151
|
Wolf C, Linden DEJ. Biological pathways to adaptability - interactions between genome, epigenome, nervous system and environment for adaptive behavior. GENES BRAIN AND BEHAVIOR 2011; 11:3-28. [DOI: 10.1111/j.1601-183x.2011.00752.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
152
|
Olsen CM. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology 2011; 61:1109-22. [PMID: 21459101 PMCID: PMC3139704 DOI: 10.1016/j.neuropharm.2011.03.010] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 01/28/2023]
Abstract
There is a high degree of overlap between brain regions involved in processing natural rewards and drugs of abuse. "Non-drug" or "behavioral" addictions have become increasingly documented in the clinic, and pathologies include compulsive activities such as shopping, eating, exercising, sexual behavior, and gambling. Like drug addiction, non-drug addictions manifest in symptoms including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse. These alterations in behavior suggest that plasticity may be occurring in brain regions associated with drug addiction. In this review, I summarize data demonstrating that exposure to non-drug rewards can alter neural plasticity in regions of the brain that are affected by drugs of abuse. Research suggests that there are several similarities between neuroplasticity induced by natural and drug rewards and that, depending on the reward, repeated exposure to natural rewards might induce neuroplasticity that either promotes or counteracts addictive behavior.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| |
Collapse
|
153
|
Lippi G, Steinert JR, Marczylo EL, D'Oro S, Fiore R, Forsythe ID, Schratt G, Zoli M, Nicotera P, Young KW. Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. ACTA ACUST UNITED AC 2011; 194:889-904. [PMID: 21930776 PMCID: PMC3207289 DOI: 10.1083/jcb.201103006] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated that microribonucleic acids (miRs) are key regulators of protein expression in the brain and modulate dendritic spine morphology and synaptic activity. To identify novel miRs involved in neuronal plasticity, we exposed adult mice to chronic treatments with nicotine, cocaine, or amphetamine, which are psychoactive drugs that induce well-documented neuroadaptations. We observed brain region- and drug-specific changes in miR expression levels and identified miR-29a/b as regulators of synaptic morphology. In vitro imaging experiments indicated that miR-29a/b reduce mushroom-shaped dendritic spines on hippocampal neurons with a concomitant increase in filopodial-like outgrowths, suggesting an effect on synapse formation via actin cytoskeleton remodeling. We identified Arpc3, a component of the ARP2/3 actin nucleation complex, as a bona fide target for down-regulation by miR-29a/b. This work provides evidence that targeting of Arpc3 by miR-29a/b fine tunes structural plasticity by regulating actin network branching in mature and developing spines.
Collapse
Affiliation(s)
- Giordano Lippi
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, LE1 9HN, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Treatment of comorbid substance use and anxiety disorders: a case study. J Addict Med 2011; 5:248-53. [PMID: 22042217 DOI: 10.1097/adm.0b013e318233d64b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This case study of combined anxiety with both alcohol and benzodiazepine dependence illustrates key issues in presentation, differential diagnosis and management. The case is discussed from a biopsychosocial perspective with each of the discussants focusing on their particular area of experience and expertise, then the treatment package is presented in an integrated fashion. Of particular interest is how social anxiety disorder may become a significant barrier to engagement and retention, and thus outcome in persons presenting for addiction treatment, and how a treatment plan for such patients can be built.
Collapse
|
155
|
Caffino L, Racagni G, Fumagalli F. Stress and cocaine interact to modulate Arc/Arg3.1 expression in rat brain. Psychopharmacology (Berl) 2011; 218:241-8. [PMID: 21590283 DOI: 10.1007/s00213-011-2331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/26/2011] [Indexed: 02/05/2023]
Abstract
RATIONALE The interaction between stress and drugs of abuse is a critical component of drug addiction, but the underlying molecular mechanisms remain elusive. Arc/Arg3.1 is an effector immediate early gene that may represent a bridge connecting short- and long-term neuronal modifications associated with exposure to stress and drugs of abuse. OBJECTIVES This research aims to study the modulation of Arc/Arg3.1 expression as a marker of neuronal changes associated with exposure to stress and cocaine. MATERIALS AND METHODS Rats exposed to either single or repeated stress sessions were subjected to a single intraperitoneal injection of cocaine hydrochloride (10 mg/kg) and sacrificed 2 h later. RNase protection assay was used to determine changes in Arc/Arg3.1 gene expression in different brain regions. RESULTS We found significant stress-cocaine interactions in the prefrontal cortex (p < 0.001) and hypothalamus (p < 0.05). In the prefrontal cortex, acute stress potentiated cocaine-induced Arc/Arg3.1 mRNA elevation, whereas prolonged stress attenuated the response to cocaine. In the hypothalamus, although markedly reduced by acute stress, Arc/Arg3.1 gene expression was still increased by cocaine. No interaction was observed following repeated stress. Notably, cocaine-induced Arc/Arg3.1 mRNA levels were not influenced by stress in striatum and hippocampus. CONCLUSIONS In our experimental model, stress interacted with cocaine to alter Arc/Arg3.1 expression in a regionally selective fashion and in a way that depended on whether stress was acute or repeated. These results point to Arc/Arg3.1 as a potential molecular target modulated by stress to alter cellular sensitivity to cocaine.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | | | |
Collapse
|
156
|
Martín F, Mora L, Laorden M, Milanés M. Protein kinase C phosphorylates the cAMP response element binding protein in the hypothalamic paraventricular nucleus during morphine withdrawal. Br J Pharmacol 2011; 163:857-75. [PMID: 21615389 DOI: 10.1111/j.1476-5381.2011.01287.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Exposure to drugs of abuse or stress results in adaptation in the brain involving changes in gene expression and transcription factors. Morphine withdrawal modulates gene expression through various second-messenger signal transduction systems. Here, we investigated changes in activation of the transcription factor, cAMP-response element binding protein (CREB), in the hypothalamic paraventricular nucleus (PVN) and the kinases that may mediate the morphine withdrawal-triggered activation of CREB and the response of the hypothalamic-pituitary-adrenocortical (HPA) axis after naloxone-induced morphine withdrawal. EXPERIMENTAL APPROACH The effects of morphine dependence and withdrawal, phosphorylated CREB (pCREB), corticotrophin-releasing factor (CRF) expression in the PVN and HPA axis activity were measured using immunoblotting, immunohistochemistry and radioimmunoassay in controls and in morphine-dependent rats, withdrawn with naloxone and pretreated with vehicle, calphostin C, chelerythrine (inhibitors of protein kinase C (PKC) or SL-327 [inhibitor of extracellular signal regulated kinase (ERK) kinase]. In addition, changes in PKCα and PKCγ immunoreactivity were measured after 60 min of withdrawal. KEY RESULTS In morphine-withdrawn rats, pCREB immunoreactivity was increased within CRF immunoreactive neurons in the PVN and plasma corticosterone levels were raised. SL-327, at doses that reduced the augmented pERK levels in the PVN, did not attenuate the rise in pCREB immunoreactivity or plasma corticosterone secretion. In contrast, PKC inhibition reduced the withdrawal-triggered rise in pCREB, pERK1/2 and corticosterone secretion. CONCLUSIONS AND IMPLICATIONS PKC mediated, in part, both CREB activation and the HPA response to morphine withdrawal. The ERK kinase/ERK pathway might not be necessary for either activation of CREB or HPA axis hyperactivity.
Collapse
Affiliation(s)
- F Martín
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | | | | | | |
Collapse
|
157
|
Carrey N, Wilkinson M. A review of psychostimulant-induced neuroadaptation in developing animals. Neurosci Bull 2011; 27:197-214. [PMID: 21614102 DOI: 10.1007/s12264-011-1004-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The effects of clinically relevant doses of commonly prescribed stimulants methylphenidate (MPH), d-amphetamine (d-AMPH), and dl-AMPH or mixed amphetamine salts (MAS) such as Adderall, on short- and long-term gene neuroadaptations in developing animals have not been widely investigated. In the present review, the effects of oral stimulant administration were compared with those of the subcutaneous or intra-peritoneal route. A selective set of studies between 1979 and 2010, which incorporated in their design developmental period, clinically relevant doses of stimulants, and repeated daily doses were reviewed. These studies indicate that neuroadaptation to chronic stimulants includes blunting of stimulated immediate early gene expression, sensitivity of younger (prepubertal) brain to smaller dosages of stimulants, and the persistence of some effects, especially behavioral neuroadaptations, into adulthood. In addition, oral amphetamines (MAS) have more profound effects than does oral MPH. Further animal developmental studies are required to understand potential long-term neuroadaptations to low, daily oral doses of stimulants. Implications for clinical practice were also discussed.
Collapse
Affiliation(s)
- Normand Carrey
- Department of Psychiatry, IWK Health Centre, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
158
|
Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications. Pharmacol Ther 2011; 132:39-56. [DOI: 10.1016/j.pharmthera.2011.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
|
159
|
Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc Natl Acad Sci U S A 2011; 108:18020-5. [PMID: 21960440 DOI: 10.1073/pnas.1114093108] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using brain transcriptomic profiles from 853 individual honey bees exhibiting 48 distinct behavioral phenotypes in naturalistic contexts, we report that behavior-specific neurogenomic states can be inferred from the coordinated action of transcription factors (TFs) and their predicted target genes. Unsupervised hierarchical clustering of these transcriptomic profiles showed three clusters that correspond to three ecologically important behavioral categories: aggression, maturation, and foraging. To explore the genetic influences potentially regulating these behavior-specific neurogenomic states, we reconstructed a brain transcriptional regulatory network (TRN) model. This brain TRN quantitatively predicts with high accuracy gene expression changes of more than 2,000 genes involved in behavior, even for behavioral phenotypes on which it was not trained, suggesting that there is a core set of TFs that regulates behavior-specific gene expression in the bee brain, and other TFs more specific to particular categories. TFs playing key roles in the TRN include well-known regulators of neural and behavioral plasticity, e.g., Creb, as well as TFs better known in other biological contexts, e.g., NF-κB (immunity). Our results reveal three insights concerning the relationship between genes and behavior. First, distinct behaviors are subserved by distinct neurogenomic states in the brain. Second, the neurogenomic states underlying different behaviors rely upon both shared and distinct transcriptional modules. Third, despite the complexity of the brain, simple linear relationships between TFs and their putative target genes are a surprisingly prominent feature of the networks underlying behavior.
Collapse
|
160
|
Christensen T, Bisgaard CF, Wiborg O. Biomarkers of anhedonic-like behavior, antidepressant drug refraction, and stress resilience in a rat model of depression. Neuroscience 2011; 196:66-79. [PMID: 21889970 DOI: 10.1016/j.neuroscience.2011.08.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/04/2011] [Accepted: 08/12/2011] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to identify potential biomarkers for depression in the search for novel disease targets and treatment regimens. Furthermore, the study includes a search for biomarkers involved in treatment resistance and stress resilience in order to investigate mechanisms underlying antidepressant drug refraction and stress-coping strategies. Depression-related transcriptomic changes in gene expression profiles were investigated in laser-captured microdissected (LCM) rat hippocampal granular cell layers (GCL) using the chronic mild stress (CMS) rat model of depression and chronic administration of two selective serotonin reuptake inhibitors (SSRIs), escitalopram and sertraline. CMS rats were segregated into diverging groups according to behavioral readouts, and under stringent constraints, the associated differential gene regulations were analyzed. Accordingly, we identified four genes associated with recovery, two genes implicated in treatment resistance, and three genes involved in stress resilience. The identified genes associated with mechanisms of cellular plasticity, including signal transduction, cell proliferation, cell differentiation, and synaptic release. Hierarchical clustering analysis confirmed the subgroup segregation pattern in the CMS model. Thus antidepressant treatment refractors cluster with anhedonic-like rats, and, interestingly, stress-resilient rats cluster with rats undergoing antidepressant-mediated recovery from anhedonia, suggesting antidepressant mechanisms of action to emulate endogenous stress-coping strategies.
Collapse
Affiliation(s)
- T Christensen
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | | | | |
Collapse
|
161
|
Costa MA, Girard M, Dalmay F, Malauzat D. Brain-Derived Neurotrophic Factor Serum Levels in Alcohol-Dependent Subjects 6 Months After Alcohol Withdrawal. Alcohol Clin Exp Res 2011; 35:1966-73. [DOI: 10.1111/j.1530-0277.2011.01548.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
162
|
Adamec R, Hebert M, Blundell J. Long lasting effects of predator stress on pCREB expression in brain regions involved in fearful and anxious behavior. Behav Brain Res 2011; 221:118-33. [DOI: 10.1016/j.bbr.2011.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
163
|
Whitaker KW, Neumeister H, Huffman LS, Kidd CE, Preuss T, Hofmann HA. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J Neurophysiol 2011; 106:127-37. [DOI: 10.1152/jn.01126.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Social life affects brain function at all levels, including gene expression, neurochemical balance, and neural circuits. We have previously shown that in the cichlid fish Astatotilapia burtoni brightly colored, socially dominant (DOM) males face a trade-off between reproductive opportunities and increased predation risk. Compared with camouflaged subordinate (SUB) males, DOMs exposed to a loud sound pip display higher startle responsiveness and increased excitability of the Mauthner cell (M-cell) circuit that governs this behavior. Using behavioral tests, intracellular recordings, and single-cell molecular analysis, we show here that serotonin (5-HT) modulates this socially regulated plasticity via the 5-HT receptor subtype 2 (5-HTR2). Specifically, SUBs display increased sensitivity to pharmacological manipulation of 5-HTR2 compared with DOMs in both startle-escape behavior and electrophysiological properties of the M-cell. Immunohistochemistry showed serotonergic varicosities around the M-cells, further suggesting that 5-HT impinges directly onto the startle-escape circuitry. To determine whether the effects of 5-HTR2 are pre- or postsynaptic, and whether other 5-HTR subtypes are involved, we harvested the mRNA from single M-cells via cytoplasmic aspiration and found that 5-HTR subtypes 5A and 6 are expressed in the M-cell. 5-HTR2, however, was absent, suggesting that it affects M-cell excitability through a presynaptic mechanism. These results are consistent with a role for 5-HT in modulating startle plasticity and increase our understanding of the neural and molecular basis of a trade-off between reproduction and predation.
Collapse
Affiliation(s)
- K. W. Whitaker
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Army Research Laboratory, Aberdeen Proving Grounds, Maryland
| | - H. Neumeister
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - L. S. Huffman
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | | | - T. Preuss
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - H. A. Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
164
|
Peregud DI, Yakovlev AA, Panchenko LF, Gulyaeva NV. Expression of the mRNA of neurotrophins in brain regions of rats after spontaneous morphine withdrawal. NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241102005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
165
|
Mao LM, Horton E, Guo ML, Xue B, Jin DZ, Fibuch EE, Wang JQ. Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: a differential role of NMDA receptors. Neurochem Int 2011; 59:610-7. [PMID: 21704097 DOI: 10.1016/j.neuint.2011.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Methyl CpG-binding protein-2 (MeCP2) is a transcriptional regulator that binds to methylated DNA at CpG sites and functions to silence DNA transcription. MeCP2 is subject to the phosphorylation modification at serine 421 (S421), which releases MeCP2 from DNA and thus facilitates gene expression. As a transcriptional repressor densely expressed in limbic reward circuits of adult mammalian brains, MeCP2 is recently emerging as a critical epigenetic factor in experience-dependent neural plasticity and psychostimulant addiction. In this study, we investigated the regulation of MeCP2 phosphorylation in the rat striatum by the psychostimulant cocaine in vivo. We found that acute systemic injection of cocaine increased MeCP2 phosphorylation at S421 in the rat striatum, including both the caudate putamen and the nucleus accumbens, while cocaine did not affect MeCP2 phosphorylation in the medial prefrontal cortex. The cocaine-stimulated MeCP2 phosphorylation in the nucleus accumbens was a rapid and transient event, as it was evident at 20 min and returned to normal levels 3h after drug injection. The cocaine effect in the caudate putamen was however relatively delayed. Reliable induction of MeCP2 phosphorylation in this region was detected at 60 min. Pretreatment with an N-methyl-d-aspartate (NMDA) glutamate receptor antagonist significantly reduced the cocaine-stimulated MeCP2 phosphorylation in the caudate putamen, although not in the nucleus accumbens. Our data support that MeCP2 is a sensitive target of psychostimulants. Its phosphorylation status is regulated by psychostimulant exposure. NMDA receptors play a region-specific role in linking cocaine to MeCP2 phosphorylation in striatal neurons in vivo.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
A principal weakness of evidence-based psychiatry is that it does not account for the individual variability in therapeutic response among individuals with the same diagnosis. The aim of personalized psychiatry is to remediate this shortcoming and to use predictors to select treatment that is most likely to be beneficial for an individual. This article reviews the evidence that genetic variation, environmental exposures, and gene-environment interactions shape mental illness and influence treatment outcomes, with a primary focus on depression. Several genetic polymorphisms have been identified that influence the outcome of specific treatments, but the strength and generalizability of such influences are not sufficient to justify personalized prescribing. Environmental exposures in early life, such as childhood maltreatment, exert long-lasting influences that are moderated by inherited genetic variation and mediated through stable epigenetic mechanisms such as tissue- and gene-specific DNA methylation. Pharmacological and psychological treatments act on and against the background of genetic disposition, with epigenetic annotation resulting from previous experiences. Research in animal models suggests the possibility that epigenetic interventions may modify the impact of environmental stressors on mental health. Gaps in evidence are identified that need to be bridged before knowledge about cause can inform cure in personalized psychiatry.
Collapse
Affiliation(s)
- Rudolf Uher
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London.
| |
Collapse
|
167
|
Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 2011; 36:1149-64. [PMID: 21307844 PMCID: PMC3079833 DOI: 10.1038/npp.2010.250] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular adaptations underlying drug seeking and relapse remain largely unknown. Studies highlight post-transcriptional modifications mediated by microRNAs (miRNAs) in addiction and other neurological disorders. We have previously shown that chronic cocaine suppresses miR-124 and let-7d and induces the expression of miR-181a in mesolimbic pathway. To further address the role and target gene regulation network of these miRNAs in vivo in cocaine addiction, we developed lentiviral vector (LV)-expressing miRNAs and their corresponding silencers for stable and regulatable miRNA expression. We tested in vivo miRNA gain and loss of function on cocaine-induced conditioned place preference (CPP) by localized LV-miRNA regulation in the nucleus accumbens (NAc). LV-miR-124 and let-7d expression in the NAc attenuates cocaine CPP, whereas LV-miR-181a enhances it. Silencing miRNAs by corresponding LV-miRNA silencers expressing perfect miRNA target sequences inversed this effect on cocaine CPP. Doxycycline treatment for switching off silencer expression abolished the observed behavioral changes. Behavioral changes mediated by LV-miRNA regulation resulted in dynamic alterations in transcription factors, receptors, and other effector genes involved in cocaine-induced plasticity. Our results describe a complex regulatory pathway mediated by miRNAs in cocaine-mediated neuronal adaptations.
Collapse
|
168
|
Silent information regulator 1 mediates hippocampal plasticity through presenilin1. Neuroscience 2011; 179:32-40. [DOI: 10.1016/j.neuroscience.2011.01.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 12/16/2022]
|
169
|
Sensitization to cocaine is inhibited after intra-accumbal GR103691 or rimonabant, but it is enhanced after co-infusion indicating functional interaction between accumbens D(3) and CB1 receptors. Psychopharmacology (Berl) 2011; 214:949-59. [PMID: 21128069 DOI: 10.1007/s00213-010-2104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE Dopamine D(3) receptors and cannabinoid CB(1) receptors are both expressed in the nucleus accumbens, and they have been involved in motor sensitization to cocaine. The objectives were: (1) to study the effects of blockade of these receptors on sensitization to repeated cocaine, by using GR103691, D(3) receptor blocker, and rimonabant, CB(1) receptor ligand, and (2) to discern if both receptors interact by co-infusing them. MATERIALS AND METHODS Cocaine (10 mg/kg) was injected daily for 3 days (induction phase) and later on day 8 (expression phase), and locomotor activity was measured during 2 h after cocaine. GR103691 and rimonabant were bilaterally injected (0.5 μl volume of each infusion) in the nucleus accumbens through cannulae (GR103691, 0, 4.85, and 9.7 μg/μl; rimonabant, 0, 0.5, and 1.5 μg/μl), before cocaine, during either induction or expression phases of sensitization. RESULTS The findings indicated that sensitizing effects of cocaine were abolished after D(3) receptor blocking during both induction and expression phases, as well as rimonabant infusion during the expression (not induction) phase. A functional interaction between both receptors was also observed, because if GR103691 was injected during induction and rimonabant during expression, sensitizing effects of cocaine were observed to be normal or further enhanced. CONCLUSION Dopamine D(3) receptors within the nucleus accumbens are critical for the development and consolidation of sensitization, and cannabinoid CB(1) receptors are critical for the expression of sensitization. Co-blockade of D(3) and CB(1) receptors exert opposite effects to blockade of these receptors separately, revealing the existence of a functional interaction between them.
Collapse
|
170
|
Kivinummi T, Kaste K, Rantamäki T, Castrén E, Ahtee L. Alterations in BDNF and phospho-CREB levels following chronic oral nicotine treatment and its withdrawal in dopaminergic brain areas of mice. Neurosci Lett 2011; 491:108-12. [DOI: 10.1016/j.neulet.2011.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
|
171
|
Zill P, Vielsmeier V, Büttner A, Eisenmenger W, Siedler F, Scheffer B, Möller HJ, Bondy B. Postmortem proteomic analysis in human amygdala of drug addicts: possible impact of tubulin on drug-abusing behavior. Eur Arch Psychiatry Clin Neurosci 2011; 261:121-31. [PMID: 20686780 DOI: 10.1007/s00406-010-0129-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Besides the ventral tegmental area and the nucleus accumbens as the most investigated brain reward structures, several reports about the relation between volume and activity of the amygdala and drug-seeking behavior have emphasized the central role of the amygdala in the etiology of addiction. Considering its proposed important role and the limited number of human protein expression studies with amygdala in drug addiction, we performed a human postmortem proteomic analysis of amygdala tissue obtained from 8 opiate addicts and 7 control individuals. Results were validated by Western blot in an independent postmortem replication sample from 12 opiate addicts compared to 12 controls and 12 suicide victims, as a second "control sample". Applying 2D-electrophoresis and MALDI-TOF-MS analysis, we detected alterations of beta-tubulin expression and decreased levels of the heat-shock protein HSP60 in drug addicts. Western blot analysis in the additional sample demonstrated significantly increased alpha- and beta-tubulin concentrations in the amygdala of drug abusers versus controls (P = 0.021, 0.029) and to suicide victims (P = 0.006, 0.002). Our results suggest that cytoskeletal alterations in the amygdala determined by tubulin seem to be involved in the pathophysiology of drug addiction, probably via a relation to neurotransmission and cellular signaling. Moreover, the loss of neuroprotection against stressors by chaperons as HSP60 might also contribute to structural alteration in the brain of drug addicts. Although further studies have to confirm our results, this might be a possible pathway that may increase our understanding of drug addiction.
Collapse
Affiliation(s)
- P Zill
- Department of Psychiatry, Division of Psychiatric Genetics and Neurochemistry, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Levran O, Peles E, Hamon S, Randesi M, Zhao C, Zhang B, Adelson M, Kreek MJ. Nerve growth factor β polypeptide (NGFB) genetic variability: association with the methadone dose required for effective maintenance treatment. THE PHARMACOGENOMICS JOURNAL 2011; 12:319-27. [PMID: 21358750 PMCID: PMC3130093 DOI: 10.1038/tpj.2011.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Opioid addiction is a chronic disease with high genetic contribution and a large inter-individual variability in therapeutic response. The goal of this study was to identify pharmacodynamic factors that modulate methadone dose requirement. The neurotrophin family is involved in neural plasticity, learning, memory and behavior and deregulated neural plasticity may underlie the pathophysiology of drug addiction. Brain-derived neurotrophic factor (BDNF) was shown to affect the response to methadone maintenance treatment. This study explores the effects of polymorphisms in the nerve growth factor (β polypeptide) gene, NGFB, on the methadone doses required for successful maintenance treatment for heroin addiction. Genotypes of 14 NGFB polymorphisms were analyzed for association with the stabilizing methadone dose in 72 former severe heroin addicts with no major co-medications. There was significant difference in methadone doses required by subjects with different genotypes of the NGFB intronic single-nucleotide polymorphism rs2239622 (P=0.0002). These results may have clinical importance.
Collapse
Affiliation(s)
- O Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Mulligan MK, Rhodes JS, Crabbe JC, Mayfield RD, Harris RA, Ponomarev I. Molecular profiles of drinking alcohol to intoxication in C57BL/6J mice. Alcohol Clin Exp Res 2011; 35:659-70. [PMID: 21223303 DOI: 10.1111/j.1530-0277.2010.01384.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alcohol addiction develops through a series of stages, and mechanistic studies are needed to understand the transition from initial drug use to sustained controlled alcohol consumption followed by abuse and physical dependence. The focus of this study was to examine the effects of voluntary alcohol consumption on brain gene expression profiles using a mouse model of binge drinking. The main goal was to identify alcohol-responsive genes and functional categories after a single episode of drinking to intoxication. METHODS We used a modification of a "Drinking In the Dark" (DID) procedure (Rhodes et al., 2005) that allows mice to experience physiologically relevant amounts of alcohol in a non-stressful environment and also allows for detection of alcohol-sensitive molecular changes in a dose-dependent manner. C57BL/6J male mice were exposed to either 20% ethanol solution or water (single bottle) starting 3 hours after lights off for 4 hours and brains were harvested immediately after the drinking session. cDNA microarrays were used to assess the effects of voluntary drinking on global gene expression in 6 brain regions. We employed three statistical approaches to analyze microarray data. RESULTS A commonly used approach that applies a strict statistical threshold identified the eight top statistically significant genes whose expression was significantly correlated with blood ethanol concentration (BEC) in one of the brain regions. We then used a systems network approach to examine brain region-specific transcriptomes and identify modules of co-expressed (correlated) genes. In each brain region, we identified alcohol-responsive modules, i.e., modules significantly enriched for genes whose expression was correlated with BEC. A functional over-representation analysis was then applied to examine the organizing principles of alcohol-responsive modules. Genes were clustered into modules according to their roles in different physiological processes, functional groups, and cell types, including blood circulation, signal transduction, cell-cell communication, and striatal neurons. Finally, a meta-analysis across all brain regions suggested a global role of increasing alcohol dose in coordination of brain blood circulation and reaction of astrocytes. CONCLUSIONS This study showed that acute drinking resulted in small but consistent changes in brain gene expression which occurred in a dose-dependent manner. We identified both general and region-specific changes, some of which represent adaptive changes in response to increasing alcohol dose, which may play a role in alcohol-related behaviours, such as tolerance and consumption. Our systems approach allowed us to estimate the functional values of individual genes in the context of their genetic networks and formulate new refined hypotheses. An integrative analysis including other alcohol studies suggested several top candidates for functional validation, including Mt2, Gstm1, Scn4b, Prkcz, and Park7.
Collapse
Affiliation(s)
- Megan K Mulligan
- University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, Austin, Texas, USA
| | | | | | | | | | | |
Collapse
|
174
|
Ryanodine receptor-2 upregulation and nicotine-mediated plasticity. EMBO J 2010; 30:194-204. [PMID: 21113126 DOI: 10.1038/emboj.2010.279] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/18/2010] [Indexed: 01/01/2023] Open
Abstract
Nicotine, the major psychoactive component of cigarette smoke, modulates neuronal activity to produce Ca2+-dependent changes in gene transcription. However, the downstream targets that underlie the long-term effects of nicotine on neuronal function, and hence behaviour, remain to be elucidated. Here, we demonstrate that nicotine administration to mice upregulates levels of the type 2 ryanodine receptor (RyR2), a Ca2+-release channel present on the endoplasmic reticulum, in a number of brain areas associated with cognition and addiction, notably the cortex and ventral midbrain. Nicotine-mediated RyR2 upregulation was driven by CREB, and caused a long-lasting reinforcement of Ca2+ signalling via the process of Ca2+-induced Ca2+ release. RyR2 upregulation was itself required for long-term phosphorylation of CREB in a positive-feedback signalling loop. We further demonstrate that inhibition of RyR-activation in vivo abolishes sensitization to nicotine-induced habituated locomotion, a well-characterised model for onset of drug dependence. Our findings, therefore, indicate that gene-dependent reprogramming of Ca2+ signalling is involved in nicotine-induced behavioural changes.
Collapse
|
175
|
Zarate C, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G. Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 2010; 18:293-303. [PMID: 20825266 PMCID: PMC3000412 DOI: 10.3109/10673229.2010.511059] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mood disorders such as bipolar disorder and major depressive disorder are common, chronic, and recurrent conditions affecting millions of individuals worldwide. Existing antidepressants and mood stabilizers used to treat these disorders are insufficient for many. Patients continue to have low remission rates, delayed onset of action, residual subsyndromal symptoms, and relapses. New therapeutic agents able to exert faster and sustained antidepressant or mood-stabilizing effects are urgently needed to treat these disorders. In this context, the glutamatergic system has been implicated in the pathophysiology of mood disorders in unique clinical and neurobiological ways. In addition to evidence confirming the role of the glutamatergic modulators riluzole and ketamine as proof-of-concept agents in this system, trials with diverse glutamatergic modulators are under way. Overall, this system holds considerable promise for developing the next generation of novel therapeutics for the treatment of bipolar disorder and major depressive disorder.
Collapse
Affiliation(s)
- Carlos Zarate
- Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
176
|
Wang R, Zhang Y, Qing H, Liu M, Yang P. The extinction of morphine-induced conditioned place preference by histone deacetylase inhibition. Neurosci Lett 2010; 483:137-42. [DOI: 10.1016/j.neulet.2010.07.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
|
177
|
A Comparison of the Dynamics of S100B, S100A1, and S100A6 mRNA Expression in Hippocampal CA1 Area of Rats during Long-Term Potentiation and after Low-Frequency Stimulation. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20862335 PMCID: PMC2939401 DOI: 10.1155/2010/720958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/27/2010] [Accepted: 08/17/2010] [Indexed: 01/08/2023] Open
Abstract
The interest in tissue- and cell-specific S100 proteins physiological roles in the brain remains high. However, necessary experimental data for the assessment of their dynamics in one of the most important brain activities, its plasticity, is not sufficient. We studied the expression of S100B, S100A1, and S100A6 mRNA in the subfield CA1 of rat hippocampal slices after tetanic and low-frequency stimulation by real-time PCR. Within 30 min after tetanization, a 2-4 fold increase of the S100B mRNA level was observed as compared to the control (intact slices) or to low-frequency stimulation. Subsequently, the S100B mRNA content gradually returned to baseline. The amount of S100A1 mRNA gradually increased during first hour and maintained at the achieved level in the course of second hour after tetanization. The level of S100A6 mRNA did not change following tetanization or low-frequency stimulation.
Collapse
|
178
|
Huang YH, Schlüter OM, Dong Y. Cocaine-induced homeostatic regulation and dysregulation of nucleus accumbens neurons. Behav Brain Res 2010; 216:9-18. [PMID: 20708038 DOI: 10.1016/j.bbr.2010.07.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/22/2010] [Accepted: 07/30/2010] [Indexed: 12/27/2022]
Abstract
Homeostatic response is an endowed self-correcting/maintaining property for living units, ranging from subcellular domains, single cells, and organs to the whole organism. Homeostatic responses maintain stable function through the ever-changing internal and external environments. In central neurons, several forms of homeostatic regulation have been identified, all of which tend to stabilize the functional output of neurons toward their prior "set-point." Medium spiny neurons (MSNs) within the forebrain region the nucleus accumbens (NAc) play a central role in gating/regulating emotional and motivational behaviors including craving and seeking drugs of abuse. Exposure to highly salient stimuli such as cocaine administration not only acutely activates a certain population of NAc MSNs, but also induces long-lasting changes in these neurons. It is these long-lasting cellular alterations that are speculated to mediate the increasingly strong cocaine-craving and cocaine-seeking behaviors. Why do the potentially powerful homeostatic mechanisms fail to correct or compensate for these drug-induced maladaptations in neurons? Based on recent experimental results, this review proposes a hypothesis of homeostatic dysregulation induced by exposure to cocaine. Specifically, we hypothesize that exposure to cocaine generates false molecular signals which misleads the homeostatic regulation process, resulting in maladaptive changes in NAc MSNs. Thus, many molecular and cellular alterations observed in the addicted brain may indeed result from homeostatic dysregulation. This review is among the first to introduce the concept of homeostatic neuroplasticity to understanding the molecular and cellular maladaptations following exposure to drugs of abuse.
Collapse
Affiliation(s)
- Yanhua H Huang
- Program in Neuroscience, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
179
|
Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010; 466:197-202. [PMID: 20613834 PMCID: PMC2916751 DOI: 10.1038/nature09202] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 05/20/2010] [Indexed: 12/12/2022]
Abstract
Cocaine addiction is characterized by a gradual loss of control over drug use, but the molecular mechanisms regulating vulnerability to this process remain unclear. Here we report that microRNA-212 (miR-212) is upregulated in the dorsal striatum of rats with a history of extended access to cocaine. Striatal miR-212 decreases responsiveness to the motivational properties of cocaine by markedly amplifying the stimulatory effects of the drug on cAMP response element binding protein (CREB) signalling. This action occurs through miR-212-enhanced Raf1 activity, resulting in adenylyl cyclase sensitization and increased expression of the essential CREB co-activator TORC (transducer of regulated CREB; also known as CRTC). Our findings indicate that striatal miR-212 signalling has a key role in determining vulnerability to cocaine addiction, reveal new molecular regulators that control the complex actions of cocaine in brain reward circuitries and provide an entirely new direction for the development of anti-addiction therapeutics based on the modulation of noncoding RNAs.
Collapse
Affiliation(s)
- Jonathan A Hollander
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Butcher NJ, Mitchell DJ, Burow R, Minchin RF. Regulation of Mouse Brain-Selective Sulfotransferase Sult4a1 by cAMP Response Element-Binding Protein and Activating Transcription Factor-2. Mol Pharmacol 2010; 78:503-10. [DOI: 10.1124/mol.110.063404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
181
|
Disrupting the memory of places induced by drugs of abuse weakens motivational withdrawal in a context-dependent manner. Proc Natl Acad Sci U S A 2010; 107:12345-50. [PMID: 20566855 DOI: 10.1073/pnas.1003152107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Addicts repeatedly relapse to drug seeking even after years of abstinence, and this behavior is frequently induced by the recall of memories of the rewarding effects of the drug. Established memories, including those induced by drugs of abuse, can become transiently fragile if reactivated, and during this labile phase, known as reconsolidation, can be persistently disrupted. Here we show that, in rats, a morphine-induced place preference (mCPP) memory is linked to context-dependent withdrawal as disrupting the reconsolidation of the memory leads to a significant reduction of withdrawal evoked in the same context. Moreover, the hippocampus plays a critical role in linking the place preference memory with the context-conditioned withdrawal, as disrupting hippocampal protein synthesis and cAMP-dependent-protein kinase A after the reactivation of mCPP significantly weakens the withdrawal. Hence, targeting memories induced by drugs may represent an important strategy for attenuating context-conditioned withdrawal and therefore subsequent relapse in opiate addicts.
Collapse
|
182
|
Frohmader KS, Pitchers KK, Balfour ME, Coolen LM. Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models. Horm Behav 2010; 58:149-62. [PMID: 20004662 DOI: 10.1016/j.yhbeh.2009.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 02/04/2023]
Abstract
Drugs of abuse act on the brain circuits mediating motivation and reward associated with natural behaviors. There is ample evidence that drugs of abuse impact male and female sexual behavior. First, the current review discusses the effect of drugs of abuse on sexual motivation and performance in male and female humans. In particular, we discuss the effects of commonly abused drugs including psychostimulants, opiates, marijuana/THC, and alcohol. In general, drug use affects sexual motivation, arousal, and performance and is commonly associated with increased sexual risk behaviors. Second, studies on effects of systemic administration of drugs of abuse on sexual behavior in animals are reviewed. These studies analyze the effects on sexual performance and motivation but do not investigate the effects of drugs on risk-taking behavior, creating a disconnect between human and animal studies. For this reason, we discuss two studies that focus on the effects of alcohol and methamphetamine on inhibition of maladaptive sex-seeking behaviors in rodents. Third, this review discusses potential brain areas where drugs of abuse may be exerting their effect on sexual behavior with a focus on the mesolimbic system as the site of action. Finally, we discuss recent studies that have brought to light that sexual experience in turn can affect drug responsiveness, including a sensitized locomotor response to amphetamine in female and male rodents as well as enhanced drug reward in male rats.
Collapse
Affiliation(s)
- Karla S Frohmader
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
183
|
Fishback JA, Robson MJ, Xu YT, Matsumoto RR. Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 2010; 127:271-82. [PMID: 20438757 DOI: 10.1016/j.pharmthera.2010.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/29/2022]
Abstract
Despite the widespread and devastating impact of depression on society, our current understanding of its pathogenesis is limited. Likewise, existing treatments are inadequate, providing relief to only a subset of people suffering from depression. The search for more effective antidepressant drugs includes the investigation of new molecular targets. Among them, current data suggests that sigma receptors are involved in multiple processes effecting antidepressant-like actions in vivo and in vitro. This review summarizes accumulated evidence supporting a role for sigma receptors in antidepressant effects and provides a conceptual framework for delineating their potential roles over the course of antidepressant treatment.
Collapse
Affiliation(s)
- James A Fishback
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | | | | | | |
Collapse
|
184
|
Pitchers KK, Balfour ME, Lehman MN, Richtand NM, Yu L, Coolen LM. Neuroplasticity in the mesolimbic system induced by natural reward and subsequent reward abstinence. Biol Psychiatry 2010; 67:872-9. [PMID: 20015481 PMCID: PMC2854191 DOI: 10.1016/j.biopsych.2009.09.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/23/2009] [Accepted: 09/26/2009] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural reward and drugs of abuse converge on the mesolimbic system, where drugs of abuse induce neuronal alterations. Here, we tested plasticity in this system after natural reward and the subsequent impact on drug responses. METHODS Effects of sexual experience in male rats on behavioral sensitization and conditioned place preference associated with d-amphetamine (AMPH) and Golgi-impregnated dendrites and spines of nucleus accumbens (NAc) cells were determined. Moreover, the impact of abstinence from sexual behavior in experienced males on these parameters was tested. RESULTS First, repeated sexual behavior induced a sensitized locomotor response to AMPH compared with sexually naive control subjects observed 1, 7, and 28 days after last mating session. Second, sexually experienced animals formed a conditioned place preference for lower doses of AMPH than sexually naive males, indicative of enhanced reward value of AMPH. Finally, Golgi-Cox analysis demonstrated increased numbers of dendrites and spines in the NAc core and shell with sexual experience. The latter two alterations were dependent on a period of abstinence of 7-10 days. CONCLUSIONS Sexual experience induces functional and morphological alterations in the mesolimbic system similar to repeated exposure to psychostimulants. Moreover, abstinence from sexual behavior after repeated mating was essential for increased reward for drugs and dendritic arbors of NAc neurons, suggesting that the loss of sexual reward might also contribute to neuroplasticity of the mesolimbic system. These results suggest that some alterations in the mesolimbic system are common for natural and drug reward and might play a role in general reinforcement.
Collapse
Affiliation(s)
- Kyle K. Pitchers
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | - Michael N. Lehman
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Neil M. Richtand
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
- Psychiatry Service, Cincinnati Veterans Affairs Medical Center
| | - Lei Yu
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio
| | - Lique M. Coolen
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
- Department of Physiology & Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
185
|
Abstract
The underlying neurobiology of major depression (MD) is likely to represent an interaction between genetic susceptibility and environmental factors such as stress. We investigated, in a multimodal high-resolution magnetic resonance imaging (MRI) genetic study, whether reduced hippocampal volumes and other brain alterations are associated with the tri-allelic polymorphism of the serotonin transporter and childhood stress in patients with MD and healthy subjects. Patients with MD and healthy participants were investigated using high-resolution MRI and genotyping for serotonin transporter polymorphism in the promoter region of the serotonin transporter gene (SLC6A4, 5-HTTLPR). Region of interest analysis of the hippocampus, whole-brain voxel-based morphometry (VBM), and assessment of childhood stress were carried out. Patients carrying the risk S-allele developed smaller hippocampal volumes when they had a history of emotional neglect compared with patients who only had one risk factor (environmental or genetic). In patients, childhood stress also predicted further hippocampal white matter alterations independently from the genotype. Moreover, the left prefrontal cortex was smaller in patients, whereby childhood stress resulted in larger prefrontal volumes in those subjects carrying the non-risk L-allele, suggesting preventive effects. The findings indicate that subjects with both environmental and genetic risk factors are susceptible to stress-related hippocampal changes. Structural brain changes due to stress represent part of the mechanism by which the illness risk and outcome might be genetically mediated.
Collapse
|
186
|
Ampuero E, Rubio FJ, Falcon R, Sandoval M, Diaz-Veliz G, Gonzalez RE, Earle N, Dagnino-Subiabre A, Aboitiz F, Orrego F, Wyneken U. Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex. Neuroscience 2010; 169:98-108. [PMID: 20417256 DOI: 10.1016/j.neuroscience.2010.04.035] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 12/16/2022]
Abstract
It has been postulated that chronic administration of antidepressant drugs induces delayed structural and molecular adaptations at glutamatergic forebrain synapses that might underlie mood improvement. To gain further insight into these changes in the cerebral cortex, rats were treated with fluoxetine (flx) for 4 weeks. These animals showed decreased anxiety and learned helplessness. N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit levels (NR1, NR2A, NR2B, GluR1 and GluR2) were analysed in the forebrain by both western blot of homogenates and immunohistochemistry. Both methods demonstrated an upregulation of NR2A, GluR1 and GluR2 that was especially significant in the retrosplenial granular b cortex (RSGb). However, when analysing subunit content in postsynaptic densities and synaptic membranes, we found increases of NR2A and GluR2 but not GluR1. Instead, GluR1 was augmented in a microsomal fraction containing intracellular membranes. NR1 and GluR2 were co-immunoprecipitated from postsynaptic densities and synaptic membranes. In the immunoprecipitates, NR2A was increased while GluR1 was decreased supporting a change in receptor stoichiometry. The changes of subunit levels were associated with an upregulation of dendritic spine density and of large, mushroom-type spines. These molecular and structural adaptations might be involved in neuronal network stabilization following long-term flx treatment.
Collapse
Affiliation(s)
- E Ampuero
- Laboratorio de Neurociencias, Universidad de los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 2010; 1187:35-75. [PMID: 20201846 DOI: 10.1111/j.1749-6632.2009.05144.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that repeated exposure to cocaine leads to profound changes in glutamate transmission in limbic nuclei, particularly the nucleus accumbens. This review focuses on preclinical studies of cocaine-induced behavioral plasticity, including behavioral sensitization, self-administration, and the reinstatement of cocaine seeking. Behavioral, pharmacological, neurochemical, electrophysiological, biochemical, and molecular biological changes associated with cocaine-induced plasticity in glutamate systems are reviewed. The ultimate goal of these lines of research is to identify novel targets for the development of therapies for cocaine craving and addiction. Therefore, we also outline the progress and prospects of glutamate modulators for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
188
|
Molteni R, Calabrese F, Chourbaji S, Brandwein C, Racagni G, Gass P, Riva MA. Depression-prone mice with reduced glucocorticoid receptor expression display an altered stress-dependent regulation of brain-derived neurotrophic factor and activity-regulated cytoskeleton-associated protein. J Psychopharmacol 2010; 24:595-603. [PMID: 19074532 DOI: 10.1177/0269881108099815] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that depression is characterised by impaired brain plasticity that might originate from the interaction between genetic and environmental risk factors. Hence, the aim of this study was to investigate changes in neuroplasticity following exposure to stress, an environmental condition highly relevant to psychiatric disorders, in glucocorticoid receptor-deficient mice (GR(+/-)), a genetic model of predisposition to depression. Specifically, we have analysed the neurotrophin brain-derived neurotrophic factor (BDNF) and the immediate-early gene activity-regulated cytoskeletal-associated protein (Arc), two closely related molecules that can contribute to neuroplastic and morphological changes observed in depression. We found a region-specific influence of the GR-genotype on BDNF levels both under basal and stress conditions. Steady-state levels of BDNF mRNA were unchanged in hippocampus while up-regulated in frontal lobe of GR(+/-) mice. Following exposure to an acute stress, increased processing from pro- to mature BDNF was observed in hippocampal synaptosomes of wild-type mice, but not in GR mutants. Furthermore, the stress-dependent modulation of Arc was impaired in the hippocampus of GR(+/-) mice. These results indicate that GR(+/-) mice show overt differences in the stress-induced modulation of neuroplastic proteins, which may contribute to pathologic conditions that may originate following gene x environment interaction.
Collapse
Affiliation(s)
- R Molteni
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
189
|
Hedges VL, Staffend NA, Meisel RL. Neural mechanisms of reproduction in females as a predisposing factor for drug addiction. Front Neuroendocrinol 2010; 31:217-31. [PMID: 20176045 PMCID: PMC2857768 DOI: 10.1016/j.yfrne.2010.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/18/2022]
Abstract
There is an increasing awareness that adolescent females differ from males in their response to drugs of abuse and consequently in their vulnerability to addiction. One possible component of this vulnerability to drug addiction is the neurobiological impact that reproductive physiology and behaviors have on the mesolimbic dopamine system, a key neural pathway mediating drug addiction. In this review, we examine animal models that address the impact of ovarian cyclicity, sexual affiliation, sexual behavior, and maternal care on the long-term plasticity of the mesolimbic dopamine system. The thesis is that this plasticity in synaptic neurotransmission stemming from an individual's normal life history contributes to the pathological impact of drugs of abuse on the neurobiology of this system. Hormones released during reproductive cycles have only transient effects on these dopamine systems, whereas reproductive behaviors produce a persistent sensitization of dopamine release and post-synaptic neuronal responsiveness. Puberty itself may not represent a neurobiological risk factor for drug abuse, but attendant behavioral experiences may have a negative impact on females engaging in drug use.
Collapse
Affiliation(s)
- Valerie L Hedges
- Department of Neuroscience and Graduate Neuroscience Program, 6-145 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | |
Collapse
|
190
|
Molteni R, Cattaneo A, Calabrese F, Macchi F, Olivier JD, Racagni G, Ellenbroek BA, Gennarelli M, Riva MA. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiol Dis 2010; 37:747-55. [DOI: 10.1016/j.nbd.2009.12.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/28/2009] [Accepted: 12/14/2009] [Indexed: 12/21/2022] Open
|
191
|
Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol 2010; 61:81-109, C1-11. [PMID: 19575614 DOI: 10.1146/annurev.psych.093008.100321] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress is defined as a state of perturbed homeostasis following endangerment that evokes manifold adaptive reactions, which are summarized as the stress response. In the case of mental stress, the adaptive response follows the perception of endangerment. Different peptides, steroids, and biogenic amines operate the stress response within the brain and also after they have been released into circulation. We focus in this review on the biological roles of corticosteroids, corticotrophin-releasing hormone (CRH), and arginine vasopressin (AVP), and we evaluate the effects of treatments directed against the actions of these hormones. CRH and AVP are the central drivers of the stress hormone system, but they also act as neuromodulators in the brain, affecting higher mental functions including emotion, cognition, and behavior. When released toward the pituitary, these central neuropeptides elicit corticotrophin into the periphery, which activates corticosteroid release from the adrenal cortex. These stress hormones are essential for the adequate adaptation to stress, but they can also evoke severe clinical conditions once persistently hypersecreted. Depression and anxiety disorders are prominent examples of stress-related disorders associated with an impaired regulation of stress hormones. We summarize the effects of drugs acting at specific targets of the stress hormone axis, and we discuss their potential use as next-generation antidepressant medications. Such treatments require the identification of patients that will optimally benefit from such specific interventions. These could be a first step into personalized medicine using treatments tailored to the specific pathology of the patients.
Collapse
Affiliation(s)
- Florian Holsboer
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | | |
Collapse
|
192
|
Intra-accumbens rimonabant is rewarding but induces aversion to cocaine in cocaine-treated rats, as does in vivo accumbal cannabinoid CB1 receptor silencing: critical role for glutamate receptors. Neuroscience 2010; 167:205-15. [PMID: 20167255 DOI: 10.1016/j.neuroscience.2010.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/22/2022]
Abstract
Reinforcing effects mediated by accumbal CB(1) receptors (CB(1)R) are controversial, as well as their role in the rewarding effects of cocaine. Accumbal glutamate and glutamate receptors have been proposed to be involved in CB(1)R-mediated effects on cocaine reward. Rewarding effects of cocaine can be evaluated with the conditioned place preference or CPP test. Rimonabant, a cannabinoid CB(1)R ligand, lentiviruses aimed at silencing CB(1)R, and selective glutamatergic ligands are good tools for studying the function of accumbal CB(1) and glutamate receptors. The objectives of the present study were (i) to discern the CPP effects of in vivo gene silencing of accumbal CB(1) receptors by means of lentiviruses containing siRNAs; (ii) to discern the CPP effects of intra-accumbens infusions of the cannabinoid CB(1)R ligand rimonabant, and to evaluate whether effects are due to receptor blockade or inverse agonism; (iii) to discern the role of CB(1)R located within the nucleus accumbens shell in the rewarding effects of cocaine, by means of local infusions of rimonabant, and (iv) to discern the role of glutamate receptors (AMPAR, NMDAR, mGluR2/3) in rimonabant-induced effects on CPP in cocaine-treated rats. The findings revealed that in vivo silencing of accumbal CB(1) receptors with Lenti-CB(1)R-siRNAs induced place aversion to cocaine, but intra-accumbal rimonabant induced place preference in its own right, indicating that this compound seems to act as inverse agonist on the CPP. Glutamate receptors participate in rimonabant-mediated place preference because it was abolished after blocking AMPA glutamate receptors, but not NMDAR or mGluR2/3. Finally, in cocaine-treated rats, local rimonabant induced place aversion to the drug (not place preference), and this effect was mediated by glutamate neurotransmission because it was abolished after blockade of AMPA, NMDA or mGlu2/3 receptors, even though only the blockade of mGlu2/3 autoreceptors restored the emergence of place preference to cocaine.
Collapse
|
193
|
Calabrese F, Molteni R, Cattaneo A, Macchi F, Racagni G, Gennarelli M, Ellenbroek BA, Riva MA. Long-Term Duloxetine Treatment Normalizes Altered Brain-Derived Neurotrophic Factor Expression in Serotonin Transporter Knockout Rats through the Modulation of Specific Neurotrophin Isoforms. Mol Pharmacol 2010; 77:846-53. [DOI: 10.1124/mol.109.063081] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
194
|
Raizada RDS, Kishiyama MM. Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Front Hum Neurosci 2010; 4:3. [PMID: 20161995 PMCID: PMC2820392 DOI: 10.3389/neuro.09.003.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/14/2010] [Indexed: 11/14/2022] Open
Abstract
The study of socioeconomic status (SES) and the brain finds itself in a circumstance unusual for Cognitive Neuroscience: large numbers of questions with both practical and scientific importance exist, but they are currently under-researched and ripe for investigation. This review aims to highlight these questions, to outline their potential significance, and to suggest routes by which they might be approached. Although remarkably few neural studies have been carried out so far, there exists a large literature of previous behavioural work. This behavioural research provides an invaluable guide for future neuroimaging work, but also poses an important challenge for it: how can we ensure that the neural data contributes predictive or diagnostic power over and above what can be derived from behaviour alone? We discuss some of the open mechanistic questions which Cognitive Neuroscience may have the power to illuminate, spanning areas including language, numerical cognition, stress, memory, and social influences on learning. These questions have obvious practical and societal significance, but they also bear directly on a set of longstanding questions in basic science: what are the environmental and neural factors which affect the acquisition and retention of declarative and nondeclarative skills? Perhaps the best opportunity for practical and theoretical interests to converge is in the study of interventions. Many interventions aimed at improving the cognitive development of low SES children are currently underway, but almost all are operating without either input from, or study by, the Cognitive Neuroscience community. Given that longitudinal intervention studies are very hard to set up, but can, with proper designs, be ideal tests of causal mechanisms, this area promises exciting opportunities for future research.
Collapse
Affiliation(s)
- Rajeev D S Raizada
- Neukom Institute for Computational Science, Dartmouth College Hanover, NH, USA
| | | |
Collapse
|
195
|
Guerri C, Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol 2010; 44:15-26. [PMID: 20113871 DOI: 10.1016/j.alcohol.2009.10.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 01/13/2023]
Abstract
Studies over the last decade demonstrate that adolescence is a brain maturation period from childhood to adulthood. Plastic and dynamic processes drive adolescent brain development, creating flexibility that allows the brain to refine itself, specialize, and sharpen its functions for specific demands. Maturing connections enable increased communication among brain regions, allowing greater integration and complexity. Compelling evidence has shown that the developing brain is vulnerable to the damaging effects of ethanol. It is possible to infer, therefore, that alcohol exposure during the critical adolescent developmental stages could disrupt the brain plasticity and maturation processes, resulting in behavioral and cognitive deficits. Recent neuroimaging studies have provided evidence of the impact of human adolescent drinking in brain structure and functions. Findings in experimental animals have also given new insight into the potential mechanisms of the toxic effects of ethanol on both adolescent brain maturation and the short- and long-term cognitive consequences of adolescent drinking. Adolescence is also characterized by the rapid maturation of brain systems mediating reward and by changes in the secretion of stress-related hormones, events that might participate in the increasing in anxiety and the initiation pattern of alcohol and drug consumption. Studies in human adolescents demonstrate that drinking at early ages can enhance the likelihood of developing alcohol-related problems. Experimental evidence suggests that early exposure to alcohol sensitizes the neurocircuitry of addiction and affects chromatin remodeling, events that could induce abnormal plasticity in reward-related learning processes that contribute to adolescents' vulnerability to drug addiction. In this article, we review the potential mechanisms by which ethanol impacts brain development and lead to brain impairments and cognitive and behavioral dysfunctions as well as the neurobiological and neurochemical processes underlying the adolescent-specific vulnerability to drug addiction.
Collapse
Affiliation(s)
- Consuelo Guerri
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | | |
Collapse
|
196
|
Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev 2010; 35:185-211. [PMID: 20109488 DOI: 10.1016/j.neubiorev.2010.01.013] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/17/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
This review focuses on cocaine-induced postsynaptic plasticity in the nucleus accumbens (NAc) involving changes in AMPA receptor (AMPAR) transmission. First, fundamental properties of AMPAR in the NAc are reviewed. Then, we provide a detailed and critical analysis of literature demonstrating alterations in AMPAR transmission in association with behavioral sensitization to cocaine and cocaine self-administration. We conclude that cocaine exposure leads to changes in AMPAR transmission that depend on many factors including whether exposure is contingent or non-contingent, the duration of withdrawal, and whether extinction training has occurred. The relationship between changes in AMPAR transmission and responding to cocaine or cocaine-paired cues can also be affected by these variables. However, after prolonged withdrawal in the absence of extinction training, our findings and others lead us to propose that AMPAR transmission is enhanced, resulting in stronger responding to drug-paired cues. Finally, many results indicate that the state of synaptic transmission in the NAc after cocaine exposure is associated with impairment of AMPAR-dependent plasticity. This may contribute to a broad range of addiction-related behavioral changes.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, United States.
| | | |
Collapse
|
197
|
Xu YT, Kaushal N, Shaikh J, Wilson LL, Mésangeau C, McCurdy CR, Matsumoto RR. A novel substituted piperazine, CM156, attenuates the stimulant and toxic effects of cocaine in mice. J Pharmacol Exp Ther 2010; 333:491-500. [PMID: 20100904 DOI: 10.1124/jpet.109.161398] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cocaine is a highly abused drug without effective pharmacotherapies to treat it. It interacts with sigma (sigma) receptors, providing logical targets for the development of medications to counteract its actions. Cocaine causes toxic and stimulant effects that can be categorized as acute effects such as convulsions and locomotor hyperactivity and subchronic effects including sensitization and place conditioning. In the present study, 3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d]thiazole-2(3H)-thione (CM156), a novel compound, was developed and tested for interactions with sigma receptors using radioligand binding studies. It was also evaluated against cocaine-induced effects in behavioral studies. The results showed that CM156 has nanomolar affinities for each of the sigma receptor subtypes in the brain and much weaker affinities for non-sigma binding sites. Pretreatment of male Swiss-Webster mice with CM156, before administering either a convulsive or locomotor stimulant dose of cocaine, led to a significant attenuation of these acute effects. CM156 also significantly reduced the expression of behavioral sensitization and place conditioning evoked by subchronic exposure to cocaine. The protective effects of CM156 are consistent with sigma receptor-mediated actions. Together with previously reported findings, the data from CM156 and related sigma compounds indicate that sigma receptors can be targeted to alleviate deleterious actions of cocaine.
Collapse
Affiliation(s)
- Yan-Tong Xu
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
Psychiatric diseases are very debilitating and some of them highly prevalent (e.g., depression or anxiety). The rat remains one model of choice in this discipline to investigate the neural mechanisms underlying normal and pathological traits. Genomic tools are now applied to identify genes involved in psychiatric illnesses and also to provide new biomarkers for diagnostic and prognosis, new targets for treatment and more generally to better understand the functioning of the brain. In this report, we will review rat models, behavioral approaches used to model psychiatry-related traits and the major studies published in the field including genetic mapping of quantitative trait loci (QTL), transcriptomics, proteomics and transgenic models.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- INRA, UMR 1286 PsyNuGen, CNRS, UMR 5226, Université de Bordeaux 2, Bordeaux, France
| | | |
Collapse
|
199
|
Molteni R, Calabrese F, Maj PF, Olivier JDA, Racagni G, Ellenbroek BA, Riva MA. Altered expression and modulation of activity-regulated cytoskeletal associated protein (Arc) in serotonin transporter knockout rats. Eur Neuropsychopharmacol 2009; 19:898-904. [PMID: 19576731 DOI: 10.1016/j.euroneuro.2009.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/05/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
A gene variant in the human serotonin transporter (SERT) can increase the vulnerability to mood disorders. SERT knockout animals show similarities to the human condition and represent an important tool to investigate the mechanisms underlying the pathologic condition in humans. Along this line of thinking, we used SERT KO rats (SERT(+/-) and SERT(-/-)) to investigate abnormalities in the expression and function of the activity-regulated gene Arc (Activity-regulated cytoskeletal associated protein) and the early inducible gene Zif-268, (zinc finger binding protein clone 268), which are important players in neuronal plasticity. We found lower basal Arc mRNA levels in hippocampus and prefrontal cortex of mutant rats in comparison with wild-type animals. Moreover SERT mutant rats show altered stress responsiveness. Indeed an acute swim stress significantly up-regulated the levels of Arc mRNA in hippocampus and prefrontal cortex, as well as of Zif-268 in frontal cortex, only in SERT(+/-) and SERT(-/-) rats. These alterations may be associated to behavioral traits linked to SERT and may contribute to the neuroplastic and morphological changes observed in depression.
Collapse
Affiliation(s)
- Raffaella Molteni
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
200
|
Sanchis-Segura C, Lopez-Atalaya JP, Barco A. Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition. Neuropsychopharmacology 2009; 34:2642-54. [PMID: 19727068 DOI: 10.1038/npp.2009.125] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histone acetylation and other modifications of the chromatin are important regulators of gene expression and, consequently, may contribute to drug-induced behaviors and neuroplasticity. Earlier studies have shown that a reduction in histone deacetylase (HDAC) activity results in the enhancement of some psychostimulant-induced behaviors. In this study, we extend those seminal findings by showing that the administration of the HDAC inhibitor sodium butyrate enhances morphine-induced locomotor sensitization and conditioned place preference. In contrast, this compound has no effects on the development of morphine tolerance and dependence. Similar effects were observed for cocaine and ethanol-induced behaviors. These behavioral changes were accompanied by a selective boosting of a component of the transcriptional program activated by chronic morphine administration that included circadian clock genes and other genes relevant to addictive behavior. Our results support a specific function for histone acetylation and the epigenetic modulation of transcription at a reduced number of biologically relevant loci on non-homeostatic, long-lasting, drug-induced behavioral plasticity.
Collapse
|