151
|
Föcking M, Pennington K, English J, Dunn M, Cotter D. Proteomics Providing Insights into Major Psychiatric Disorders. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
152
|
Orsetti M, Di Brisco F, Canonico PL, Genazzani AA, Ghi P. Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur J Neurosci 2008; 27:2156-64. [PMID: 18371075 DOI: 10.1111/j.1460-9568.2008.06155.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we have coupled the chronic mild stress (CMS) protocol with Affymetrix microarray technology to screen the rat genome for gene changes in the frontal cortex. The aim of our work was to assess whether the CMS protocol could be a useful experimental model to provide insights into the molecular basis of depression. Under our experimental conditions, 59 transcripts changed by more than +/-1.5-fold between naïve and anhedonic rats and showed significantly altered expression levels (P < 0.05). Among these, 18 were upregulated (fold change range +1.509 to +3.161) and 41 were downregulated (fold change range -1.505 to -2.659). To confirm the data obtained with microarrays, we used real-time reverse transcription polymerase chain reaction (RT-PCR). The results confirmed the downregulation of Itga6, Camk2a, Plcb1, Cart, Gad1, Homer1 and Th and the upregulation of Egr2 and Ptgs2 observed in the DNA microarray analysis. Moreover, the fold change data of the nine validated transcripts from microarray analysis and real-time polymerase chain reaction showed a good correlation (r = 0.863, 7 d.f., P < 0.01; slope = 0.976). It is of great interest that prostaglandin-endoperoxide synthase 2, tyrosine hydroxylase, Cart, Homer1 and glutamate decarboxylase have already been implicated in affective disorders by different approaches in previous reports. In conclusion, our findings indicate that the CMS paradigm is a useful preclinical model with which to investigate the molecular basis of anhedonia and to help in the discovery of novel targets for antidepressant drugs.
Collapse
Affiliation(s)
- M Orsetti
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche (DiSCAFF) Università del Piemonte Orientale A. Avogadro, Via Bovio 6, 28100 Novara, Italy.
| | | | | | | | | |
Collapse
|
153
|
Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:134-66. [PMID: 18247375 DOI: 10.1002/ajmg.b.30707] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Minchin RF, Lewis A, Mitchell D, Kadlubar FF, McManus ME. Sulfotransferase 4A1. Int J Biochem Cell Biol 2007; 40:2686-91. [PMID: 18248844 DOI: 10.1016/j.biocel.2007.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
In this review, we highlight the physical and enzymatic properties of the novel human sulfotransferase, SULT4A1. The gene is most highly expressed in selective regions of the brain, although work to date has failed to identify any specific endogenous substrate for the enzyme. SULT4A1 shares low homology with other human sulfotransferases. Nevertheless, it is highly conserved between species. Despite the low homology, it is structurally very similar to other cytosolic sulfotransferases with a conserved substrate binding domain, dimerization site and partial cofactor binding sites. However, the catalytic cavity is much smaller, and it has been suggested that the cofactor may not be accommodated within it. A recent link between variability in the 5'UTR of the SULT4A1 gene and schizophrenia has heightened interest in the endogenous function of the enzyme and its possible role in human disease.
Collapse
Affiliation(s)
- Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
155
|
Kato T, Kakiuchi C, Iwamoto K. Comprehensive gene expression analysis in bipolar disorder. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2007; 52:763-71. [PMID: 18186176 DOI: 10.1177/070674370705201203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review recent findings by DNA microarray in bipolar disorder (BD). METHOD A literature search was performed. RESULTS Comprehensive gene expression analysis in the brain, peripheral blood cells, and olfactory neuroepithelium would be a promising strategy for the research of BD. To date, alterations in glutamate receptors (GR), mitochondria-related genes, chaperone genes, oligodendrocyte genes, and markers of gamma amino butyric acidergic (GABAergic) neurons in postmortem brains are replicated by several different strategies. However, alterations in mitochondria-related genes are associated with agonal factors, sample pH, and effects of drugs. Analysis of blood cells showed altered endoplasmic reticulum stress pathway and other molecular cascades. Analysis of olfactory epithelium showed altered expression of genes associated with apoptosis. CONCLUSIONS These findings warrant that comprehensive gene expression analysis by DNA microarray will be useful to identify the molecular cascades responsible for BD.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
156
|
Karssen AM, Her S, Li JZ, Patel PD, Meng F, Bunney WE, Jones EG, Watson SJ, Akil H, Myers RM, Schatzberg AF, Lyons DM. Stress-induced changes in primate prefrontal profiles of gene expression. Mol Psychiatry 2007; 12:1089-102. [PMID: 17893703 DOI: 10.1038/sj.mp.4002095] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stressful experiences that consistently increase cortisol levels appear to alter the expression of hundreds of genes in prefrontal limbic brain regions. Here, we investigate this hypothesis in monkeys exposed to intermittent social stress-induced episodes of hypercortisolism or a no-stress control condition. Prefrontal profiles of gene expression compiled from Affymetrix microarray data for monkeys randomized to the no-stress condition were consistent with microarray results published for healthy humans. In monkeys exposed to intermittent social stress, more genes than expected by chance appeared to be differentially expressed in ventromedial prefrontal cortex compared to monkeys not exposed to adult social stress. Most of these stress responsive candidate genes were modestly downregulated, including ubiquitin conjugation enzymes and ligases involved in synaptic plasticity, cell cycle progression and nuclear receptor signaling. Social stress did not affect gene expression beyond that expected by chance in dorsolateral prefrontal cortex or prefrontal white matter. Thirty four of 48 comparisons chosen for verification by quantitative real-time polymerase chain reaction (qPCR) were consistent with the microarray-predicted result. Furthermore, qPCR and microarray data were highly correlated. These results provide new insights on the regulation of gene expression in a prefrontal corticolimbic region involved in the pathophysiology of stress and major depression. Comparisons between these data from monkeys and those for ventromedial prefrontal cortex in humans with a history of major depression may help to distinguish the molecular signature of stress from other confounding factors in human postmortem brain research.
Collapse
Affiliation(s)
- A M Karssen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305-5485, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Matigian N, Windus L, Smith H, Filippich C, Pantelis C, McGrath J, Mowry B, Hayward N. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 2007; 12:815-25. [PMID: 17440432 DOI: 10.1038/sj.mp.4001998] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify genes dysregulated in bipolar disorder (BD1), we carried out global gene expression profiling using whole-genome microarrays. To minimize genetic variation in gene expression levels between cases and controls, we compared expression profiles in lymphoblastoid cell lines from monozygotic twin pairs discordant for the disease. We identified 82 genes that were differentially expressed by >or=1.3-fold in three BD1 cases compared to their co-twins, and which were statistically (P<or=0.05) differentially expressed between the groups of BD1 cases and controls. Using quantitative reverse transcriptase-polymerase chain reaction, we confirmed the differential expression of some of these genes, including: KCNK1, MAL, PFN2, TCF7, PGK1 and PI4KCB, in at least two of the twin pairs. In contrast to the findings of a previous study by Kakiuchi and colleagues with similar discordant BD1 twin design, our data do not support the dysregulation of XBP1 and HSPA5. From pathway and gene ontology analysis, we identified upregulation of the WNT signalling pathway and the biological process of apoptosis. The differentially regulated genes and pathways identified in this study may provide insights into the biology of BD1.
Collapse
Affiliation(s)
- N Matigian
- Queensland Centre for Mental Health Research, Herston, QLD, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Multiple lines of evidence, such as impaired energy metabolism in the brain detected by magnetic resonance spectroscopy, a possible role of maternal inheritance, co-morbidity with mitochondrial diseases, the effects of mood stabilisers on mitochondria, increased mitochondrial DNA (mtDNA) deletion in the brain, and association with mtDNA mutations/polymorphisms or nuclear-encoded mitochondrial genes, suggest that mitochondrial dysfunction is an important component of bipolar disorder. Global reduction of mitochondria-related gene expression in the postmortem brains of patients with bipolar disorder may also be an indicator, but such findings are affected by sample pH and thus need to be interpreted with caution. A recently developed animal model carrying mtDNA deletion in neurons suggested that accumulation of mtDNA deletions causes bipolar disorder-like phenotypes. The next step in the study of mitochondrial dysfunction in bipolar disorder should be clarification of how mitochondrial dysfunction, a nonspecific risk factor, can cause specific symptoms of bipolar disorder. Two hypothetical mechanisms are mtDNA neuroplasticity and nonvisual photoreception impairment. Further study of mitochondrial dysfunction in bipolar disorder is expected to be useful for the development of new mood stabilisers.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan.
| |
Collapse
|
159
|
Abstract
With the increasing application of genomic and proteomic technologies to the research of neurological and psychiatric disorders it has become imperative that the postmortem tissue utilized be of the highest quality possible. Every step of the research design, from identifying donors, acquiring sufficient information for accurate diagnosis, to assessing tissue quality has to be carefully considered. In order to obtain high-quality RNA and protein from the postmortem brain tissue a standardized system of brain collection, dissection, and storage must be employed and key ante- and postmortem factors must be considered. Reliable RNA expression and protein data can be obtained from postmortem brains with relatively long postmortem intervals (PMIs) if the agonal factors and acidosis are not severe. While pH values are correlated with RNA integrity number (RIN), a higher pH does not guarantee intact RNA. Consequently RNA integrity must be assessed for every case before it is included in a study. An analysis of anti- and postmortem factors in a large brain collection has revealed that several diagnostic groups have significantly lower pH values than other groups, however, they do not have significantly lower RIN values. Moreover, the lower pH of these groups is not entirely due to agonal factors and/or smoking, indicating that these subjects may have additional metabolic abnormalities that contribute to the lower pH values.
Collapse
|