151
|
Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 2004; 36:1187-205. [PMID: 15109566 DOI: 10.1016/j.biocel.2003.08.006] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 07/31/2003] [Accepted: 08/22/2003] [Indexed: 10/26/2022]
Abstract
Prostanoids are arachidonic acid metabolites and are generally accepted to play pivotal functions in amongst others inflammation, platelet aggregation, and vasoconstriction/relaxation. Inhibition of their production with, for instance, aspirin has been used for over a century to combat a large variety of pathophysiological processes, with great clinical success. Hence, the cellular changes induced by prostanoids have been subject to an intensive research effort and especially prostanoid-dependent signal transduction has been extensively studied. In this review, we discuss the impact of the five basic prostanoids, TxA(2), PGF(2alpha), PGE(2), PGI(2), and PGD(2), via their receptors on cellular physiology. These inflammatory lipids may stimulate serpentine plasma membrane-localized receptors, which in turn affect major signaling pathways, such as the MAP kinase pathway and the protein kinase A pathway, finally resulting in altered cellular physiology. In addition, prostanoids may activate the PPARgamma members of the steroid/thyroid family of nuclear hormone receptors, which act as transcription factors and may thus directly influence gene transcription. Finally, evidence exists that prostanoids act as second messengers downstream of mitogen receptor activation, mediating events, such as cytoskeletal changes, maybe via direct interaction with GTPase activating proteins. The final cellular reaction to prostaglandin stimulation will most likely depend on combined effects of the above-mentioned levels of interaction between prostaglandins and their cellular receptors.
Collapse
Affiliation(s)
- Carina L Bos
- Laboratory for Experimental Internal Medicine, G2-130, Academic Medical Center, Meibergdreef 9, NL-1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
152
|
Yoshimura-Uchiyama C, Iikura M, Yamaguchi M, Nagase H, Ishii A, Matsushima K, Yamamoto K, Shichijo M, Bacon KB, Hirai K. Differential modulation of human basophil functions through prostaglandin D2 receptors DP and chemoattractant receptor-homologous molecule expressed on Th2 cells/DP2. Clin Exp Allergy 2004; 34:1283-90. [PMID: 15298571 DOI: 10.1111/j.1365-2222.2004.02027.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Both prostaglandin (PG) D receptor (DP) and CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells)/DP2 are high-affinity receptors for PGD2. Previous studies have demonstrated that PGD2 enhances releasability and induces CRTH2/DP2-mediated migration in human basophils, but the precise effects of PGD2 on basophils as well as receptor usage have not been fully clarified. OBJECTIVE We comprehensively explored the roles of DP and CRTH2/DP2 in basophil functions by using selective agonists and antagonists for each receptor. METHODS DP and CRTH2/DP2 transcripts were quantified by real-time PCR. We studied the effects of selective agonists (DP: BW245C; CRTH2/DP2: 13,14-dihydro-15-keto (DK)-PGD2) and/or antagonists (DP: BWA868C; CRTH2/DP2: ramatroban) on Ca2+ mobilization, migration, degranulation, CD11b expression and survival of human basophils. RESULTS Basophils expressed transcripts of both DP and CRTH2/DP2, but the levels of CRTH2/DP2 transcripts were ca. 100-fold higher compared with DP transcripts. Ca2+ influx was induced in basophils by either PGD2 or DK-PGD2/CRTH2 agonist but not by BW245C/DP agonist. Basophils treated with PGD2 were completely desensitized to subsequent stimulation with DK-PGD2, but not vice versa. DK-PGD2 as well as PGD2 up-regulated CD11b expression, induced migration and enhanced degranulation, and those effects were completely antagonized by ramatroban/CRTH2 antagonist. In contrast, BW245C/DP agonist exhibited an inhibitory effect on basophil migration and IgE-mediated degranulation, and the migration inhibitory effect was effectively antagonized by BWA868C/DP antagonist. On the other hand, while PGD2 significantly shortened the basophil life-span, neither DK-PGD2/CRTH2 agonist nor BW245C/DP agonist did. CONCLUSION CRTH2/DP2 is primarily responsible for the pro-inflammatory effects of PGD2 on human basophils, while DP introduces negative signals capable of antagonizing the effects of CRTH2/DP2 in these cells. The effects of PGD2 on longevity imply a mechanism(s) other than via DP or CRTH2/DP2. CRTH2/DP2 on basophils may afford opportunities for therapeutic targeting in allergic inflammation.
Collapse
Affiliation(s)
- C Yoshimura-Uchiyama
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Hawcroft G, Gardner SH, Hull MA. Expression of prostaglandin D2 receptors DP1 and DP2 by human colorectal cancer cells. Cancer Lett 2004; 210:81-4. [PMID: 15172124 DOI: 10.1016/j.canlet.2004.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 01/13/2004] [Indexed: 11/15/2022]
Abstract
The expression and function of prostaglandin (PG) D2 DP receptors during colorectal carcinogenesis has not been elucidated. Therefore, we studied expression of DP1 and DP2 receptors by reverse transcription-polymerase chain reaction analysis of receptor mRNA levels in five human colorectal cancer cell lines (HT-29, HCA-7, HCT116, SW480 and SW48) and VACO-235 human colorectal adenoma cells. DP1 receptor transcripts were present only in HT-29 cells. In addition, none of the human colorectal epithelial cell lines tested expressed DP2 receptor mRNA. Therefore, PGD2 is unlikely to have direct activity on neoplastic colorectal epithelial cells via cell surface DP receptors.
Collapse
Affiliation(s)
- Gillian Hawcroft
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
154
|
Helliwell RJA, Adams LF, Mitchell MD. Prostaglandin synthases: recent developments and a novel hypothesis. Prostaglandins Leukot Essent Fatty Acids 2004; 70:101-13. [PMID: 14683687 DOI: 10.1016/j.plefa.2003.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cells are continuously exposed to cues, which signal cell survival or death. Fine-tuning of these conflicting signals is essential for tissue development and homeostasis, and defective pathways are linked to many disease processes, especially cancer. It is well established that prostaglandins (PGs), as signalling molecules, are important regulators of cell proliferation, differentiation and apoptosis. PG production has been a focus of many researchers interested in the mechanisms of parturition. Previously, investigators have focussed on the committed step of PG biosynthesis, the conversion by prostaglandin H synthase (PGHS; also termed cyclo-oxygenase, COX) of arachidonic acid (AA) (substrate) to PGH2, the common precursor for biosynthesis of the various prostanoids. However, recently the genes encoding the terminal synthase enzymes involved in converting PGH2 to each of the bioactive PGs, including the major uterotonic PGs, PGE2 (PGE synthase) and PGF2alpha (PGF synthase), have been cloned and characterized. This review highlights how the regulation of the expression and balance of key enzymes can produce, from a single precursor, prostanoids with varied and often opposing effects.
Collapse
Affiliation(s)
- Rachel J A Helliwell
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | |
Collapse
|
155
|
The use of indole-3-acetic acids as CRTH2 receptor antagonists. Expert Opin Ther Pat 2004. [DOI: 10.1517/13543776.14.1.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
156
|
Nantel F, Fong C, Lamontagne S, Wright DH, Giaid A, Desrosiers M, Metters KM, O'Neill GP, Gervais FG. Expression of prostaglandin D synthase and the prostaglandin D2 receptors DP and CRTH2 in human nasal mucosa. Prostaglandins Other Lipid Mediat 2004; 73:87-101. [PMID: 15165034 DOI: 10.1016/j.prostaglandins.2003.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prostaglandin D2 (PGD2) is released from mast cells during the allergic response. OBJECTIVE Since PGD2 has been shown to induce nasal congestion in humans, we investigated the distribution of hematopoietic prostaglandin D synthase (PGDS) and the two PGD2 receptors, DP and CRTH2 in human nasal mucosa from healthy subjects and subjects suffering from polyposis, a severe form of chronic rhinosinusitis. METHODS DP mRNA expression was detected by in situ hybridization while PGDS, CRTH2 and various leukocyte markers expression were revealed by immunohistochemistry. RESULTS In the normal mucosa, PGDS was only detected in few resident mast cells while CRTH2 was undetectable. In contrast, DP receptor mRNA was detected in epithelial goblet cells, serous glands and in the vasculature. In the nasal mucosa of subjects suffering from polyposis: (1) PGDS was detected in mast cells and other large infiltrating inflammatory cells, (2) both DP mRNA and CRTH2 were detected in eosinophils and (3) CRTH2 was detected on a subset of infiltrating T cells. Although DP mRNA could not be detected in the T cells invading the nasal mucosa, it was found to be expressed in the T cells present in the lymph node and the thymus from normal individuals. CONCLUSION This study indicates that cells capable of producing PGD2 are present in the nasal mucosa and that both PGD2 receptors, DP and CRTH2, might play a role in inflammatory disease of the upper airways.
Collapse
Affiliation(s)
- François Nantel
- Merck Frosst Canada & Co. 16711 Trans Canada Hwy., Kirkland, Que., Canada H9H 3L1
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Shichijo M, Sugimoto H, Nagao K, Inbe H, Encinas JA, Takeshita K, Bacon KB, Gantner F. Chemoattractant receptor-homologous molecule expressed on Th2 cells activation in vivo increases blood leukocyte counts and its blockade abrogates 13,14-dihydro-15-keto-prostaglandin D2-induced eosinophilia in rats. J Pharmacol Exp Ther 2003; 307:518-25. [PMID: 12975488 DOI: 10.1124/jpet.103.055442] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We cloned, expressed, and characterized in vitro and in vivo the gene encoding the rat ortholog of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a G protein-coupled receptor for prostaglandin D2 (PGD2). Quantitative reverse transcription-polymerase chain reaction analysis demonstrated highest CRTH2 expression in the lung, brain, ovary, and spleen. Pharmacologically, rat CRTH2 stably transfected in mouse preB lymphoma L1.2 cells behaved very similar compared with the mouse and human orthologs, showing a binding affinity for PGD2 of 11 nM, a functional calcium mobilization when exposed to agonist, and similar sensitivity to agonists and antagonists. In vivo, selective activation of CRTH2 by 13,14-dihydro-15-keto (DK)-PGD2 injection into rats led to a dose- and time-dependent increase of the number of leukocytes in the peripheral blood. Specifically, eosinophils, lymphocytes, and neutrophils were recruited with maximum effects seen 60 min after the injection of 300 microg of DK-PGD2 per rat. Pretreatment of the animals with the CRTH2/thromboxane A2 receptor antagonist, ramatroban, completely abrogated DK-PGD2-induced eosinophilia, suggesting that CRTH2 might have a physiological and/or pathophysiological role in controlling leukocyte migration.
Collapse
Affiliation(s)
- Michitaka Shichijo
- Research Center Kyoto, Respiratory Research, Bayer Yakuhin, Ltd., 6-5-1-3 Kunimidai, Kizu-cho, Sorakugun, 619-0216 Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
PGD(2) is a major product of arachidonic acid metabolism by mast cells and is released in the lungs following allergen challenge. Activation of the classic PGD(2) receptor (DP receptor) results in stimulation of adenylyl cyclase, resulting in inhibition of platelet aggregation and smooth muscle relaxation. A second PGD(2) receptor has recently been identified and designated as the DP(2) receptor, or chemoattractant receptor-homologous molecule expressed on Th2 cells. PGD(2) acts through the DP(2) receptor to induce eosinophil chemotaxis, actin polymerization, calcium mobilization, and adhesion molecule expression. The most potent DP(2) receptor agonist yet identified is 15R-methyl-PGD(2), which has the unnatural R configuration at C(15). 15-Deoxy-Delta(12,14)-PGJ(2) is also a potent DP(2) receptor agonist that activates eosinophils at concentrations much lower than those required for its anti-inflammatory effects. Because of its critical location in the lung and its potent effects on eosinophils, PGD(2) may be an important proinflammatory mediator in asthma.
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, McGill University, 3626 St Urbain Street, Montreal, Quebec, Canada H2X 2P2.
| |
Collapse
|
159
|
Hata AN, Zent R, Breyer MD, Breyer RM. Expression and molecular pharmacology of the mouse CRTH2 receptor. J Pharmacol Exp Ther 2003; 306:463-70. [PMID: 12721327 DOI: 10.1124/jpet.103.050955] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin D2 (PGD2), the predominant prostanoid produced by activated mast cells, is implicated in a variety of allergic diseases. PGD2 exerts its effects through two G-protein coupled receptors, DP and CRTH2. PGD2 mediates chemotaxis of eosinophils, basophils, and Th2 cells via CRTH2-evoked signaling, suggesting a role for this receptor in allergic disease. To characterize the mouse CRTH2 ortholog (mCRTH2), we amplified the mCRTH2 receptor gene and expressed it in HEK293 cells. Saturation ligand binding isotherms demonstrated high-affinity binding of [3H]PGD2, with a Kd of 8.8 +/- 0.8 nM. Competition binding assays with a panel unlabeled prostanoids demonstrated an order of affinity of 13,14-dihydro-15-keto-PGD2 (DK-PGD2) >or= 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2) >or= PGD2 >or= PGJ2. [3H]PGD2 binding was also displaced by the nonsteroidal anti-inflammatory drug indomethacin, with a Ki value of 1.04 +/- 0.13 microM. No [3H]PGD2 displacement was detected using fluribrofen, ibuprofen, or aspirin as competitors at concentrations of up to 30 microM. PGD2, DK-PGD2, 15d-PGJ2, and indomethacin each inhibited intracellular cAMP generation in stable transfectant ER293/mCRTH2 cells through a pertussis toxin (PTX) sensitive pathway, consistent with mCRTH2 coupling to a Gi heterotrimeric G-protein. Activation of mCRTH2 elicited chemotaxis of ER293/mCRTH2 cells in response to PGD2, indomethacin, and 15d-PGJ2. mCRTH2-dependent chemotaxis was inhibited by PTX and wortmannin, indicating dependence on Gi and PI 3-kinase signal transduction pathways. These data provide the first pharmacological and functional characterization of the mouse CRTH2 receptor.
Collapse
Affiliation(s)
- Aaron N Hata
- Department of Pharmacology,Vanderbilt University, Nashville, Tennessee 37232-2372, USA
| | | | | | | |
Collapse
|