151
|
Gatto M, Bragazzi MC, Semeraro R, Napoli C, Gentile R, Torrice A, Gaudio E, Alvaro D. Cholangiocarcinoma: update and future perspectives. Dig Liver Dis 2010; 42:253-60. [PMID: 20097142 DOI: 10.1016/j.dld.2009.12.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/28/2009] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma is commonly considered a rare cancer. However, if we consider the hepato-biliary system a single entity, cancers of the gallbladder, intra-hepatic and extra-hepatic biliary tree altogether represent approximately 30% of the total with incidence rates close to that of hepatocellular carcinoma, which is the third most common cause of cancer-related death worldwide. In addition, cholangiocarcinoma is characterized by a very poor prognosis and virtually no response to chemotherapeutics; radical surgery, the only effective treatment, is not frequently applicable because late diagnosis. Biomarkers for screening programs and for follow-up of categories at risk are under investigation, however, currently none of the proposed markers has reached clinical application. For all these considerations, cancers of the biliary tree system should merit much more scientific attention also because a progressive increase in incidence and mortality for these cancers has been reported worldwide. This manuscript deals with the most recent advances in the epidemiology, biology and clinical presentation of cholangiocarcinoma.
Collapse
Affiliation(s)
- Manuela Gatto
- Department of Clinical Medicine, Division of Gastroenterology, University of Rome Sapienza, Polo Pontino, R. Rosselini 51, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Buchkremer S, Hendel J, Krupp M, Weinmann A, Schlamp K, Maass T, Staib F, Galle PR, Teufel A. Library of molecular associations: curating the complex molecular basis of liver diseases. BMC Genomics 2010; 11:189. [PMID: 20302666 PMCID: PMC2851601 DOI: 10.1186/1471-2164-11-189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 03/20/2010] [Indexed: 01/17/2023] Open
Abstract
Background Systems biology approaches offer novel insights into the development of chronic liver diseases. Current genomic databases supporting systems biology analyses are mostly based on microarray data. Although these data often cover genome wide expression, the validity of single microarray experiments remains questionable. However, for systems biology approaches addressing the interactions of molecular networks comprehensive but also highly validated data are necessary. Results We have therefore generated the first comprehensive database for published molecular associations in human liver diseases. It is based on PubMed published abstracts and aimed to close the gap between genome wide coverage of low validity from microarray data and individual highly validated data from PubMed. After an initial text mining process, the extracted abstracts were all manually validated to confirm content and potential genetic associations and may therefore be highly trusted. All data were stored in a publicly available database, Library of Molecular Associations http://www.medicalgenomics.org/databases/loma/news, currently holding approximately 1260 confirmed molecular associations for chronic liver diseases such as HCC, CCC, liver fibrosis, NASH/fatty liver disease, AIH, PBC, and PSC. We furthermore transformed these data into a powerful resource for molecular liver research by connecting them to multiple biomedical information resources. Conclusion Together, this database is the first available database providing a comprehensive view and analysis options for published molecular associations on multiple liver diseases.
Collapse
Affiliation(s)
- Stefan Buchkremer
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Langevin SM, Stone RA, Bunker CH, Grandis JR, Sobol RW, Taioli E. MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis 2010; 31:864-70. [PMID: 20197299 DOI: 10.1093/carcin/bgq051] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Head and neck cancer represents 3.3% of all new malignancies and 2.0% of cancer deaths in the USA, the majority of which are squamous in origin. The overall 5 year survival is 60% and worsens with increasing stage at diagnosis. Thus, novel biomarkers for early detection of squamous cell carcinoma of the head and neck (SCCHN) are needed. MicroRNA-137 (miR-137) plays a role in cell cycle control and seems to undergo promoter methylation in oral squamous cell carcinoma tissue. The main objectives of this study were to ascertain whether miR-137 promoter methylation is detectable in oral rinse samples, assess its association with SCCHN and identify potential risk factors for its occurrence. Oral rinse samples were collected from 99 SCCHN patients with no prior history of cancer and 99 cancer-free controls, frequency matched on gender; tumor tissue for 64 patients was also tested. Methylation of the miR-137 promoter, assessed using methylation-specific polymerase chain reaction, was detected in 21.2% oral rinses from SCCHN patients and 3.0% from controls [odds ratio (OR) = 4.80, 95% confidence interval (CI): 1.23-18.82]. Among cases, promoter methylation of miR-137 was associated with female gender (OR = 5.30, 95% CI: 1.20-23.44) and inversely associated with body mass index (BMI) (OR = 0.88, 95% CI: 0.77-0.99). Promoter methylation of miR-137 appears to be a relatively frequently detected event in oral rinse of SCCHN patients and may have future utility as a biomarker in DNA methylation panels. The observed associations with gender and BMI help to shed light on potential risk factors for an altered methylation state in SCCHN.
Collapse
Affiliation(s)
- Scott M Langevin
- Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | | | | | | | | | | |
Collapse
|
154
|
Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010; 51:881-90. [PMID: 20146264 PMCID: PMC3902044 DOI: 10.1002/hep.23381] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Although the inflammation-associated cytokine interleukin-6 (IL-6) has been implicated in cholangiocarcinoma growth, the relationship between IL-6 and oncogenic changes is unknown. IL-6 can increase expression of DNA methyltransferase-1 (DNMT-1) and epigenetically regulate the expression of several genes, including microRNAs (miRNAs). DNMT-1 up-regulation occurs in hepatobiliary cancers and is associated with a poor prognosis. To understand the potential regulation of DNMT-1 by IL-6-dependent miRNAs, we examined the expression of a group of miRNAs which have sequence complementarity to the 3'-untranslated region of DNMT-1, namely miR-148a, miR-152, and miR-301. The expression of these miRNAs was decreased in cholangiocarcinoma cells. Moreover, the expression of all three miRNAs was decreased in IL-6-overexpressing malignant cholangiocytes in vitro and in tumor cell xenografts. There was a concomitant decrease in expression of the methylation-sensitive tumor suppressor genes Rassf1a and p16INK4a. Using luciferase reporter constructs, DNMT-1 was verified as a target for miR-148a and miR-152. Precursors to miR-148a and miR-152 decreased DNMT-1 protein expression, increased Rassf1a and p16INK4a expression, and reduced cell proliferation. CONCLUSION These data indicate that IL-6 can regulate the activity of DNMT-1 and expression of methylation-dependent tumor suppressor genes by modulation of miR-148a and miR-152, and provide a link between this inflammation-associated cytokine and oncogenesis in cholangiocarcinoma.
Collapse
Affiliation(s)
- Chiara Braconi
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
155
|
Chen Q, Li WG. Advances in understanding the relationship between microRNAs and cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:563-567. [DOI: 10.11569/wcjd.v18.i6.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs widely distributed in plants and animals. They can inhibit the expression of protein-coding genes by binding to the 3' UTR of mRNAs and inducing either translational repression or mRNA degradation. It has been demonstrated that miRNAs play important roles in regulating cell proliferation, apoptosis and differentiation. In addition, miRNAs can function as oncogenes or tumor suppressor genes and are therefore closely associated with oncogenesis. This review will focus on the biogenesis, silencing mechanism, and biological function of miRNAs, and their roles in the development and progression of cholangiocarcinoma.
Collapse
|
156
|
Kumar RK, Hitchins MP, Foster PS. Epigenetic changes in childhood asthma. Dis Model Mech 2010; 2:549-53. [PMID: 19892885 DOI: 10.1242/dmm.001719] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Childhood asthma is linked strongly to atopy and is characterised by a T helper 2 (Th2)-polarised immunological response. Epidemiological studies implicate severe lower respiratory tract viral infections, especially in early childhood, and repeated inhalational exposure to allergens as important synergistic factors in the development of asthma. The way in which these and other environmental factors induce stable alterations in phenotype is poorly understood, but may be explained on the basis of epigenetic changes, which are now recognised to underlie the establishment and maintenance of a Th2 response. Furthermore, ongoing asthmatic inflammation of the airways may be driven by alterations in the expression profile of regulatory microRNA genes, to which epigenetic mechanisms may also contribute. Thus, an understanding of epigenetic mechanisms in asthma has the potential to reveal new approaches for primary prevention or therapeutic intervention in childhood asthma.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, University of New South Wales, Sydney NSW, Australia.
| | | | | |
Collapse
|
157
|
Gieni RS, Hendzel MJ. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 2010; 87:711-46. [PMID: 19898523 DOI: 10.1139/o09-057] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G1Z2, Canada
| | | |
Collapse
|
158
|
Fabbri M, Calin GA. Epigenetics and miRNAs in Human Cancer. EPIGENETICS AND CANCER, PART A 2010; 70:87-99. [DOI: 10.1016/b978-0-12-380866-0.60004-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
159
|
O'Hara SP, Splinter PL, Gajdos GB, Trussoni CE, Fernandez-Zapico ME, Chen XM, LaRusso NF. NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 2009; 285:216-25. [PMID: 19903813 DOI: 10.1074/jbc.m109.041640] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs, central players of numerous cellular processes, regulate mRNA stability or translational efficiency. Although these molecular events are established, the mechanisms regulating microRNA function and expression remain largely unknown. The microRNA let-7i regulates Toll-like receptor 4 expression. Here, we identify a novel transcriptional mechanism induced by the protozoan parasite Cryptosporidium parvum and Gram(-) bacteria-derived lipopolysaccharide (LPS) mediating let-7i promoter silencing in human biliary epithelial cells (cholangiocytes). Using cultured cholangiocytes, we show that microbial stimulus decreased let-7i expression, and promoter activity. Analysis of the mechanism revealed that microbial infection promotes the formation of a NFkappaB p50-C/EBPbeta silencer complex in the regulatory sequence. Chromatin immunoprecipitation assays (ChIP) demonstrated that the repressor complex binds to the let-7i promoter following microbial stimulus and promotes histone-H3 deacetylation. Our results provide a novel mechanism of transcriptional regulation of cholangiocyte let-7i expression following microbial insult, a process with potential implications for epithelial innate immune responses in general.
Collapse
Affiliation(s)
- Steven P O'Hara
- Division of Gastroenterology and Hepatology, Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
160
|
Howell PM, Liu S, Ren S, Behlen C, Fodstad O, Riker AI. Epigenetics in human melanoma. Cancer Control 2009; 16:200-18. [PMID: 19556960 DOI: 10.1177/107327480901600302] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent technological advances have allowed us to examine the human genome in greater detail than ever before. This has opened the door to an improved understanding of the gene expression patterns involved with cancer. METHODS A review of the literature was performed to determine the role of epigenetic modifications in human melanoma. We focused the search on histone deacetylation, methylation of gene promoter regions, demethylation of CpG islands, and the role of microRNA. We examined the relationship between human melanoma epigenetics and their importance in tumorigenesis, tumor progression, and inhibition of metastasis. The development and clinical application of select pharmacologic agents are also discussed. RESULTS We identified several articles that have extensively studied the role of epigenetics in melanoma, further elucidating the complex processes involved in gene regulation and expression. Several new agents directly affect epigenetic mechanisms in melanoma, with divergent affects on the metastatic potential of melanoma. CONCLUSIONS Epigenetic mechanisms have emerged as having a central role in gene regulation of human melanoma, including the identification of several putative tumor suppressor genes and oncogenes. Further research will focus on the development of novel therapeutics that will likely target and alter such epigenetic changes.
Collapse
Affiliation(s)
- Paul M Howell
- Basic and Translational Research Department, University of South Alabama, Mitchell Cancer Institute, Mobile, Alabama, USA
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
MicroRNAs are a class of small regulatory RNAs that function to modulate protein expression. This control allows for fine-tuning of the cellular phenotype, including regulation of proliferation, cell signaling, and apoptosis; not surprisingly, microRNAs contribute to liver cancer biology. Recent investigations in human liver cancers and tumor-derived cell lines have demonstrated decreased or increased expression of particular microRNAs in hepatobiliary cancer cells. Based on predicted and validated protein targets as well as functional consequences of altered expression, microRNAs with decreased expression in liver tumor cells may normally aid in limiting neoplastic transformation. Conversely, selected microRNAs that are up-regulated in liver tumor cells can promote malignant features, contributing to carcinogenesis. In addition, microRNAs themselves are subject to regulated expression, including regulation by tumor suppressor and oncogene pathways. This review will focus on the expression and function of cancer-related microRNAs, including their intimate involvement in tumor suppressor and oncogene signaling networks relevant to hepatobiliary neoplasia.
Collapse
Affiliation(s)
- Justin L Mott
- Division of Gastroenterology and Hepatology, Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
162
|
Watson JA, Watson CJ, McCrohan AM, Woodfine K, Tosetto M, McDaid J, Gallagher E, Betts D, Baugh J, O'Sullivan J, Murrell A, Watson RWG, McCann A. Generation of an epigenetic signature by chronic hypoxia in prostate cells. Hum Mol Genet 2009; 18:3594-604. [PMID: 19584087 DOI: 10.1093/hmg/ddp307] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increasing levels of tissue hypoxia have been reported as a natural feature of the aging prostate gland and may be a risk factor for the development of prostate cancer. In this study, we have used PwR-1E benign prostate epithelial cells and an equivalently aged hypoxia-adapted PwR-1E sub-line to identify phenotypic and epigenetic consequences of chronic hypoxia in prostate cells. We have identified a significantly altered cellular phenotype in response to chronic hypoxia as characterized by increased receptor-mediated apoptotic resistance, the induction of cellular senescence, increased invasion and the increased secretion of IL-1 beta, IL6, IL8 and TNFalpha cytokines. In association with these phenotypic changes and the absence of HIF-1 alpha protein expression, we have demonstrated significant increases in global levels of DNA methylation and H3K9 histone acetylation in these cells, concomitant with the increased expression of DNA methyltransferase DMNT3b and gene-specific changes in DNA methylation at key imprinting loci. In conclusion, we have demonstrated a genome-wide adjustment of DNA methylation and histone acetylation under chronic hypoxic conditions in the prostate. These epigenetic signatures may represent an additional mechanism to promote and maintain a hypoxic-adapted cellular phenotype with a potential role in tumour development.
Collapse
Affiliation(s)
- Jenny A Watson
- The UCD School of Medicine and Medical Science and The UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Viral hepatitis-associated intrahepatic cholangiocarcinoma shares common disease processes with hepatocellular carcinoma. Br J Cancer 2009; 100:1765-70. [PMID: 19436294 PMCID: PMC2695699 DOI: 10.1038/sj.bjc.6605063] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bile duct cells and hepatocytes differentiate from the same hepatic progenitor cells. To investigate the possible association of viral hepatitis B and C with intrahepatic cholangiocarcinoma (ICC), we conducted a retrospective case–control study using univariate and multivariate logistic analyses to identify risk factors for ICC. Besides hepatic lithiasis (25.6%; P<0.001), seropositivity for hepatitis B surface antigen (37.5% of all ICC patients; odds ratio (OR) =4.985, P<0.001) and seropositivity for hepatitis C antibodies (13.1%; OR=2.709; P=0.021) are the primary independent risk factors for ICC. Cirrhosis exerted synergic effects on the development of ICC. We compared the age distributions of viral-hepatitis associated ICC to that of viral hepatitis-associated hepatocellular carcinoma (HCC). The mean age of ICC patients with viral hepatitis B (56.4±11.1 years) were 9 years younger than that of ICC patients with viral hepatitis C (65.6±9.17 years), similar to that observed in HCC. The incidence ratio of HCC : ICC : CHC (combined hepatocellular cholangiocarcinoma) in our population was 233 : 17 : 1 consistent with the theoretic ratio of hepatocyte number to cholangiocyte number in the liver. Our findings indicated that both viral hepatitis-associated ICC and HCC shared common disease process for carcinogenesis and, possibly, both arose from the hepatic progenitor cells.
Collapse
|
164
|
Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y, Yang J, Paun B, Jin Z, Agarwal R, Hamilton JP, Abraham J, Georgiades C, Alvarez H, Vivekanandan P, Yu W, Maitra A, Torbenson M, Thuluvath PJ, Gores GJ, LaRusso NF, Hruban R, Meltzer SJ. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009; 49:1595-601. [PMID: 19296468 PMCID: PMC3124086 DOI: 10.1002/hep.22838] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Cholangiocarcinomas (CCAs) are aggressive cancers, with high mortality and poor survival rates. Only radical surgery offers patients some hope of cure; however, most patients are not surgical candidates because of late diagnosis secondary to relatively poor accuracy of diagnostic means. MicroRNAs (miRs) are involved in every cancer examined, but they have not been evaluated in primary CCA. In this study, miR arrays were performed on five primary CCAs and five normal bile duct specimens (NBDs). Several miRs were dysregulated and miR-21 was overexpressed in CCAs. miR-21 differential expression in these 10 specimens was verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). To validate these findings, qRT-PCR for miR-21 was then performed on 18 additional primary CCAs and 12 normal liver specimens. MiR-21 was 95% sensitive and 100% specific in distinguishing between CCA and normal tissues, with an area under the receiver operating characteristic curve of 0.995. Inhibitors of miR-21 increased protein levels of programmed cell death 4 (PDCD4) and tissue inhibitor of metalloproteinases 3 (TIMP3). Notably, messenger RNA levels of TIMP3 were significantly lower in CCAs than in normals. CONCLUSIONS MiR-21 is overexpressed in human CCAs. Furthermore, miR-21 may be oncogenic, at least in part, by inhibiting PDCD4 and TIMP3. Finally, these data suggest that TIMP3 is a candidate tumor suppressor gene in the biliary tree.
Collapse
Affiliation(s)
- Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N. MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. ACTA ACUST UNITED AC 2009; 60:1065-75. [DOI: 10.1002/art.24436] [Citation(s) in RCA: 566] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
166
|
Zhang H, Chen Y. New insight into the role of miRNAs in leukemia. ACTA ACUST UNITED AC 2009; 52:224-31. [PMID: 19294347 DOI: 10.1007/s11427-009-0036-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/28/2008] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that microRNAs(miRNAs) play an important role in cell differentiation, growth, and death, including the functional study of miRNAs in tumorigenesis. To date, miRNA expression profiles in many types of cancers have been identified and miRNA expression signatures associated with types and cytogenetics of leukemia have also been reported. Increasing evidence has shown that miRNAs could function as either tumor suppressors or oncogenes in cancers such as leukemia, while other miRNAs might be benefitcial for diagnosis and prognosis, predicted to be newly developed biomarkers. In this review, we summarize the recent progress about miRNAs in leukemia and present a miRNA-mediated network involved in differentiation, proliferation and apoptosis predicted to be the roles of miRNAs in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Genetic Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Sun Yan-Sen University, Guangzhou, 510275, China
| | | |
Collapse
|
167
|
Abstract
Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
168
|
Sirica AE, Nathanson MH, Gores GJ, Larusso NF. Pathobiology of biliary epithelia and cholangiocarcinoma: proceedings of the Henry M. and Lillian Stratton Basic Research Single-Topic Conference. Hepatology 2008; 48:2040-6. [PMID: 18855901 PMCID: PMC3724356 DOI: 10.1002/hep.22623] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In June 2008, the American Association for the Study of Liver Diseases (AASLD) sponsored the Henry M. and Lillian Stratton Basic Research Single-Topic Conference on the Pathobiology of Biliary Epithelia and Cholangiocarcinoma, which was held in Atlanta, GA. Attendees from 12 different countries participated in this conference, making it a truly international scientific event. Both oral and poster presentations were given by multidisciplinary experts, who highlighted important areas of current basic and translational research on biliary epithelial cell biology and pathophysiology, and on the etiology, cellular and molecular pathogenesis, and target-based therapy of cholangiocarcinoma. The specific goals and objectives of the conference were: (1) to advance knowledge of basic and molecular mechanisms underlying developmental and proliferative disorders of the biliary tract; (2) to foster a better and more comprehensive understanding of mechanisms regulating biliary epithelial (cholangiocyte) growth and transport, signaling, cell survival, and abnormalities that result in disease; and (3) to understand basic mechanisms of cholangiocarcinoma development and progression, with the added goal of identifying and exploiting potentially critical molecular pathways that may be targeted therapeutically. A number of interrelated themes emerged from the oral and poster sessions that affected current understandings of the complex organization of transcriptional and signaling mechanisms that regulate bile duct development, hepatic progenitor cell expansion, cholangiocyte secretory functions and proliferation, and mechanisms of cholangiocarcinogenesis and malignant cholangiocyte progression. Most notable were the critical questions raised as to how best to exploit aberrant signaling pathways associated with biliary disease as potential targets for therapy.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | | | | | | |
Collapse
|
169
|
Havelange V, Heaphy CEA, Garzon R. MicroRNAs in the diagnosis, prognosis and treatment of cancer. Oncol Rev 2008. [DOI: 10.1007/s12156-008-0076-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
170
|
Pan Q, Chegini N. MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med 2008; 26:479-93. [PMID: 18951330 PMCID: PMC2728121 DOI: 10.1055/s-0028-1096128] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the menstrual cycle, human endometrium undergoes extensive cyclic morphologic and biochemical modifications in preparation for embryo implantation. These processes are highly regulated by ovarian steroids and various locally expressed gene products and involve inflammatory reaction, apoptosis, cell proliferation, angiogenesis, differentiation (tissue formation), and tissue remodeling. MicroRNAs (miRNAs) have emerged as key regulators of gene expression, and their altered and/or aberrant expression has been associated with establishment and progression of various disorders, including tumorigenesis. This review highlights the endometrial expression of miRNAs and their potential regulatory functions under normal and pathologic conditions such as endometriosis, dysfunctional uterine bleeding, and endometrial cancer. Given the key regulatory function of miRNAs on gene expression stability, understanding the underlying mechanisms of how endometrial miRNAs are regulated and identifying their specific target genes and their functions might lead to the development of preventive and therapeutic strategies by regulating specific target genes associated with such reproductive disorders.
Collapse
Affiliation(s)
- Qun Pan
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
171
|
Luo X, Chegini N. The expression and potential regulatory function of microRNAs in the pathogenesis of leiomyoma. Semin Reprod Med 2008; 26:500-14. [PMID: 18951332 PMCID: PMC2710997 DOI: 10.1055/s-0028-1096130] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Leiomyomas are benign uterine tumors considered to arise from transformation of myometrial cells. What initiates the conversion of myometrial cells into leiomyoma is unknown, however cytogenetic analysis often shows occurrence of nonrandom chromosomal abnormalities that may account for their establishment. It is clear that ovarian steroids are essential for leiomyoma growth, and local expression of many autocrine/paracrine mediators serving as key regulators of cell-cycle progression, cellular hypertrophy, extracellular matrix accumulation, and apoptosis appear to play central roles in this capacity. However, the stability of the expression of these genes represents the hallmarks of leiomyoma establishment, growth, and regression. With the emergence of microRNA (miRNA) as a key regulator of gene expression stability, in this review we present evidence for the expression and potential regulatory functions on miRNAs in leiomyoma with particular emphasis on the expression of their selective target genes whose products influence various cellular activities critical to pathogenesis of leiomyomas.
Collapse
Affiliation(s)
- Xiaoping Luo
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
172
|
Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2008; 37:D98-104. [PMID: 18927107 PMCID: PMC2686559 DOI: 10.1093/nar/gkn714] [Citation(s) in RCA: 1073] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
‘miR2Disease’, a manually curated database, aims at providing a comprehensive resource of microRNA deregulation in various human diseases. The current version of miR2Disease documents 1939 curated relationships between 299 human microRNAs and 94 human diseases by reviewing more than 600 published papers. Around one-seventh of the microRNA–disease relationships represent the pathogenic roles of deregulated microRNA in human disease. Each entry in the miR2Disease contains detailed information on a microRNA–disease relationship, including a microRNA ID, the disease name, a brief description of the microRNA–disease relationship, an expression pattern of the microRNA, the detection method for microRNA expression, experimentally verified target gene(s) of the microRNA and a literature reference. miR2Disease provides a user-friendly interface for a convenient retrieval of each entry by microRNA ID, disease name, or target gene. In addition, miR2Disease offers a submission page that allows researchers to submit established microRNA–disease relationships that are not documented. Once approved by the submission review committee, the submitted records will be included in the database. miR2Disease is freely available at http://www.miR2Disease.org.
Collapse
Affiliation(s)
- Qinghua Jiang
- Center for Biomedical Informatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Strietholt S, Maurer B, Peters MA, Pap T, Gay S. Epigenetic modifications in rheumatoid arthritis. Arthritis Res Ther 2008; 10:219. [PMID: 18947370 PMCID: PMC2592785 DOI: 10.1186/ar2500] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, genetic factors for rheumatoid diseases like the HLA haplotypes have been studied extensively. However, during the past years of research, it has become more and more evident that the influence of epigenetic processes on the development of rheumatic diseases is probably as strong as the genetic background of a patient. Epigenetic processes are heritable changes in gene expression without alteration of the nucleotide sequence. Such modifications include chromatin methylation and post-translational modification of histones or other chromatin-associated proteins. The latter comprise the addition of methyl, acetyl, and phosphoryl groups or even larger moieties such as binding of ubiquitin or small ubiquitin-like modifier. The combinatory nature of these processes forms a complex network of epigenetic modifications that regulate gene expression through activation or silencing of genes. This review provides insight into the role of epigenetic alterations in the pathogenesis of rheumatoid arthritis and points out how a better understanding of such mechanisms may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Simon Strietholt
- Institute of Experimental Musculoskeletal Medicine, University Hospital Munster, Domagkstrasse 3, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
174
|
Stutes M, Tran S, DeMorrow S. Genetic and epigenetic changes associated with cholangiocarcinoma: from DNA methylation to microRNAs. World J Gastroenterol 2008. [PMID: 18161915 DOI: 10.3748/wjg.13.6465] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas are malignant epithelial liver tumors arising from the intra- and extra-hepatic bile ducts. Little is known about the molecular development of this disease, and very few effective treatment options are available. Thus, prognosis is poor. Genetic and epigenetic changes play an integral role in the neoplastic transformation of human cells to their malignant counterparts. This review summarizes some of the more prevalent genetic alterations (by microRNA expression) and epigenetic changes (hypermethylation of specific gene promoters) that are thought to contribute to the carcinogenic process in cholangiocarcinoma.
Collapse
Affiliation(s)
- Monique Stutes
- Division of Research and Education, Scott & White Hospital, Temple, TX 76504, USA
| | | | | |
Collapse
|
175
|
Rouhi A, Mager DL, Humphries RK, Kuchenbauer F. MiRNAs, epigenetics, and cancer. Mamm Genome 2008; 19:517-25. [PMID: 18688563 DOI: 10.1007/s00335-008-9133-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/09/2008] [Indexed: 12/26/2022]
Abstract
By virtue of having multiple targets, a microRNA (miRNA) can have variable effects on oncogenesis by acting as tumor suppressor or oncogene in a context-dependent manner. Genome-wide epigenetic changes that occur in various cancers affect the transcription of many genes. Since the transcriptional regulation of miRNAs remains an unexplored field, it is still unknown how epigenetic changes will affect the regulation of miRNAs. Many miRNAs are intron-bound within the body of a protein-coding gene. Any change to the transcription of the "host" gene affects the transcription and genesis of the resident miRNA. It is therefore reasonable to deduce that epigenetic changes brought on by transformation can potentially affect miRNA expression in both direct and indirect ways. We have reviewed the literature pertaining to the epigenetic regulation of miRNA genes in the context of various cancers and have speculated on the potential role of epigenetic modifications on the transcriptional regulation and expression of these genes.
Collapse
Affiliation(s)
- Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | |
Collapse
|
176
|
Structural conservation versus functional divergence of maternally expressed microRNAs in the Dlk1/Gtl2 imprinting region. BMC Genomics 2008; 9:346. [PMID: 18651963 PMCID: PMC2500034 DOI: 10.1186/1471-2164-9-346] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 07/23/2008] [Indexed: 01/03/2023] Open
Abstract
Background MicroRNAs play an important functional role in post-transcriptional gene regulation. One of the largest known microRNA clusters is located within the imprinted Dlk1/Gtl2 region on human chromosome 14 and mouse chromosome 12. This cluster contains more than 40 microRNA genes that are expressed only from the maternal chromosome in mouse. Results To shed light on the function of these microRNAs and possible crosstalk between microRNA-based gene regulation and genomic imprinting, we performed extensive in silico analyses of the microRNAs in this imprinted region and their predicted target genes. Bioinformatic analysis reveals that these microRNAs are highly conserved in both human and mouse. Whereas the microRNA precursors at this locus mostly belong to large sequence families, the mature microRNAs sequences are highly divergent. We developed a target gene prediction approach that combines three widely used prediction methods and achieved a sufficiently high prediction accuracy. Target gene sets predicted for individual microRNAs derived from the imprinted region show little overlap and do not differ significantly in their properties from target genes predicted for a group of randomly selected microRNAs. The target genes are enriched with long and GC-rich 3' UTR sequences and are preferentially annotated to development, regulation processes and cell communication. Furthermore, among all analyzed human and mouse genes, the predicted target genes are characterized by consistently higher expression levels in all tissues considered. Conclusion Our results suggest a complex evolutionary history for microRNA genes in this imprinted region, including an amplification of microRNA precursors in a mammalian ancestor, and a rapid subsequent divergence of the mature sequences. This produced a broad spectrum of target genes. Further, our analyses did not uncover a functional relation between imprinted gene regulation of this microRNA-encoding region, expression patterns or functions of predicted target genes. Specifically, our results indicate that these microRNAs do not regulate a particular set of genes. We conclude that these imprinted microRNAs do not regulate a particular set of genes. Rather, they seem to stabilize expression of a variety of genes, thereby being an integral part of the genome-wide microRNA gene regulatory network.
Collapse
|
177
|
Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Andrew Lister T, Young BD, Debernardi S. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008; 3:e2141. [PMID: 18478077 PMCID: PMC2373886 DOI: 10.1371/journal.pone.0002141] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/20/2008] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17) translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA) probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (microrna.sanger.ac.uk), demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia.
Collapse
Affiliation(s)
- Amanda Dixon-McIver
- Institute of Cancer, Medical Oncology Centre, Barts and The London, School Of Medicine, London, United Kingdom
| | - Phil East
- Cancer Research UK, Bioinformatics & Biostatistics Service, London, United Kingdom
| | - Charles A. Mein
- Genome Centre, Barts and The London, School Of Medicine, London, United Kingdom
| | - Jean-Baptiste Cazier
- Institute of Cancer, Medical Oncology Centre, Barts and The London, School Of Medicine, London, United Kingdom
- Cancer Research UK, Bioinformatics & Biostatistics Service, London, United Kingdom
| | - Gael Molloy
- Institute of Cancer, Medical Oncology Centre, Barts and The London, School Of Medicine, London, United Kingdom
| | - Tracy Chaplin
- Institute of Cancer, Medical Oncology Centre, Barts and The London, School Of Medicine, London, United Kingdom
| | - T. Andrew Lister
- Institute of Cancer, Medical Oncology Centre, Barts and The London, School Of Medicine, London, United Kingdom
| | - Bryan D. Young
- Institute of Cancer, Medical Oncology Centre, Barts and The London, School Of Medicine, London, United Kingdom
| | - Silvana Debernardi
- Institute of Cancer, Medical Oncology Centre, Barts and The London, School Of Medicine, London, United Kingdom
| |
Collapse
|
178
|
Shafiei F, Rahnama F, Pawella L, Mitchell MD, Gluckman PD, Lobie PE. DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells. Oncogene 2008; 27:2602-12. [PMID: 17998942 DOI: 10.1038/sj.onc.1210917] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 12/23/2022]
Abstract
Directed by microarray analyses, we report that autocrine human growth hormone (hGH) increased the mRNA and protein expression of DNA methyltransferase 1 (DNMT1), DNMT3A and DNMT3B in mammary carcinoma cells. Autocrine hGH stimulation of DNMT3A and DNMT3B expression was mediated by JAK2 and Src kinases, and treatment of mammary carcinoma cells with the DNMT inhibitor, 5'-aza-2'-deoxycytidine (AZA), abrogated autocrine hGH-stimulated cellular proliferation, apoptosis and anchorage-independent growth. AZA reversed the epitheliomesenchymal transition of mammary carcinoma cells induced by autocrine hGH, to an epithelioid morphology and abrogated cell migration stimulated by autocrine hGH. Autocrine hGH-stimulated hypermethylation of the first exon of the PLAKOGLOBIN gene and AZA abrogated the ability of autocrine hGH to repress plakoglobin gene transcription. Small interfering RNA (siRNA)-mediated depletion of the individual DNMT molecules did not release autocrine hGH repression of PLAKOGLOBIN promoter activity nor did individual DNMT depletion affect autocrine hGH-stimulated migration. However, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B abrogated hypermethylation of the PLAKOGLOBIN gene stimulated by autocrine hGH and subsequent repression of plakoglobin gene transcription and increased cell migration. Thus, the autocrine hGH-stimulated increases in DNMT3A and DNMT3B expression mediate repression of plakoglobin gene transcription by direct hypermethylation of its promoter and consequent phenotypic conversion of mammary carcinoma cells. Autocrine hGH, therefore, utilizes DNA methylation as a mechanism to exert its oncogenic effects in mammary carcinoma cells.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Autocrine Communication/drug effects
- Autocrine Communication/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Cytidine Monophosphate/analogs & derivatives
- Cytidine Monophosphate/pharmacology
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/biosynthesis
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation/drug effects
- DNA Methyltransferase 3A
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Growth Hormone/antagonists & inhibitors
- Growth Hormone/genetics
- Growth Hormone/metabolism
- Humans
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phenotype
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- gamma Catenin/biosynthesis
- gamma Catenin/genetics
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- F Shafiei
- National Research Centre for Growth and Development and the Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
179
|
Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 2008; 48:648-56. [PMID: 18291553 DOI: 10.1016/j.jhep.2008.01.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have uncovered profound and unexpected roles for a family of tiny regulatory RNAs, known as microRNAs (miRNAs), in the control of diverse aspects of hepatic function and dysfunction, including hepatocyte growth, stress response, metabolism, viral infection and proliferation, gene expression, and maintenance of hepatic phenotype. In liver cancer, misexpression of specific miRNAs suggests diagnostic and prognostic significance. Here, we review the biology of the most abundant miRNA in human liver, miR-122, and consider the diversity of its roles in the liver. We provide a compilation of all miRNAs expressed in the liver, and consider some possible therapeutic opportunities for exploiting miRNAs in the different settings of liver diseases.
Collapse
|
180
|
Abstract
Imprinted ncRNA (non-coding RNA) genes represent a family of untranslated transcripts that are mono-allelically expressed in a parent-of-origin manner (their expression is restricted to either the maternal or the paternal allele). Although the expression of a few long imprinted ncRNAs act as cis-acting silencers in the epigenetic regulation of chromatin at imprinted gene clusters, many of them fall into the growing class of small regulatory RNAs, namely C/D small nucleolar RNAs, microRNAs and also likely piRNAs (Piwi-interacting RNAs), which are known to act as antisense trans-acting regulators of gene expression (for example, site-specific RNA modifications and RNA-mediated gene silencing). Although their biological functions remain elusive, recent studies have pointed to their functional importance in development, in brain plasticity and also perhaps in some pathological situations, such as cancers or Prader-Willi syndrome. In this review, we summarize our current understanding of the molecular and biological roles of these ncRNAs, both in terms of their contribution to genomic imprinting control, as well as in terms of cellular RNA targets they might interact with.
Collapse
|
181
|
Taylor EL, Gant TW. Emerging fundamental roles for non-coding RNA species in toxicology. Toxicology 2008; 246:34-9. [PMID: 18289762 DOI: 10.1016/j.tox.2007.12.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are a large family of small regulatory RNA molecules found in all multicellular organisms. Since their discovery in 2001, there has been impressive progress in miRNA research, and a great deal is now known about the biosynthesis of miRNAs and their regulatory role in translation. It is becoming increasingly clear that miRNAs have fundamental roles to play in cellular responses to xenobiotic stress, the development of pathophysiological changes and other toxicological phenomenon such as susceptibility and resistance. Furthermore, the expression of miRNAs, like many of the genes important in toxicology, can be regulated by xenobiotics and DNA methylation. In this article we review the present understanding of the miRNA field with particular reference to toxicology. We also give an insight into our current projects within this exciting area and highlight some of the new challenges that now face miRNA research.
Collapse
Affiliation(s)
- Emma L Taylor
- University of Leicester, Systems Toxicology Group, Lancaster Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|
182
|
Stutes M, Tran S, DeMorrow S. Genetic and epigenetic changes associated with cholangiocarcinoma: From DNA methylation to microRNAs. World J Gastroenterol 2007; 13:6465-9. [PMID: 18161915 PMCID: PMC4611284 DOI: 10.3748/wjg.v13.i48.6465] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas are malignant epithelial liver tumors arising from the intra- and extra-hepatic bile ducts. Little is known about the molecular development of this disease, and very few effective treatment options are available. Thus, prognosis is poor. Genetic and epigenetic changes play an integral role in the neoplastic transformation of human cells to their malignant counterparts. This review summarizes some of the more prevalent genetic alterations (by microRNA expression) and epigenetic changes (hypermethylation of specific gene promoters) that are thought to contribute to the carcinogenic process in cholangiocarcinoma.
Collapse
|
183
|
Yamamoto K, Takenaka K, Matsumata T, Shimada M, Itasaka H, Shirabe K, Sugimachi K. Right hepatic lobectomy in elderly patients with hepatocellular carcinoma. ACTA ACUST UNITED AC 1997. [PMID: 9164528 DOI: 10.4236/ojim.2012.23024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS The outcome of hepatectomy in elderly patients with hepatocellular carcinoma have been reported, however neither the morphological nor functional hepatic regeneration in elderly patients have been fully investigated. MATERIALS AND METHODS Fifty-six patients with hepatocellular carcinoma, who underwent a right hepatic lobectomy over an 8-year period, were classified into three groups according to their age; group 1 (n = 7), more than 70 years of age; group 2 (n = 40), patients from 50 to 69 years of age and group 3 (n = 9), under 50 years of age. There were no significant differences regarding backgrounds or intra-operative parameters among the three groups. The perioperative hepatic function, postoperative complications and the regeneration rate of the remnant left lobe at 1 month after operation were compared. RESULTS No differences were found in the regeneration rate, however, the levels of the hepaplastin test and lecithin:cholesterol acyltransferase at 7 days after hepatectomy in group 1 (31.3%, 8.8 U) were significantly lower than those in groups 2 and 3 (37.4%, 18.4 U; 47.9%, 29.4 U, respectively). The incidence of hospital death due to hepatic failure in group 1 (42.9%) was also significantly higher than that of group 2 (5.0%) or group 3 (0%). CONCLUSION The decline of postoperative protein synthesis regardless of the voluminal regeneration is a characteristic of the elderly. This phenomenon might thus be an important promoter of postoperative hepatic failure which remains unpredictable using any type of examination. Therefore, at this time, a major hepatectomy is not recommended as a viable treatment alternative in the elderly.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Surgery II, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|