151
|
Mihanfar A, Sadigh AR, Fattahi A, Latifi Z, Hasanzadeh-Moghadam M, Samadi M, Farzadi L, Hamdi K, Ghasemzadeh A, Nejabati HR, Nouri M. Endothelins and their receptors in embryo implantation. J Cell Biochem 2019; 120:14274-14284. [PMID: 31106465 DOI: 10.1002/jcb.28983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
As a critical stage of pregnancy, the implantation of blastocysts into the endometrium is a progressive, excessively regulated local tissue remodeling step involving a complex sequence of genetic and cellular interplay executed within an optimal time frame. For better understanding the causes of infertility and, more importantly, for developing powerful strategies for successful implantations and combating infertility, an increasing number of recent studies have been focused on the identification and study of newly described substances in the reproductive tree. The endothelins (ET), a 21-aminoacidic family of genes, have been reported to be responsible for the contraction of vascular and nonvascular smooth muscles, including the smooth muscles of the uterus. Therefore, this review aims to comprehensively discuss the physiological role of endothelins and signaling through their receptors, as well as their probable involvement in the implantation process.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Laya Farzadi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
152
|
Hu M, Zhang Y, Guo X, Jia W, Liu G, Zhang J, Li J, Cui P, Sferruzzi-Perri AN, Han Y, Wu X, Ma H, Brännström M, Shao LR, Billig H. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. Am J Physiol Endocrinol Metab 2019; 316:E794-E809. [PMID: 30860876 DOI: 10.1152/ajpendo.00359.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) are at increased risk of miscarriage, which often accompanies the hyperandrogenism and insulin resistance seen in these patients. However, neither the combinatorial interaction between these two PCOS-related etiological factors nor the mechanisms of their actions in the uterus during pregnancy are well understood. We hypothesized that hyperandrogensim and insulin resistance exert a causative role in miscarriage by inducing defects in uterine function that are accompanied by mitochondrial-mediated oxidative stress, inflammation, and perturbed gene expression. Here, we tested this hypothesis by studying the metabolic, endocrine, and uterine abnormalities in pregnant rats after exposure to daily injection of 5α-dihydrotestosterone (DHT; 1.66 mg·kg body wt-1·day-1) and/or insulin (6.0 IU/day) from gestational day 7.5 to 13.5. We showed that whereas DHT-exposed and insulin-exposed pregnant rats presented impaired insulin sensitivity, DHT + insulin-exposed pregnant rats exhibited hyperandrogenism and peripheral insulin resistance, which mirrors pregnant PCOS patients. Compared with controls, hyperandrogenism and insulin resistance in the dam were associated with alterations in uterine morphology and aberrant expression of genes responsible for decidualization (Prl8a2, Fxyd2, and Mt1g), placentation (Fcgr3 and Tpbpa), angiogenesis (Flt1, Angpt1, Angpt2, Ho1, Ccl2, Ccl5, Cxcl9, and Cxcl10) and insulin signaling (Akt, Gsk3, and Gluts). Moreover, we observed changes in uterine mitochondrial function and homeostasis (i.e., mitochondrial DNA copy number and the expression of genes responsible for mitochondrial fusion, fission, biogenesis, and mitophagy) and suppression of both oxidative and antioxidative defenses (i.e., reactive oxygen species, Nrf2 signaling, and interactive networks of antioxidative stress responses) in response to the hyperandrogenism and insulin resistance. These findings demonstrate that hyperandrogenism and insulin resistance induce mitochondria-mediated damage and a resulting imbalance between oxidative and antioxidative stress responses in the gravid uterus.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Xiaozhu Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Wenyan Jia
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Guoqi Liu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Jiao Zhang
- Department of Acupuncture and Moxibustion, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Juan Li
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Yanhua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
153
|
Transcriptomic analysis of the interaction of choriocarcinoma spheroids with receptive vs. non-receptive endometrial epithelium cell lines: an in vitro model for human implantation. J Assist Reprod Genet 2019; 36:857-873. [PMID: 30972518 DOI: 10.1007/s10815-019-01442-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Several in vitro systems have been reported to model human implantation; however, the molecular dynamics of the trophoblast vs. the epithelial substrate during attachment have not been described. We have established an in vitro model which allowed us to dissect the transcriptional responses of the trophoblast and the receptive vs. non-receptive epithelium after co-culture. METHODS We established an in vitro system based on co-culture of (a) immortalized cells representing receptive (Ishikawa) or non-receptive (HEC-1-A) endometrial epithelium with (b) spheroids of a trophoblastic cell line (JEG-3) modified to express green fluorescent protein (GFP). After 48 h of co-culture, GFP+ (trophoblast cells) and GFP- cell fractions (receptive or non-receptive epithelial cells) were isolated by fluorescence-activated flow cytometry (FACS) and subjected to RNA-seq profiling and gene set enrichment analysis (GSEA). RESULTS Compared to HEC-1-A, the trophoblast challenge to Ishikawa cells differentially regulated the expression of 495 genes, which mainly involved cell adhesion and extracellular matrix (ECM) molecules. GSEA revealed enrichment of pathways related to cell division, cell cycle regulation, and metabolism in the Ishikawa substrate. Comparing the gene expression profile of trophoblast spheroids revealed that 1877 and 323 genes were upregulated or downregulated when co-cultured on Ishikawa substrates (compared to HEC-1-A), respectively. Pathways favorable to development, including tissue remodeling, organogenesis, and angiogenesis, were enhanced in the trophoblast compartment after co-culture of spheroids with receptive epithelium. By contrast, the co-culture with less receptive epithelium enriched pathways mainly related to trophoblast cell proliferation and cell cycle regulation. CONCLUSIONS Endometrial receptivity requires a transcriptional signature that determines the trophoblast response and drives attachment.
Collapse
|
154
|
Lira-Albarrán S, Vega CC, Durand M, Rangel C, Larrea F. Functional genomic analysis of the human receptive endometrium transcriptome upon administration of mifepristone at the time of follicle rupture. Mol Cell Endocrinol 2019; 485:88-96. [PMID: 30796948 DOI: 10.1016/j.mce.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to analyze the effects of progesterone withdrawal on gene transcription in receptive endometrium by the administration of a single dose of 50 mg of the anti-progesterone receptor mifepristone (MFP) at the time of follicle rupture (FR). Six volunteer ovulatory women were studied, taking endometrial biopsies of three control and three MFP-treated women on days LH+2 (C-LH+2) and LH+7 (T-MFP), respectively. The biopsies were prepared for RNA isolation or histological and immunohistochemistry studies. The genomic data from 14 women (C-LH+7) were included as a historical control. The functional genomic analysis of the differentially expressed genes showed that MFP interfered negatively with the bio-functions decidualization of uterus and implantation of blastocyst and embryo. The results of this study confirm but also give new information on how MFP affects endometrial gene expression when administered at the time of FR and the dose used in emergency contraception.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México
| | - Claudia C Vega
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México
| | - Marta Durand
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México
| | - Claudia Rangel
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México, 14610, México
| | - Fernando Larrea
- Departmento de Biología de La Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México, 14080, México.
| |
Collapse
|
155
|
He JP, Zhao M, Zhang WQ, Huang MY, Zhu C, Cheng HZ, Liu JL. Identification of Gene Expression Changes Associated With Uterine Receptivity in Mice. Front Physiol 2019; 10:125. [PMID: 30890945 PMCID: PMC6413723 DOI: 10.3389/fphys.2019.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/31/2019] [Indexed: 01/22/2023] Open
Abstract
The mouse is a widely used animal model for studying human reproduction. Although global gene expression changes associated with human uterine receptivity have been determined by independent groups, the same studies in the mouse are scarce. The extent of similarities/differences between mice and humans on uterine receptivity at the molecular level remains to be determined. In the present study, we analyzed global gene expression changes in receptive uterus on day 4 of pregnancy compared to non-receptive uterus on day 3 of pregnancy in mice. A total of 541 differentially expressed genes were identified, of which 316 genes were up-regulated and 225 genes were down-regulated in receptive uterus compared to non-receptive uterus. Gene ontology and gene network analysis highlighted the activation of inflammatory response in the receptive uterus. By analyzing the promoter sequences of differentially expressed genes, we identified 12 causal transcription factors. Through connectivity map (CMap) analysis, we revealed several compounds with potential anti-receptivity activity. Finally, we performed a cross-species comparison against human uterine receptivity from a published dataset. Our study provides a valuable resource for understanding the molecular mechanism underlying uterine receptivity in mice.
Collapse
Affiliation(s)
- Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qian Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming-Yu Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Can Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao-Zhuang Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ji-Long Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
156
|
Sebastian-Leon P, Garrido N, Remohí J, Pellicer A, Diaz-Gimeno P. Asynchronous and pathological windows of implantation: two causes of recurrent implantation failure. Hum Reprod 2019; 33:626-635. [PMID: 29452422 DOI: 10.1093/humrep/dey023] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Is endometrial recurrent implantation failure (RIF) only a matter of an asynchronous (displaced) window of implantation (WOI), or could it also be a pathological (disrupted) WOI? SUMMARY ANSWER Our predictive results demonstrate that both displaced and disrupted WOIs exist and can present independently or together in the same RIF patient. WHAT IS KNOWN ALREADY Since 2002, many gene expression signatures associated with endometrial receptivity and RIF have been described. Endometrial transcriptomics prediction has been applied to the human WOI in two previous studies. One study describes endometrial RIF to be the result of a temporal displacement of the WOI. The other indicates that endometrial RIF can also result from a molecularly disrupted WOI without temporal displacement. STUDY DESIGN, SIZE, DURATION Retrospective analysis was undertaken to compare WOI endometrial transcriptomics predictions in controls (n = 72) and RIF patients (n = 43). RIF was clinically designated by the absence of implantation after four or more transfers of high quality embryos or after the placement of 10 or more embryos in multiple transfers. Endometrial tissue samples were collected from LH + 5 to LH + 8. We compared the two molecular causes of RIF to signatures currently described in the literature. We propose a new transcriptomic RIF taxonomy to fill the gap between the two hypotheses and to guide the development of clinical detection and determination of both types of RIF. PARTICIPANTS/MATERIALS, SETTING, METHODS Utilizing 115 gene expression profiles, two different predictive designs were developed: one considering RIF versus controls removing menstrual cycle timing, called the disrupted or pathological model, and another stratifying the WOI in transcriptomic profiles related to timing for predicting displacements. The predictive value of each model was compared between all signatures selected. We propose a new genomic approach that distinguishes between both types of RIF in the same sample cohort. MAIN RESULTS AND THE ROLE OF CHANCE From the 16 signatures analysed, we clearly predicted two causes of RIF-both a displaced WOI and an on-time but pathologically disrupted WOI. A high predictive value related to WOI profiles associated with menstrual cycle timing was found in most of the signatures. Specifically, 69% of the signatures analysed presented an accuracy higher than expected by chance in a range from 0.87 to 0.97. Displacements and disruptions were not molecularly independent, as some signatures were moderately associated with both causes. The gene and functional comparison between signatures revealed that they were not similar, although we did find functions in common and a cluster of moderate functional concordance between some of the signatures that predicted displacements (the highest Cohen's Kappa index were between 0.55 and 0.62 depending on the functional database). We propose a new transcriptomic RIF taxonomy to fill the gap between these prior studies and to establish methodology for detecting and distinguishing both types of RIF in clinical practice. Our findings indicate these two phenotypes could present independently or together in the same RIF patient. RIF patients designated by clinical criteria have been stratified transcriptomically as 18.6% with only a displaced WOI, 53.5% with a displaced and pathological WOI, 23.3% with only a disrupted WOI, and 4.7% could be a clinical RIF with non-endometrial origin. The new RIF transcriptomic taxonomy avoids menstrual cycle timing as a confounding variable that should be controlled for, distinguishing clearly between a disrupted and a displaced WOI for precision medicine in RIF. LIMITATIONS REASONS FOR CAUTION The main objective of this study was to use transcriptomics to detect both RIF causes and to understand the role of transcriptomic signatures in these phenotypes. The predictive value in absolute terms for each signature was not indicative in these prediction designs; instead, the comparison between signatures was most important for prediction capability in the same sample cohort for both RIF causes. Clinical follow up of the RIF taxonomies proposed has not been analysed in this study, so further prospective clinical studies are necessary to determine the prevalence and penetrance of these phenotypes. WIDER IMPLICATIONS OF THE FINDINGS The main insight from this study is a new understanding of RIF taxonomy. Understanding how to classify RIF patients to distinguish clinically between a patient who could benefit from a personalized embryo transfer day and a patient with a disrupted WOI will enable identification and stratification for the research and development of new treatments. In addition, we demonstrate that basic research designs in endometrial transcriptomics cause masking of the study variable by the menstrual cycle timing. STUDY FUNDING/COMPETING INTEREST(S) This research has been funded by IVI-RMA; the authors do not have any competing interests.
Collapse
Affiliation(s)
- P Sebastian-Leon
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
| | - N Garrido
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
| | - J Remohí
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Instituto Universitario IVI, Av. Blásco Ibáñez, 15, CP 46010, Valencia, Spain
| | - A Pellicer
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Instituto Universitario IVI, Av. Blásco Ibáñez, 15, CP 46010, Valencia, Spain
- Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
| | - P Diaz-Gimeno
- IVI-RMA Fundación IVI, Avda Fernando Abril Martorell 106, CP 46026, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Avda de Menéndez y Pelayo, 4, CP 46010, Valencia, Spain
| |
Collapse
|
157
|
Teder H, Koel M, Paluoja P, Jatsenko T, Rekker K, Laisk-Podar T, Kukuškina V, Velthut-Meikas A, Fjodorova O, Peters M, Kere J, Salumets A, Palta P, Krjutškov K. TAC-seq: targeted DNA and RNA sequencing for precise biomarker molecule counting. NPJ Genom Med 2018; 3:34. [PMID: 30588329 PMCID: PMC6299075 DOI: 10.1038/s41525-018-0072-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Targeted next-generation sequencing (NGS) methods have become essential in medical research and diagnostics. In addition to NGS sensitivity and high-throughput capacity, precise biomolecule counting based on unique molecular identifier (UMI) has potential to increase biomolecule detection accuracy. Although UMIs are widely used in basic research its introduction to clinical assays is still in progress. Here, we present a robust and cost-effective TAC-seq (Targeted Allele Counting by sequencing) method that uses UMIs to estimate the original molecule counts of mRNAs, microRNAs, and cell-free DNA. We applied TAC-seq in three different clinical applications and compared the results with standard NGS. RNA samples extracted from human endometrial biopsies were analyzed using previously described 57 mRNA-based receptivity biomarkers and 49 selected microRNAs at different expression levels. Cell-free DNA aneuploidy testing was based on cell line (47,XX, +21) genomic DNA. TAC-seq mRNA profiling showed identical clustering results to transcriptome RNA sequencing, and microRNA detection demonstrated significant reduction in amplification bias, allowing to determine minor expression changes between different samples that remained undetermined by standard NGS. The mimicking experiment for cell-free DNA fetal aneuploidy analysis showed that TAC-seq can be applied to count highly fragmented DNA, detecting significant (p = 7.6 × 10-4) excess of chromosome 21 molecules at 10% fetal fraction level. Based on three proof-of-principle applications we demonstrate that TAC-seq is an accurate and highly potential biomarker profiling method for advanced medical research and diagnostics.
Collapse
Affiliation(s)
- Hindrek Teder
- 1Competence Centre on Health Technologies, Tartu, Estonia.,2Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mariann Koel
- 1Competence Centre on Health Technologies, Tartu, Estonia.,3Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Priit Paluoja
- 1Competence Centre on Health Technologies, Tartu, Estonia.,4Institute of Computer Science, University of Tartu, Tartu, Estonia
| | | | - Kadri Rekker
- 1Competence Centre on Health Technologies, Tartu, Estonia.,5Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia
| | - Triin Laisk-Podar
- 1Competence Centre on Health Technologies, Tartu, Estonia.,5Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,6Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Agne Velthut-Meikas
- 1Competence Centre on Health Technologies, Tartu, Estonia.,7Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Olga Fjodorova
- 3Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maire Peters
- 1Competence Centre on Health Technologies, Tartu, Estonia.,5Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia
| | - Juha Kere
- 8Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,9Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland.,10School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK
| | - Andres Salumets
- 1Competence Centre on Health Technologies, Tartu, Estonia.,5Institute of Clinical Medicine, Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,11Institute of Biomedicine and Translational Medicine, Department of Biomedicine, University of Tartu, Tartu, Estonia.,12Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Priit Palta
- 6Estonian Genome Center, University of Tartu, Tartu, Estonia.,13Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Kaarel Krjutškov
- 1Competence Centre on Health Technologies, Tartu, Estonia.,8Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,9Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
158
|
Braga DPDAF, Borges E, Godoy AT, Montani DA, Setti AS, Zanetti BF, Figueira RDCS, Eberlin MN, Lo Turco EG. Lipidomic profile as a noninvasive tool to predict endometrial receptivity. Mol Reprod Dev 2018; 86:145-155. [PMID: 30418697 DOI: 10.1002/mrd.23088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 12/28/2022]
Abstract
For the present study we asked whether the endometrial fluid lipidomic may be a useful approach to predict endometrial receptivity in freeze-all cycles. For this case-control study, endometrial fluid samples were collected from 41 patients undergoing freeze-all cycles. Samples were split depending on the pregnancy outcome: positive group (n = 24) and negative group (n = 17). Data were acquired by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied. A list of potential biomarker ion ratios was obtained and the values were used to build a receiver operating characteristic (ROC) curve to predict pregnancy success. The lipid categories were attributed by LIPID MAPS database. Ion ratios were established according to their correlations and used for the analysis. The PCA showed a tendency of separation between the studied groups, whereas the PLS-DA was able to clearly distinguish them. Fifteen ratios (13 hyper-represented in the negative and two hyper-represented in the positive group) were selected according to their importance for model prediction. These ratios were used to build the ROC curve, which presented an area under curve of 84.0% (95%CI: 69.2-97.4%; p = 0.009). These findings suggest that lipidomic profiling of endometrial fluid may be a valuable tool for identifying the time interval comprising the window of implantation.
Collapse
Affiliation(s)
- Daniela Paes de Almeida Ferreira Braga
- Departamento de Cirurgia, Disciplina de Urologia, Universidade Federal de São Paulo -UNIFESP, São Paulo, Brazil.,Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545 São Paulo, Brazil
| | - Edson Borges
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545 São Paulo, Brazil
| | - Adriana Teixeira Godoy
- Laboratorio ThoMSon de Espectrometria de Massas, Universidade de Campinas-UNICAMP, Rua Sérgio Buarque de Holanda, S/N - Cidade Universitária, Campinas, Brazil
| | - Daniela Antunes Montani
- Departamento de Cirurgia, Disciplina de Urologia, Universidade Federal de São Paulo -UNIFESP, São Paulo, Brazil
| | - Amanda Souza Setti
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545 São Paulo, Brazil
| | | | | | - Marcos Nogueira Eberlin
- Laboratorio ThoMSon de Espectrometria de Massas, Universidade de Campinas-UNICAMP, Rua Sérgio Buarque de Holanda, S/N - Cidade Universitária, Campinas, Brazil
| | - Edson Guimarães Lo Turco
- Departamento de Cirurgia, Disciplina de Urologia, Universidade Federal de São Paulo -UNIFESP, São Paulo, Brazil
| |
Collapse
|
159
|
Xin M, He J, Yang W, Yin X, Wang J. Wenshen Yangxue decoction improves endometrial receptivity recovery and promotes endometrial angiogenesis in a rat model. PHARMACEUTICAL BIOLOGY 2018; 56:573-579. [PMID: 31070529 PMCID: PMC6292361 DOI: 10.1080/13880209.2018.1510973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Wenshen Yangxue decoction (WSYXD) is a famous traditional Chinese medicine (TCM) formula and has been used in infertility treatment, but the exact mechanism is still unknown. OBJECTIVES To determine if WSYXD improves endometrial receptivity recovery and promotes endometrial angiogenesis in a rat model. MATERIALS AND METHODS A total of 100 proestrus female SPF Wistar rats were randomly assigned into five groups: control (saline), model (saline and hydroxyurea solution), high (5.2/100 g), middle (2.6/100 g) and low (1.3/100 g) WSYXD dose groups for 10 d. The microvessel densities, endometrial microstructure, as well as blastocysts number, were observed, followed by detection of angiogenesis-related gene/protein expression by immunohistochemistry, western blot and quantitative real-time polymerase chain reaction (RT-PCR), respectively. RESULTS Compared with the model group, the blastocyst number in WSYXD middle and high groups were significantly increased (4.50 ± 3.11 vs. 13.00 ± 2.12, 14.00 ± 1.83, p < 0.01). Lower MVD can be found in the model group (4.7) when compared with the normal control (13.7), middle (8.4) and high (9.7) dose groups. Additionally, significant differences were observed in VEGF, HIF-1α, p-AKT, p-PI3K, Ang1 and Ang2 (all p < 0.01) among different groups. DISCUSSION AND CONCLUSIONS In conclusion, WSYXD could help endometrial receptivity recovery and promote endometrial angiogenesis through PI3K, HIF-1α signalling and VEGF expression regulation. This study provides molecular evidence for application of WSYXD in the clinic and promotes new drug development from TCM.
Collapse
Affiliation(s)
- Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Junqin He
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Wei Yang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
160
|
A Two-Cohort RNA-seq Study Reveals Changes in Endometrial and Blood miRNome in Fertile and Infertile Women. Genes (Basel) 2018; 9:genes9120574. [PMID: 30477193 PMCID: PMC6315937 DOI: 10.3390/genes9120574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
The endometrium undergoes extensive changes to prepare for embryo implantation and microRNAs (miRNAs) have been described as playing a significant role in the regulation of endometrial receptivity. However, there is no consensus about the miRNAs involved in mid-secretory endometrial functions. We analysed the complete endometrial miRNome from early secretory (pre-receptive) and mid-secretory (receptive) phases from fertile women and from patients with recurrent implantation failure (RIF) to reveal differentially expressed (DE) miRNAs in the mid-secretory endometrium. Furthermore, we investigated whether the overall changes during early to mid-secretory phase transition and with RIF condition could be reflected in blood miRNA profiles. In total, 116 endometrial and 114 matched blood samples collected from two different population cohorts were subjected to small RNA sequencing. Among fertile women, 91 DE miRNAs were identified in the mid-secretory vs. early secretory endometrium, while no differences were found in the corresponding blood samples. The comparison of mid-secretory phase samples between fertile and infertile women revealed 21 DE miRNAs from the endometrium and one from blood samples. Among discovered novel miRNAs, chr2_4401 was validated and showed up-regulation in the mid-secretory endometrium. Besides novel findings, we confirmed the involvement of miR-30 and miR-200 family members in mid-secretory endometrial functions.
Collapse
|
161
|
Lira-Albarrán S, Durand M, Barrera D, Vega C, Becerra RG, Díaz L, García-Quiroz J, Rangel C, Larrea F. A single preovulatory administration of ulipristal acetate affects the decidualization process of the human endometrium during the receptive period of the menstrual cycle. Mol Cell Endocrinol 2018; 476:70-78. [PMID: 29709683 DOI: 10.1016/j.mce.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
In order to get further information on the effects of ulipristal acetate (UPA) upon the process of decidualization of endometrium, a functional analysis of the differentially expressed genes in endometrium (DEG) from UPA treated-versus control-cycles of normal ovulatory women was performed. A list of 1183 endometrial DEG, from a previously published study by our group, was submitted to gene ontology, gene enrichment and ingenuity pathway analyses (IPA). This functional analysis showed that decidualization was a biological process overrepresented. Gene set enrichment analysis identified LIF, PRL, IL15 and STAT3 among the most down-regulated genes within the JAK STAT canonical pathway. IPA showed that decidualization of uterus was a bio-function predicted as inhibited by UPA. The results demonstrated that this selective progesterone receptor modulator, when administered during the periovulatory phase of the menstrual cycle, may affect the molecular mechanisms leading to endometrial decidualization in response to progesterone during the period of maximum embryo receptivity.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Claudia Vega
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Rocio García Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Claudia Rangel
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
162
|
Suhorutshenko M, Kukushkina V, Velthut-Meikas A, Altmäe S, Peters M, Mägi R, Krjutškov K, Koel M, Codoñer FM, Martinez-Blanch JF, Vilella F, Simón C, Salumets A, Laisk T. Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity. Hum Reprod 2018; 33:2074-2086. [DOI: 10.1093/humrep/dey301] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Marina Suhorutshenko
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Viktorija Kukushkina
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Agne Velthut-Meikas
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia
- Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | | - Carlos Simón
- Igenomix Foundation/INCLIVA, Valencia, Spain
- Research Department, Igenomix SL, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Valencia University, Valencia, Spain
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
163
|
Husseini-Akram F, Haroun S, Altmäe S, Skjöldebrand-Sparre L, Åkerud H, Poromaa IS, Landgren BM, Stavreus-Evers A. Hyaluronan-binding protein 2 (HABP2) gene variation in women with recurrent miscarriage. BMC WOMENS HEALTH 2018; 18:143. [PMID: 30143058 PMCID: PMC6108148 DOI: 10.1186/s12905-018-0618-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/12/2018] [Indexed: 11/30/2022]
Abstract
Background Idiopathic recurrent miscarriage, defined as three or more consecutive miscarriages, is a distressing early pregnancy complication. Although, the etiology of recurrent miscarriage is still unknown, an aberrant regulation of the endometrial receptivity marker hyaluronan-binding protein 2 (HABP2) has been suggested. The objective of the present study was to investigate the effect of genetic variations of HABP2 in women with idiopathic recurrent miscarriage compared to fertile women. Methods This study was designed as a case-control study. In total, 165 women who had three or more consecutive miscarriages and 289 fertile women were included in the study. Polymorphisms in the HABP2 gene were analyzed using TaqMan SNP Genotyping Assays. Three polymorphisms in the HABP2 gene, rs1157916, rs2240879 and rs7080536 (Marburg I) were studied. Results Polymorphism in HABP2 showed no significant difference in women with recurrent miscarriage compared to fertile women, except for rs1157916 minor A allele that was more prevalent among RM patients (p = 0.058). Significantly higher live birth rate was observed among women with three to four miscarriages compared to those with more miscarriages (p = 0.001). Conclusions Variations in the HABP2 gene did not seem to be involved in the etiology of recurrent miscarriage, while, the number of previous miscarriages had an impact on the live birth rate. Electronic supplementary material The online version of this article (10.1186/s12905-018-0618-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frida Husseini-Akram
- Department of Clinical Sciences, Division of Obstetrics and Gynaecology, Danderyds Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sally Haroun
- Department of Women's and Children's Health, Uppsala University, 751 85, Uppsala, Sweden
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Lottie Skjöldebrand-Sparre
- Department of Clinical Sciences, Division of Obstetrics and Gynaecology, Danderyds Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Helena Åkerud
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Britt-Marie Landgren
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anneli Stavreus-Evers
- Department of Women's and Children's Health, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
164
|
Inside the Endometrial Cell Signaling Subway: Mind the Gap(s). Int J Mol Sci 2018; 19:ijms19092477. [PMID: 30134622 PMCID: PMC6164241 DOI: 10.3390/ijms19092477] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cells perceive and respond to their microenvironment forming the basis of endometrial homeostasis. Errors in endometrial cell signaling are responsible for a wide spectrum of endometrial pathologies ranging from infertility to cancer. Intensive research over the years has been decoding the sophisticated molecular means by which endometrial cells communicate to each other and with the embryo. The objective of this review is to provide the scientific community with the first overview of key endometrial cell signaling pathways operating throughout the menstrual cycle. On this basis, a comprehensive and critical assessment of the literature was performed to provide the tools for the authorship of this narrative review summarizing the pivotal components and signaling cascades operating during seven endometrial cell fate “routes”: proliferation, decidualization, implantation, migration, breakdown, regeneration, and angiogenesis. Albeit schematically presented as separate transit routes in a subway network and narrated in a distinct fashion, the majority of the time these routes overlap or occur simultaneously within endometrial cells. This review facilitates identification of novel trajectories of research in endometrial cellular communication and signaling. The meticulous study of endometrial signaling pathways potentiates both the discovery of novel therapeutic targets to tackle disease and vanguard fertility approaches.
Collapse
|
165
|
Genetic regulation of disease risk and endometrial gene expression highlights potential target genes for endometriosis and polycystic ovarian syndrome. Sci Rep 2018; 8:11424. [PMID: 30061686 PMCID: PMC6065421 DOI: 10.1038/s41598-018-29462-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Gene expression varies markedly across the menstrual cycle and expression levels for many genes are under genetic control. We analyzed gene expression and mapped expression quantitative trait loci (eQTLs) in endometrial tissue samples from 229 women and then analyzed the overlap of endometrial eQTL signals with genomic regions associated with endometriosis and other reproductive traits. We observed a total of 45,923 cis-eQTLs for 417 unique genes and 2,968 trans-eQTLs affecting 82 unique genes. Two eQTLs were located in known risk regions for endometriosis including LINC00339 on chromosome 1 and VEZT on chromosome 12 and there was evidence for eQTLs that may be target genes in genomic regions associated with other reproductive diseases. Dynamic changes in expression of individual genes across cycle include alterations in both mean expression and transcriptional silencing. Significant effects of cycle stage on mean expression levels were observed for (2,427/15,262) probes with detectable expression in at least 90% of samples and for (2,877/9,626) probes expressed in some, but not all samples. Pathway analysis supports similar biological control of both altered expression levels and transcriptional silencing. Taken together, these data identify strong genetic effects on genes with diverse functions in human endometrium and provide a platform for better understanding genetic effects on endometrial-related pathologies.
Collapse
|
166
|
Oviductal glycoprotein 1 (OVGP1) is expressed by endometrial epithelium that regulates receptivity and trophoblast adhesion. J Assist Reprod Genet 2018; 35:1419-1429. [PMID: 29968069 DOI: 10.1007/s10815-018-1231-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To study the regulation and functions of oviductal glycoprotein 1 (OVGP1) in endometrial epithelial cells. METHODS Expression of OVGP1 in mouse endometrium during pregnancy and in the endometrial epithelial cell line (Ishikawa) was studied by immunofluorescence, Western blotting, and RT-PCR. Regulation of OVGP1 in response to ovarian steroids and human chorionic gonadotropin (hCG) was studied by real-time RT-PCR. OVGP1 expression was knockdown in Ishikawa cells by shRNA, and expression of receptivity associated genes was studied by real-time RT-PCR. Adhesion of trophoblast cell line (JAr) was studied by in vitro adhesion assays. RESULTS OVGP1 was localized exclusively in the luminal epithelial cells of mouse endometrium at the time of embryo implantation. Along with estrogen and progesterone, hCG induced the expression of OVGP1 in Ishikawa cells. Knockdown of OVGP1 in Ishikawa cells reduced mRNA expression of ITGAV, ITGB3, ITGA5, HOXA10, LIF, and IL15; it increased the expression of HOXA11, MMP9, TIMP1, and TIMP3. Supernatants derived from OVGP1 knockdown Ishikawa cells reduced the adhesiveness of JAr cells in vitro. Expression of OVGP1 mRNA was found to be significantly lowered in the endometrium of women with recurrent implantation failure. CONCLUSION OVGP1 is specifically induced in the luminal epithelium at the time of embryo implantation where it regulates receptivity-related genes and aids in trophoblast adhesion.
Collapse
|
167
|
Blázquez R, Sánchez-Margallo FM, Álvarez V, Matilla E, Hernández N, Marinaro F, Gómez-Serrano M, Jorge I, Casado JG, Macías-García B. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates. PLoS One 2018; 13:e0196080. [PMID: 29684038 PMCID: PMC5912768 DOI: 10.1371/journal.pone.0196080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Endometrial Mesenchymal Stromal Cells (endMSCs) are multipotent cells with immunomodulatory and pro-regenerative activity which is mainly mediated by a paracrine effect. The exosomes released by MSCs have become a promising therapeutic tool for the treatment of immune-mediated diseases. More specifically, extracellular vesicles derived from endMSCs (EV-endMSCs) have demonstrated a cardioprotective effect through the release of anti-apoptotic and pro-angiogenic factors. Here we hypothesize that EV-endMSCs may be used as a co-adjuvant to improve in vitro fertilization outcomes and embryo quality. Firstly, endMSCs and EV-endMSCs were isolated and phenotypically characterized for in vitro assays. Then, in vitro studies were performed on murine embryos co-cultured with EV-endMSCs at different concentrations. Our results firstly demonstrated a significant increase on the total blastomere count of expanded murine blastocysts. Moreover, EV-endMSCs triggered the release of pro-angiogenic molecules from embryos demonstrating an EV-endMSCs concentration-dependent increase of VEGF and PDGF-AA. The release of VEGF and PDGF-AA by the embryos may indicate that the beneficial effect of EV-endMSCs could be mediating not only an increase in the blastocyst’s total cell number, but also may promote endometrial angiogenesis, vascularization, differentiation and tissue remodeling. In summary, these results could be relevant for assisted reproduction being the first report describing the beneficial effect of human EV-endMSCs on embryo development.
Collapse
Affiliation(s)
- Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Elvira Matilla
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Nuria Hernández
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier G. Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- * E-mail:
| | - Beatriz Macías-García
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
168
|
Ashary N, Tiwari A, Modi D. Embryo Implantation: War in Times of Love. Endocrinology 2018; 159:1188-1198. [PMID: 29319820 DOI: 10.1210/en.2017-03082] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Contrary to widespread belief, the implantation of an embryo for the initiation of pregnancy is like a battle, in that the embryo uses a variety of coercive tactics to force its acceptance by the endometrium. We propose that embryo implantation involves a three-step process: (1) identification of a receptive endometrium; (2) superimposition of a blastocyst-derived signature onto the receptive endometrium before implantation; and finally (3) breaching by the embryo and trophoblast invasion, culminating in decidualization and placentation. We review here the story that is beginning to emerge, focusing primarily on the cells that are in "combat" during this process.
Collapse
Affiliation(s)
- Nancy Ashary
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Abhishek Tiwari
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|