the application to in vitro systems. Here, we describe a protocol for measuring HDX-MS in living Escherichia coli cells applied to BtuB, a TonB-dependent transporter found in outer membranes (OMs). BtuB is a convenient and biologically interesting system for testing in vivo HDX-MS due to its controllable HDX behavior and large structural rearrangements that occur during the B12 transport cycle. Our previous HDX-MS study in native OMs provided evidence for B12 binding and breaking of a salt bridge termed the Ionic Lock, an event that leads to the unfolding of the amino terminus. Although purified OMs provide a more native-like environment than reconstituted systems, disruption of the cell envelope during lysis perturbs the linkage between BtuB and the TonB complex that drives B12 transport. The in vivo HDX response of BtuB's plug domain (BtuBp) to B12 binding corroborates our previous in vitro findings that B12 alone is sufficient to break the Ionic Lock. In addition, we still find no evidence of B12 binding-induced unfolding in other regions of BtuBp that could enable B12 passage. Our protocol was successful in reporting on the HDX of several endogenous E. coli proteins measured in the same measurement. Our success in performing HDX in live cells opens the possibility for future HDX-MS studies in a native cellular environment. IMPORTANCE: We present a protocol for performing in vivo HDX-MS, focusing on BtuB, a protein whose native membrane environment is believed to be mechanistically important for B12 transport. The in vivo HDX-MS data corroborate the conclusions from our previous in vitro HDX-MS study of the allostery initiated by B12 binding. Our success with BtuB and other proteins opens the possibility for performing additional HDX-MS studies in a native cellular environment.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Adam M. Zmyslowski
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
- Present address:
Evozyne LLCChicagoIllinoisUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
- Prizker School for Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
- Institute for Biophysical DynamicsThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
188
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
189
|
Medley BJ, Leclaire L, Thompson N, Mahoney KE, Pluvinage B, Parson MAH, Burke JE, Malaker S, Wakarchuk W, Boraston AB. A previously uncharacterized O-glycopeptidase from Akkermansia muciniphila requires the Tn-antigen for cleavage of the peptide bond. J Biol Chem 2022; 298:102439. [PMID: 36049519 PMCID: PMC9513282 DOI: 10.1016/j.jbc.2022.102439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/27/2022] Open
Abstract
Akkermansia muciniphila is key member of the human gut microbiota, impacting many features of host health. A major characteristic of this bacterium is its interaction with host mucin, which is abundant in the gut environment, and its ability to metabolize mucin as a nutrient source. The machinery deployed by A. muciniphila to enable this interaction appears to be extensive and sophisticated, yet it is incompletely defined. The uncharacterized protein AMUC_1438 is encoded by a gene that was previously shown to be upregulated when the bacterium is grown on mucin. This uncharacterized protein has features suggestive of carbohydrate-recognition and peptidase activity, which led us to hypothesize that it has a role in mucin depolymerization. Here we provide structural and functional support for the assignment of AMUC_1438 as a unique O-glycopeptidase with mucin degrading capacity. O-glycopeptidase enzymes recognize glycans but hydrolyze the peptide backbone and are common in host-adapted microbes that colonize or invade mucus layers. Structural, kinetic, and mutagenic analyses point to a metzincin metalloprotease catalytic motif but specific recognition of a GalNAc residue α-linked to serine or threonine (i.e. the Tn-antigen) within the AMUC_1438 active site. The enzyme catalyzes hydrolysis of the bond immediately N-terminal to the glycosylated residue. Additional modelling analyses suggest the presence of a carbohydrate-binding module that may assist in substrate recognition. We anticipate that these results will be fundamental to a wider understanding of the O-glycopeptidase class of enzymes and how they may contribute to host-adaptation.
Collapse
Affiliation(s)
- Brendon J Medley
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Leif Leclaire
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Keira E Mahoney
- Department of Chemistry, Yale University, 350 Edward St., New Haven CT, 06511
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Stacy Malaker
- Department of Chemistry, Yale University, 350 Edward St., New Haven CT, 06511
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada.
| |
Collapse
|
190
|
Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. SCIENCE ADVANCES 2022; 8:eabl9461. [PMID: 36001657 PMCID: PMC9401617 DOI: 10.1126/sciadv.abl9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chromatin marks are recognized by distinct binding modules, many of which are embedded in multidomain proteins. How the different functionalities of such complex chromatin modulators are regulated is often unclear. Here, we delineated the interplay of the H3 amino terminus- and K9me-binding activities of the multidomain hUHRF1 protein. We show that the phosphoinositide PI5P interacts simultaneously with two distant flexible linker regions connecting distinct domains of hUHRF1. The binding is dependent on both, the polar head group, and the acyl part of the phospholipid and induces a conformational rearrangement juxtaposing the H3 amino terminus and K9me3 recognition modules of the protein. In consequence, the two features of the H3 tail are bound in a multivalent, synergistic manner. Our work highlights a previously unidentified molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.
Collapse
Affiliation(s)
- Papita Mandal
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Karthik Eswara
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Zhadyra Yerkesh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Vladlena Kharchenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kacper Szczepski
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
191
|
Seow J, Khan H, Rosa A, Calvaresi V, Graham C, Pickering S, Pye VE, Cronin NB, Huettner I, Malim MH, Politis A, Cherepanov P, Doores KJ. A neutralizing epitope on the SD1 domain of SARS-CoV-2 spike targeted following infection and vaccination. Cell Rep 2022; 40:111276. [PMID: 35981534 PMCID: PMC9365860 DOI: 10.1016/j.celrep.2022.111276] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | | | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Nora B Cronin
- LonCEM Facility, The Francis Crick Institute, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK; Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
192
|
Smets D, Smit J, Xu Y, Karamanou S, Economou A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J Mol Biol 2022; 434:167790. [PMID: 35970402 DOI: 10.1016/j.jmb.2022.167790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide's hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein's native core exploit their structural dynamics to influence the folding landscape.
Collapse
Affiliation(s)
- Dries Smets
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Jochem Smit
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Ying Xu
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
193
|
Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. BMC Biol 2022; 20:176. [PMID: 35945584 PMCID: PMC9361521 DOI: 10.1186/s12915-022-01381-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.
Collapse
Affiliation(s)
- Corentin Léger
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Irène Pitard
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Nicolas Carvalho
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Sébastien Brier
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Ariel Mechaly
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Dorothée Raoux-Barbot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrick Weber
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - J Iñaki Guijarro
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
194
|
Su Y, Iacob RE, Li J, Engen JR, Springer TA. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. J Biol Chem 2022; 298:102323. [PMID: 35931112 PMCID: PMC9483561 DOI: 10.1016/j.jbc.2022.102323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Integrin α5β1 mediates cell adhesion to the extracellular matrix by binding fibronectin (Fn). Selectivity for Fn by α5β1 is achieved through recognition of an RGD motif in the 10th type III Fn domain (Fn10) and the synergy site in the ninth type III Fn domain (Fn9). However, details of the interaction dynamics are unknown. Here, we compared synergy-site and Fn-truncation mutations for their α5β1-binding affinities and stabilities. We also interrogated binding of the α5β1 ectodomain headpiece fragment to Fn using hydrogen-deuterium exchange (HDX) mass spectrometry to probe binding sites and sites of integrin conformational change. Our results suggest the synergistic effect of Fn9 requires both specific residues and a folded domain. We found some residues considered important for synergy are required for stability. Additionally, we show decreases in fibronectin HDX are localized to a synergy peptide containing contacting residues in two β-strands, an intervening loop in Fn9, and the RGD-containing loop in Fn10, indicative of binding sites. We also identified binding sites in the α5-subunit β-propeller domain for the Fn9 synergy site and in the β1-subunit βI domain for Fn10 based on decreases in α5β1 HDX. Interestingly, the dominant effect of Fn binding was an increase in α5β1 deuterium exchange distributed over multiple sites that undergo changes in conformation or solvent accessibility and appear to be sites where energy is stored in the higher-energy, open-integrin conformation. Together, our results highlight regions important for α5β1 binding to Fn and dynamics associated with this interaction.
Collapse
Affiliation(s)
- Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
195
|
Gao S, Klinman JP. Functional roles of enzyme dynamics in accelerating active site chemistry: Emerging techniques and changing concepts. Curr Opin Struct Biol 2022; 75:102434. [PMID: 35872562 PMCID: PMC9901422 DOI: 10.1016/j.sbi.2022.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023]
Abstract
With the growing acceptance of the contribution of protein conformational ensembles to enzyme catalysis and regulation, research in the field of protein dynamics has shifted toward an understanding of the atomistic properties of protein dynamical networks and the mechanisms and time scales that control such behavior. A full description of an enzymatic reaction coordinate is expected to extend beyond the active site and include site-specific networks that communicate with the protein/water interface. Advances in experimental tools for the spatial resolution of thermal activation pathways are being complemented by biophysical methods for visualizing dynamics in real time. An emerging multidimensional model integrates the impacts of bound substrate/effector on the distribution of protein substates that are in rapid equilibration near room temperature with reaction-specific protein embedded heat transfer conduits.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States. https://twitter.com/S_H_Gao
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
196
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
197
|
Wagner ND, Moyle AB, Pabon JPR, Gross ML. Automated Specific Amino Acid Footprinting Mass Spectrometry: Repurposing an HDX Platform for Determining Reagent Feasibility. Anal Chem 2022; 94:10314-10319. [PMID: 35830607 PMCID: PMC10482561 DOI: 10.1021/acs.analchem.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein footprinting is a mass spectrometry (MS)-based approach to measure protein conformational changes. One approach, specific amino acid labeling, imparts often an irreversible modification to protein side chains but requires careful selection of the reactive reagent and often time-consuming optimization of experimental parameters prior to submission to bottom-up MS analysis. In this work, we repurpose a hydrogen-deuterium exchange MS (HDX-MS) LEAP HDX system for automated specific amino acid footprinting MS, demonstrating its efficacy in reaction optimization and monitoring applicability to specific ligand binding systems. We screened reagent conditions for two model ligand-binding systems and demonstrate the method's efficacy for measuring differences induced by ligand binding. Our proof-of-concept experiments provide a platform for rapidly screening specific amino acid reagents and reaction conditions for protein systems to be studied by footprinting.
Collapse
Affiliation(s)
- Nicole D. Wagner
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Austin B. Moyle
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Juan P. Rincon Pabon
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| | - Michael L. Gross
- Washington University in St. Louis, Department of Chemistry, St. Louis, MO 63130
| |
Collapse
|
198
|
A multifaceted strategy to improve recombinant expression and structural characterisation of a Trypanosoma invariant surface protein. Sci Rep 2022; 12:12706. [PMID: 35882923 PMCID: PMC9325691 DOI: 10.1038/s41598-022-16958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Identification of a protein minimal fragment amenable to crystallisation can be time- and labour intensive especially if large amounts are required and the protein has a complex fold and functionally important post-translational modifications. In addition, a lack of homologues and structural information can further complicate the design of a minimal expression construct. Recombinant expression in E. coli promises high yields, low costs and fast turnover times, but falls short for many extracellular, eukaryotic proteins. Eukaryotic expression systems provide an alternative but are costly, slow and require special handling and equipment. Using a member of a structurally uncharacterized, eukaryotic receptor family as an example we employ hydrogen–deuterium exchange mass spectrometry (HDX-MS) guided construct design in conjunction with truncation scanning and targeted expression host switching to identify a minimal expression construct that can be produced with high yields and moderate costs.
Collapse
|
199
|
Yan S, Bhawal R, Yin Z, Thannhauser TW, Zhang S. Recent advances in proteomics and metabolomics in plants. MOLECULAR HORTICULTURE 2022; 2:17. [PMID: 37789425 PMCID: PMC10514990 DOI: 10.1186/s43897-022-00038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 10/05/2023]
Abstract
Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to integrate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driving a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment. Here, we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response, gene/protein function characterization, metabolic and signaling pathways exploration, and natural product discovery. We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology. This review is intended to provide readers with an overview of how advanced MS technology, and integrated application of proteomics and metabolomics can be used to advance plant system biology research.
Collapse
Affiliation(s)
- Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
200
|
Sarkar K, Joedicke L, Westwood M, Burnley R, Wright M, McMillan D, Byrne B. Modulation of PTH1R signaling by an extracellular binding antibody. VITAMINS AND HORMONES 2022; 120:109-132. [PMID: 35953107 DOI: 10.1016/bs.vh.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parathyroid hormone receptor 1 (PTH1R) is a class B G-protein coupled receptor with key roles in bone development. The receptor signals through both the Gs and Gq G-proteins as well as through β-arrestin in a G-protein independent manner. Current treatments for bone disorders, such as osteoporosis, target the PTH1R but are suboptimal in their efficacy. Monoclonal antibodies represent a major growth area in therapeutics as a result of their superior specificity and long serum half-life. Here, we discovered antibodies against the extracellular domain (ECD) of PTH1R from a phage display library. One of these antibodies, ECD-ScFvhFc, binds PTH1R with high affinity and although it has little or no effect on G-protein dependent receptor signaling, it does reduce PTH1R mediated β-arrestin signaling. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) demonstrated that the ECD-ScFvhFc binding site overlapped partially with that of the cognate ligand, PTH. The results of this study demonstrate the suitability of PTH1R as a target for therapeutic antibody development.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Life Sciences, Imperial College, London, United Kingdom; UCB Pharma, Slough, United Kingdom
| | | | | | | | | | | | - Bernadette Byrne
- Department of Life Sciences, Imperial College, London, United Kingdom.
| |
Collapse
|