151
|
Hurtado-Guerrero R, Dorfmueller HC, van Aalten DMF. Molecular mechanisms of O-GlcNAcylation. Curr Opin Struct Biol 2008; 18:551-7. [DOI: 10.1016/j.sbi.2008.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 09/08/2008] [Accepted: 09/15/2008] [Indexed: 11/29/2022]
|
152
|
A spontaneous direct repeat deletion in the pGEX fusion vector decreases the expression level of recombinant proteins in Escherichia coli. Protein Expr Purif 2008; 60:15-9. [DOI: 10.1016/j.pep.2008.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/18/2022]
|
153
|
Choubdar N, Bhat RG, Stubbs KA, Yuzwa S, Pinto BM. Synthesis of 2-amido, 2-amino, and 2-azido derivatives of the nitrogen analogue of the naturally occurring glycosidase inhibitor salacinol and their inhibitory activities against O-GlcNAcase and NagZ enzymes. Carbohydr Res 2008; 343:1766-77. [PMID: 18358456 DOI: 10.1016/j.carres.2008.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
Seven 2-substituted derivatives of the nitrogen analogue of salacinol, a naturally occurring glycosidase inhibitor, were synthesized for structure-activity studies with hexosaminidase enzymes. The target zwitterionic compounds were synthesized by means of nucleophilic attack of the 2-azido-1,4-dideoxy-1,4-imino-D-arabinitol at the least hindered carbon atom of 2,4-O-benzylidene-L-erythritol-1,3-cyclic sulfate. Hydrogenation of the azido zwitterionic compound in methanol resulted in the reduction of the azide and subsequent methylation of the resulting amine in one pot. A similar reaction, with ethanol as the solvent, gave the N-ethyl derivative. The 2-amino analogues were finally obtained by the reduction of the azide function using triphenylphosphine. Acylation of the amine using acetic, propionic, or valeric anhydride afforded the corresponding 2-amido derivatives. Deprotection of the acylated, coupled products using 80% trifluoroacetic acid proceeded smoothly. Unlike their sulfonium ion counterparts, these compounds were stable and did not undergo ring opening. We also report the synthesis of the parent nitrogen heterocycles, N-Boc-1,2,4-trideoxy-2-amino-1,4-imino-D-arabinitol, and 1,2,4-trideoxy-2-acetamido-1,4-imino-D-arabinitol and its corresponding N-Boc protected compound. The 2-substituted analogues and the parent iminoalditol showed marginal activity (<33% at 250 microM) against human O-GlcNAcase and Vibrio cholerae NagZ enzymes.
Collapse
Affiliation(s)
- Niloufar Choubdar
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | |
Collapse
|
154
|
Structure of N-acetyl-β-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline. J Mol Biol 2008; 377:104-16. [DOI: 10.1016/j.jmb.2007.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/11/2007] [Indexed: 11/20/2022]
|
155
|
Chitayat S, Gregg K, Adams JJ, Ficko-Blean E, Bayer EA, Boraston AB, Smith SP. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. J Mol Biol 2008; 375:20-8. [PMID: 17999932 DOI: 10.1016/j.jmb.2007.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/21/2022]
Abstract
The genomes of myonecrotic strains of Clostridium perfringens encode a large number of secreted glycoside hydrolases. The activities of these enzymes are consistent with degradation of the mucosal layer of the human gastrointestinal tract, glycosaminoglycans and other cellular glycans found throughout the body. In many cases this is thought to aid in the propagation of the major toxins produced by C. perfringens. One such example is the family 84 glycoside hydrolases, which contains five C. perfringens members (CpGH84A-E), each displaying a unique modular architecture. The smallest and most extensively studied member, CpGH84C, comprises an N-terminal catalytic domain with beta-N-acetylglucosaminidase activity, a family 32 carbohydrate-binding module, a family 82 X-module (X82) of unknown function, and a fibronectin type-III-like module. Here we present the structure of the X82 module from CpGH84C, determined by both NMR spectroscopy and X-ray crystallography. CpGH84C X82 adopts a jell-roll fold comprising two beta-sheets formed by nine beta-strands. CpGH84C X82 displays distant amino acid sequence identity yet close structural similarity to the cohesin modules of cellulolytic anaerobic bacteria. Cohesin modules are responsible for the assembly of numerous hydrolytic enzymes in a cellulose-degrading multi-enzyme complex, termed the cellulosome, through a high-affinity interaction with the calcium-binding dockerin module. A planar surface is located on the face of the CpGH84 X82 structure that corresponds to the dockerin-binding region of cellulolytic cohesin modules and has the approximate dimensions to accommodate a dockerin module. The presence of cohesin-like X82 modules in glycoside hydrolases of C. perfringens is an indication that the formation of novel X82-dockerin mediated multi-enzyme complexes, with potential roles in pathogenesis, is possible.
Collapse
Affiliation(s)
- Seth Chitayat
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
156
|
Chitayat S, Ficko-Blean E, Adams JJ, Gregg K, Boraston AB, Smith SP. NMR assignment of backbone and side chain resonances for a putative protein-protein interaction module from a family 84 glycoside hydrolase of Clostridium perfringens. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:7-9. [PMID: 19636812 DOI: 10.1007/s12104-007-9001-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2006] [Indexed: 05/28/2023]
Abstract
A family of Clostridium perfringens glycoside hydrolases (CpGH84A-E), with a conserved family 84 catalytic module, are thought to target the gastric mucosal layer. Chemical shift assignments have been completed for a putative protein-protein interaction X82 module from CpGH84C.
Collapse
Affiliation(s)
- Seth Chitayat
- Department of Biochemistry, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
157
|
Stubbs KA, Balcewich M, Mark BL, Vocadlo DJ. Small Molecule Inhibitors of a Glycoside Hydrolase Attenuate Inducible AmpC-mediated β-Lactam Resistance. J Biol Chem 2007; 282:21382-91. [PMID: 17439950 DOI: 10.1074/jbc.m700084200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing spread of plasmid-borne ampC-ampR operons is of considerable medical importance, since the AmpC beta-lactamases they encode confer high level resistance to many third generation cephalosporins. Induction of AmpC beta-lactamase from endogenous or plasmid-borne ampC-ampR operons is mediated by a catabolic inducer molecule, 1,6-anhydro-N-acetylmuramic acid (MurNAc) tripeptide, an intermediate of the cell wall recycling pathway derived from the peptidoglycan. Here we describe a strategy for attenuating the antibiotic resistance associated with the ampC-ampR operon by blocking the formation of the inducer molecule using small molecule inhibitors of NagZ, the glycoside hydrolase catalyzing the formation of this inducer molecule. The structure of the NagZ-inhibitor complex provides insight into the molecular basis for inhibition and enables the development of inhibitors with 100-fold selectivity for NagZ over functionally related human enzymes. These PUGNAc-derived inhibitors reduce the minimal inhibitory concentration (MIC) values for several clinically relevant cephalosporins in both wild-type and AmpC-hyperproducing strains lacking functional AmpD.
Collapse
Affiliation(s)
- Keith A Stubbs
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6
| | | | | | | |
Collapse
|
158
|
Dorfmueller HC, Borodkin VS, Schimpl M, Shepherd SM, Shpiro NA, van Aalten DMF. GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels. J Am Chem Soc 2007; 128:16484-5. [PMID: 17177381 PMCID: PMC7116141 DOI: 10.1021/ja066743n] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many phosphorylation signal transduction pathways in the eukaryotic cell are modulated by posttranslational modification of specific serines/threonines with N-acetylglucosamine (O-GlcNAc). Levels of O-GlcNAc on key proteins regulate biological processes as diverse as the cell cycle, insulin signaling, and protein degradation. The two enzymes involved in this dynamic and abundant modification are the O-GlcNAc transferase and O-GlcNAcase. Structural data have recently revealed that the O-GlcNAcase possesses an active site with significant structural similarity to that of the human lysosomal hexosaminidases HexA/HexB. PUGNAc, an O-GlcNAcase inhibitor widely used to raise levels of O-GlcNAc in human cell lines, also inhibits these hexosaminidases. Here, we have exploited recent structural information of an O-GlcNAcase-PUGNAc complex to design and synthesize a glucoimidazole-based inhibitor, GlcNAcstatin, which is a 5 pM competitive inhibitor of enzymes of the O-GlcNAcase family, shows 100000-fold selectivity over HexA/B, and binds to the O-GlcNAcase active site by mimicking the transition state as revealed by X-ray crystallography. This compound is able to raise O-GlcNAc levels in human HEK 293 and SH-SY5Y neuroblastoma cell lines and thus provides a novel, potent tool for the study of the role of O-GlcNAc in intracellular signal transduction pathways.
Collapse
|
159
|
Scaffidi A, Stubbs KA, Dennis RJ, Taylor EJ, Davies GJ, Vocadlo DJ, Stick RV. A 1-acetamido derivative of 6-epi-valienamine: an inhibitor of a diverse group of β-N-acetylglucosaminidases. Org Biomol Chem 2007; 5:3013-9. [PMID: 17728868 DOI: 10.1039/b709681j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of an analogue of 6-epi-valienamine bearing an acetamido group and its characterisation as an inhibitor of beta-N-acetylglucosaminidases are described. The compound is a good inhibitor of both human O-GlcNAcase and human beta-hexosaminidase, as well as two bacterial beta-N-acetylglucosaminidases. A 3-D structure of the complex of Bacteroides thetaiotaomicron BtGH84 with the inhibitor shows the unsaturated ring is surprisingly distorted away from its favoured solution phase conformation and reveals potential for improved inhibitor potency.
Collapse
Affiliation(s)
- Adrian Scaffidi
- Chemistry M313, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
160
|
Greig IR, Williams IH. Glycosidase inhibitors as conformational transition state analogues. Chem Commun (Camb) 2007:3747-9. [PMID: 17851615 DOI: 10.1039/b705607a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for estimating the conformational similarity between hexopyranose rings is presented and used to probe the behaviour of various glycosyl hydrolase inhibitors as conformational transition state analogues.
Collapse
Affiliation(s)
- Ian R Greig
- Department of Chemistry, University of Bath, Bath, UK.
| | | |
Collapse
|
161
|
DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto NP. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 2006; 103:19146-51. [PMID: 17148602 PMCID: PMC1748190 DOI: 10.1073/pnas.0608279103] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type II protein secretion is critical for Legionella pneumophila infection of amoebae, macrophages, and mice. Previously, we found several enzymes to be secreted by this (Lsp) secretory pathway. To better define the L. pneumophila type II secretome, a 2D electrophoresis proteomic approach was used to compare proteins in wild-type and type II mutant supernatants. We identified 20 proteins that are type II-dependent, including aminopeptidases, an RNase, and chitinase, as well as proteins with no homology to known proteins. Because a chitinase had not been previously reported in Legionella, we determined that wild type secretes activity against both p-nitrophenyl triacetyl chitotriose and glycol chitin. An lsp mutant had a 70-75% reduction in activity, confirming the type II dependency of the secreted chitinase. Newly constructed chitinase (chiA) mutants also had approximately 75% less activity, and reintroduction of chiA restored the mutants to normal levels of activity. Although chiA mutants were not impaired for in vitro intracellular infection, they were defective upon intratracheal inoculation into the lungs of A/J mice, and antibodies against ChiA were detectable in infected animals. In contrast, mutants lacking a secreted phosphatase, protease, or one of several lipolytic enzymes were not defective in vivo. In sum, this study shows that the output of type II secretion is greater in magnitude than previously appreciated and includes previously undescribed proteins. Our data also indicate that an enzyme with chitinase activity can promote infection of a mammalian host.
Collapse
Affiliation(s)
- Sruti DebRoy
- Department of Microbiology–Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Jenny Dao
- Department of Microbiology–Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Maria Söderberg
- Department of Microbiology–Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Ombeline Rossier
- Department of Microbiology–Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Nicholas P. Cianciotto
- Department of Microbiology–Immunology, Northwestern University Medical School, Chicago, IL 60611
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
162
|
Ficko-Blean E, Boraston AB. The Interaction of a Carbohydrate-binding Module from a Clostridium perfringens N-Acetyl-β-hexosaminidase with Its Carbohydrate Receptor. J Biol Chem 2006; 281:37748-57. [PMID: 16990278 DOI: 10.1074/jbc.m606126200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens is a notable colonizer of the human gastrointestinal tract. This bacterium is quite remarkable for a human pathogen by the number of glycoside hydrolases found in its genome. The modularity of these enzymes is striking as is the frequent occurrence of modules having amino acid sequence identity with family 32 carbohydrate-binding modules (CBMs), often referred to as F5/8 domains. Here we report the properties of family 32 CBMs from a C. perfringens N-acetyl-beta-hexosaminidase. Macroarray, UV difference, and isothermal titration calorimetry binding studies indicate a preference for the disaccharide LacNAc (beta-d-galactosyl-1,4-beta-d-N-acetylglucosamine). The molecular details of the interaction of this CBM with galactose, LacNAc, and the type II blood group H-trisaccharide are revealed by x-ray crystallographic studies at resolutions of 1.49, 2.4, and 2.3 A, respectively.
Collapse
Affiliation(s)
- Elizabeth Ficko-Blean
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | |
Collapse
|
163
|
Perreira M, Kim EJ, Thomas CJ, Hanover JA. Addendum and corrigendum to “Inhibition of O-GlcNAcase by PUGNAc is dependent upon the oxime stereochemistry”. Bioorg Med Chem 2006. [DOI: 10.1016/j.bmc.2006.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
164
|
Sheldon W, Macauley M, Taylor E, Robinson C, Charnock S, Davies G, Vocadlo D, Black G. Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a beta-N-acetylglucosaminidase and not a hyaluronidase. Biochem J 2006; 399:241-7. [PMID: 16822234 PMCID: PMC1609908 DOI: 10.1042/bj20060307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 06/26/2006] [Accepted: 07/06/2006] [Indexed: 11/17/2022]
Abstract
Group A streptococcus (Streptococcus pyogenes) is the causative agent of severe invasive infections such as necrotizing fasciitis (the so-called 'flesh eating disease') and toxic-shock syndrome. Spy1600, a glycoside hydrolase from family 84 of the large superfamily of glycoside hydrolases, has been proposed to be a virulence factor. In the present study we show that Spy1600 has no activity toward galactosaminides or hyaluronan, but does remove beta-O-linked N-acetylglucosamine from mammalian glycoproteins--an observation consistent with the inclusion of eukaryotic O-glycoprotein 2-acetamido-2-deoxy-beta-D-glucopyranosidases within glycoside hydrolase family 84. Proton NMR studies, structure-reactivity studies for a series of fluorinated analogues and analysis of 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline as a competitive inhibitor reveals that Spy1600 uses a double-displacement mechanism involving substrate-assisted catalysis. Family 84 glycoside hydrolases are therefore comprised of both prokaryotic and eukaryotic beta-N-acetylglucosaminidases using a conserved catalytic mechanism involving substrate-assisted catalysis. Since these enzymes do not have detectable hyaluronidase activity, many family 84 glycoside hydrolases are most likely incorrectly annotated as hyaluronidases.
Collapse
Key Words
- β-n-acetylglucosaminidase (glcnacase)
- mammalian glycoproteins
- 1,2-dideoxy-2′-methyl-α-d-glucopyranoso-[2,1-d]-δ2′-thiazoline (nag-thiazoline)
- o-glycoprotein 2-acetamido-2-deoxy-β-d-glucopyranosidase (o-glcnacase)
- o-glycoprotein 2-acetamido-2-deoxy-β-d-glucopyranoside (o-glcnac)
- spyl600
- substrate-assisted catalysis
- glcnac, n-acetylglucosamine (2-acetamido-2-deoxy-d-glucopyranose)
- glcnacase, β-n-acetylglucosaminidase
- mgea5, meningioma expressed antigen 5
- mu, 4-methylumbelliferyl
- mu-glcnac, mu-2-acetamido-2-deoxy-β-d-glucopyranoside
- mu-glcnacf1, mu-2-deoxy-2-fluoroacetamido-β-d-glucopyranoside
- mu-glcnacf2, mu-2-deoxy-2-difluoroacetamido-β-d-glucopyranoside
- mu-glcnacf3, mu-2-deoxy-2-trifluoroacetamido-β-d-glucopyranoside
- nag-thiazoline, 1,2-dideoxy-2′-methyl-α-d-glucopyranoso-[2,1-d]-δ2′-thiazoline
- o-glcnac, o-glycoprotein 2-acetamido-2-deoxy-β-d-glucopyranoside
- o-glcnacase, o-glycoprotein 2-acetamido-2-deoxy-β-d-glucopyranosidase
- orf, open reading frame
Collapse
Affiliation(s)
- William L. Sheldon
- *Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
- †School of Health, Natural and Social Sciences, University of Sunderland, Sunderland SR1 3SD, U.K
| | - Matthew S. Macauley
- ‡Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Edward J. Taylor
- §York Structural Biology Laboratory, Department of Chemistry, University of York, York YO31 5YW, U.K
| | - Charlotte E. Robinson
- *Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Simon J. Charnock
- *Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Gideon J. Davies
- §York Structural Biology Laboratory, Department of Chemistry, University of York, York YO31 5YW, U.K
| | - David J. Vocadlo
- ‡Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Gary W. Black
- *Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| |
Collapse
|
165
|
Shanmugasundaram B, Debowski AW, Dennis RJ, Davies GJ, Vocadlo DJ, Vasella A. Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc-imidazole hybrid inhibitor. Chem Commun (Camb) 2006:4372-4. [PMID: 17057847 DOI: 10.1039/b612154c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of a PUGNAc-imidazole hybrid and its characterization as an inhibitor of human O-GlcNAcase through enzyme kinetics and X-ray structural analysis.
Collapse
|
166
|
Research Highlights. Nat Rev Mol Cell Biol 2006. [DOI: 10.1038/nrm1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
167
|
Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, Davies GJ. Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol 2006; 13:365-71. [PMID: 16565725 DOI: 10.1038/nsmb1079] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/08/2006] [Indexed: 11/09/2022]
Abstract
O-GlcNAc is an abundant post-translational modification of serine and threonine residues of nucleocytoplasmic proteins. This modification, found only within higher eukaryotes, is a dynamic modification that is often reciprocal to phosphorylation. In a manner analogous to phosphatases, a glycoside hydrolase termed O-GlcNAcase cleaves O-GlcNAc from modified proteins. Enzymes with high sequence similarity to human O-GlcNAcase are also found in human pathogens and symbionts. We report the three-dimensional structure of O-GlcNAcase from the human gut symbiont Bacteroides thetaiotaomicron both in its native form and in complex with a mimic of the reaction intermediate. Mutagenesis and kinetics studies show that the bacterial enzyme, very similarly to its human counterpart, operates via an unusual 'substrate-assisted' catalytic mechanism, which will inform the rational design of enzyme inhibitors.
Collapse
Affiliation(s)
- Rebecca J Dennis
- York Structural Biology Laboratory, Department of Chemistry, University of York, York Y010 5YW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|