151
|
Droplet-based Synthesis of Homogeneous Gold Nanoparticles for Enhancing HRP-based ELISA Signals. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4307-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
152
|
Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, Pignataro B, Iraci N. Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Adv Healthc Mater 2020; 9:e2000731. [PMID: 32864899 DOI: 10.1002/adhm.202000731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Naturally occurring extracellular vesicles and artificially made vesicles represent important tools in nanomedicine for the efficient delivery of biomolecules and drugs. Since its first appearance in the literature 50 years ago, the research on vesicles is progressing at a fast pace, with the main goal of developing carriers able to protect cargoes from degradation, as well as to deliver them in a time- and space-controlled fashion. While natural occurring vesicles have the advantage of being fully compatible with their host, artificial vesicles can be easily synthetized and functionalized according to the target to reach. Research is striving to merge the advantages of natural and artificial vesicles, in order to provide a new generation of highly performing vesicles, which would improve the therapeutic index of transported molecules. This progress report summarizes current manufacturing techniques used to produce both natural and artificial vesicles, exploring the promises and pitfalls of the different production processes. Finally, pros and cons of natural versus artificial vesicles are discussed and compared, with special regard toward the current applications of both kinds of vesicles in the healthcare field.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry – Emilio Segrè University of Palermo Building 17, Viale delle Scienze Palermo 90128 Italy
| | - Vittorio Ferrara
- Department of Chemical Sciences University of Catania Viale Andrea Doria 6 Catania 95125 Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
- Neuropharmacology Section OASI Institute for Research and Care on Mental Retardation and Brain Aging Troina 94018 Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry – Emilio Segrè University of Palermo Building 17, Viale delle Scienze Palermo 90128 Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| |
Collapse
|
153
|
Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Wang X, Sun Y. Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. NANOSCALE 2020; 12:15512-15527. [PMID: 32441718 DOI: 10.1039/d0nr02397c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nano-drug delivery systems (NDDS) are functional drug-loaded nanocarriers extensively applied in the healthcare and pharmaceutical areas. Recently, microfluidics has been demonstrated as one of the most promising techniques to fabricate high-performance NDDS with uniform morphology, size and size distribution, reduced batch-to-batch variations and controllable drug delivering capacity. Here, a brief review of the microfluidic-mediated NDDS is presented. The fundamentals of microfluidics are first interpreted with an emphasis on the fluid characteristics, design and materials for microfluidic devices. Then a comprehensive and in-depth depiction of the microfluidic-mediated fabrications of controllable NDDS with well-tailored internal structures and integrated functions for controlled encapsulation and drug release are categorized and reviewed, with particular descriptions about the underlying formation mechanisms. Afterwards, recently appreciated representative applications of the microfluidic-mediated NDDS for delivering multiple drugs are systematically summarized. Finally, conclusions and perspectives on further advancing the microfluidic-mediated NDDS toward more powerful and versatile platforms for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2020; 29:29-45. [PMID: 32672079 DOI: 10.1080/1061186x.2020.1797052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic micro/nanomotors (MNMs) are novel, self-propelled nano or microscale devices that are widely used in drug transport, cell stimulation and isolation, bio-imaging, diagnostic and monitoring, sensing, photocatalysis and environmental remediation. Various preparation methods and propulsion mechanisms make MNMs "tailormade" nanosystems for the intended purpose or use. As the one of the newest members of nano carriers, MNMs open a new perspective especially for rapid drug transport and gene delivery. Although there exists limited number of in-vivo studies for drug delivery purposes, existence of in-vitro supportive data strongly encourages researchers to move on in this field and benefit from the manoeuvre capability of these novel systems. In this article, we reviewed the preparation and propulsion mechanisms of nanomotors in various fields with special attention to drug delivery systems.
Collapse
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
155
|
Zacheo A, Bizzarro L, Blasi L, Piccirillo C, Cardone A, Gigli G, Ragusa A, Quarta A. Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. Front Bioeng Biotechnol 2020; 8:690. [PMID: 32719782 PMCID: PMC7350901 DOI: 10.3389/fbioe.2020.00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid nanovesicles (NVs) are the first nanoformulation that entered the clinical use in oncology for the treatment of solid tumors. They are indeed versatile systems which can be loaded with either hydrophobic or hydrophilic molecules, for both imaging and drug delivery, and with high biocompatibility, and limited immunogenicity. In the present work, NVs with a lipid composition resembling that of natural vesicles were prepared using the ultrasonication method. The NVs were successfully loaded with fluorophores molecules (DOP-F-DS and a fluorescent protein), inorganic nanoparticles (quantum dots and magnetic nanoparticles), and anti-cancer drugs (SN-38 and doxorubicin). The encapsulation of such different molecules showed the versatility of the developed systems. The size of the vesicles varied from 100 up to 300 nm depending on the type of loaded species, which were accommodated either into the lipid bilayer or into the aqueous core according to their hydrophobic or hydrophilic nature. Viability assays were performed on cellular models of breast cancer (MCF-7 and MDA-MB-231). Results showed that NVs with encapsulated both drugs simultaneously led to a significant reduction of the cellular activity (up to 22%) compared to the free drugs or to the NVs encapsulated with only one drug. Lipidomic analysis suggested that the mechanism of action of the drugs is the same, whether they are free or encapsulated, but administration of the drugs by means of nanovesicles is more efficient in inducing cellular damage, likely because of a quicker internalization and a sustained release. This study confirms the versatility and the potential of lipid NVs for cancer treatment, as well as the validity of the ultrasound preparation method for their preparation.
Collapse
Affiliation(s)
- Antonella Zacheo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Luca Bizzarro
- Dipartimento di Scienze Biomolecolari (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Blasi
- CNR, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - Clara Piccirillo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Antonio Cardone
- Institute of Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Council of Research-CNR, Bari, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Mathematics and Physics E. de Giorgi, University of Salento, Campus Ecotekne, Lecce, Italy
| | - Andrea Ragusa
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandra Quarta
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| |
Collapse
|
156
|
Skóra B, Szychowski KA, Gmiński J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur J Pharm Biopharm 2020; 154:153-165. [PMID: 32681962 DOI: 10.1016/j.ejpb.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Interest in the use of metallic nanoparticles (NPs) in medicine is constantly increasing. The key challenge to the introduction of NPs into anticancer treatment is to limit the contact of their surface with healthy cells and to enable specific targeting of certain tissues, for example, cancerous cells. These aspects have raised a question whether the recent methods of drug delivery allow restricting the contact of NPs with healthy and/or nontarget cells. NPs can be restricted by encapsulation, which involves entrapping them into organic layers. This review is the first to present the different approaches for the encapsulation of metallic NPs, using liposomes, dendrimers, and proteins. The types and methods of entrapping are shown in an accessible way, enriched with graphics, and the pros and cons of these methods are disputable. Furthermore, the potential uses of NP complexes in medicine are described.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
157
|
Kawamura J, Kitamura H, Otake Y, Fuse S, Nakamura H. Size-Controllable and Scalable Production of Liposomes Using a V-Shaped Mixer Micro-Flow Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Kawamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Kitamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinichiro Fuse
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
158
|
Bochicchio S, Dalmoro A, Lamberti G, Barba AA. Advances in Nanoliposomes Production for Ferrous Sulfate Delivery. Pharmaceutics 2020; 12:E445. [PMID: 32403375 PMCID: PMC7284685 DOI: 10.3390/pharmaceutics12050445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, a continuous bench scale apparatus based on microfluidic fluid dynamic principles was used in the production of ferrous sulfate-nanoliposomes for pharmaceutical/nutraceutical applications, optimizing their formulation with respect to the products already present on the market. After an evaluation of its fluid dynamic nature, the simil-microfluidic (SMF) apparatus was first used to study the effects of the adopted process parameters on vesicles dimensional features by using ultrasonic energy to enhance liposomes homogenization. Subsequently, iron-nanoliposomes were produced at different weight ratios of ferrous sulfate to the total formulation components (0.06, 0.035, 0.02, and 0.01 w/w) achieving, by using the 0.01 w/w, vesicles of about 80 nm, with an encapsulation efficiency higher than 97%, an optimal short- and long-term stability, and an excellent bioavailability in Caco-2 cell line. Moreover, a comparison realized between the SMF method and two more conventional production techniques showed that by using the SMF setup the process time was drastically reduced, and the process yield increased, achieving a massive nanoliposomes production. Finally, duty-cycle sonication was detected to be a scalable technique for vesicles homogenization.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
| | - Annalisa Dalmoro
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| | - Gaetano Lamberti
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| | - Anna Angela Barba
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| |
Collapse
|
159
|
Affiliation(s)
- Nathaniel J Gaut
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
160
|
Comprehensive Screening of Drug Encapsulation and Co-Encapsulation into Niosomes Produced Using a Microfluidic Device. Processes (Basel) 2020. [DOI: 10.3390/pr8050535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microfluidics is a very facile and fast method of particulate production. Besides, it enables the manufacturing of size tuned particulate systems. Niosomes due to structural similarities have importance as alternative drug delivery systems to liposomes. Niosomes can be encapsulated or co-encapsulated with hydrophilic and lipophilic drugs. The research presented here includes the optimization of method parameters for niosome production as well as evaluation of the efficiency of microfluidics to encapsulate and co-encapsulate the drugs. For this purpose, metformin (MET) and garcinol (GC) were the model drugs. Two different non-ionic surfactants (NIS), namely Tween-20 and Span-60 with significant difference in hydrophilic-lipophilic balance (HLB) value, were chosen to analyze their efficiency to form niosomes and encapsulate one or more drugs.
Collapse
|
161
|
The effect of ethanol evaporation on the properties of inkjet produced liposomes. ACTA ACUST UNITED AC 2020; 28:271-280. [PMID: 32303981 PMCID: PMC7214573 DOI: 10.1007/s40199-020-00340-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Background Inkjet method has been used to produce nano-sized liposomes with a uniform size distribution. However, following the production of liposomes by inkjet method, the solvent residue in the product could have a significant effect on the properties of the final liposomes. Objective This research paper aimed to find a suitable method to remove ethanol content and to study its effect on the properties of the final liposomal suspension. Method Egg phosphatidylcholine and lidocaine were dissolved in ethanol; and inkjet method at 80 kHz was applied to produce uniform droplets, which were deposited in an aqueous solution to form liposomes. Dry nitrogen gas flow, air-drying, and rotary evaporator were tested to remove the ethanol content. Liposome properties such as size, polydispersity index (PDI), and charge were screened before and after ethanol evaporation. Results Only rotary evaporator (at constant speed and room temperature for 2 h) removed all of the ethanol content, with a final drug entrapment efficiency (EE) of 29.44 ± 6.77%. This was higher than a conventional method. Furthermore, removing ethanol led to liposome size reduction from approximately 200 nm to less than 100 nm in most samples. Additionally, this increased the liposomal net charge, which contributed to maintain the uniform and narrow size distribution of liposomes. Conclusion Nano-sized liposomes were produced with a narrow PDI and higher EE compared to a conventional method by using an inkjet method. Moreover, rotary evaporator for 2 h reduced effectively the ethanol content, while maintaining the narrow size distribution. Graphical abstract ![]()
Collapse
|
162
|
Simil-Microfluidic Nanotechnology in Manufacturing of Liposomes as Hydrophobic Antioxidants Skin Release Systems. COSMETICS 2020. [DOI: 10.3390/cosmetics7020022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Novel nanotechnologies represent the most attractive and innovative tools to date exploited by cosmetic companies to improve the effectiveness of their formulations. In this context, nanoliposomes have had a great impact in topical preparations and dermocosmetics, allowing the transcutaneous penetration and absorption of several active ingredients and improving the stability of sensitive molecules. Despite the recent boom of this class of delivery systems, their industrial production is still limited by the lack of easily scalable production techniques. In this work, nanoliposomes for the topical administration of vitamin D3, K2, E, and curcumin, molecules with high antioxidant and skin curative properties but unstable and poorly absorbable, were produced through a novel simil-microfluidic technique. The developed high-yield semi continuous method is proposed as an alternative to face the problems linked with low productive conventional methods in order to produce antioxidant formulations with improved features. The novel technique has allowed to obtain a massive production of stable antioxidant vesicles of an 84–145 nm size range, negatively charged, and characterized by high loads and encapsulation efficiencies. The obtained products as well as the developed high-performance technology make the achieved formulations very interesting for potential topical applications in the cosmetics/cosmeceutical field.
Collapse
|
163
|
Antisolvent precipitation of lipid nanoparticles in microfluidic systems – A comparative study. Int J Pharm 2020; 579:119167. [DOI: 10.1016/j.ijpharm.2020.119167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
|
164
|
On-chip controlled synthesis of polycaprolactone nanoparticles using continuous-flow microfluidic devices. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00092-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
165
|
Kotouček J, Hubatka F, Mašek J, Kulich P, Velínská K, Bezděková J, Fojtíková M, Bartheldyová E, Tomečková A, Stráská J, Hrebík D, Macaulay S, Kratochvílová I, Raška M, Turánek J. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation. Sci Rep 2020; 10:5595. [PMID: 32221374 PMCID: PMC7101380 DOI: 10.1038/s41598-020-62500-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with “herring-bone” geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation.
Collapse
Affiliation(s)
- Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Kamila Velínská
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jaroslava Bezděková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic.,Mendel University in Brno, Department of Chemistry and Biochemistry, Zemedelska 1, 61300, Brno, Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Andrea Tomečková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic
| | - Jana Stráská
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 11, 78371, Olomouc, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Stuart Macaulay
- Malvern Panalytical, Malvern, Worcestershire, United Kingdom
| | - Irena Kratochvílová
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 8, Czechia.
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic. .,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15, Olomouc, Czech Republic.
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
166
|
Al-Amin MD, Bellato F, Mastrotto F, Garofalo M, Malfanti A, Salmaso S, Caliceti P. Dexamethasone Loaded Liposomes by Thin-Film Hydration and Microfluidic Procedures: Formulation Challenges. Int J Mol Sci 2020; 21:ijms21051611. [PMID: 32111100 PMCID: PMC7084920 DOI: 10.3390/ijms21051611] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/16/2022] Open
Abstract
Liposomes have been one of the most exploited drug delivery systems in recent decades. However, their large-scale production with low batch-to-batch differences is a challenge for industry, which ultimately delays the clinical translation of new products. We have investigated the effects of formulation parameters on the colloidal and biopharmaceutical properties of liposomes generated with a thin-film hydration approach and microfluidic procedure. Dexamethasone hemisuccinate was remotely loaded into liposomes using a calcium acetate gradient. The liposomes produced by microfluidic techniques showed a unilamellar structure, while the liposomes produced by thin-film hydration were multilamellar. Under the same remote loading conditions, a higher loading capacity and efficiency were observed for the liposomes obtained by microfluidics, with low batch-to-batch differences. Both formulations released the drug for almost one month with the liposomes prepared by microfluidics showing a slightly higher drug release in the first two days. This behavior was ascribed to the different structure of the two liposome formulations. In vitro studies showed that both formulations are non-toxic, associate to human Adult Retinal Pigment Epithelial cell line-19 (ARPE-19) cells, and efficiently reduce inflammation, with the liposomes obtained by the microfluidic technique slightly outperforming. The results demonstrated that the microfluidic technique offers advantages to generate liposomal formulations for drug-controlled release with an enhanced biopharmaceutical profile and with scalability.
Collapse
|
167
|
Abd-Elghany AA, Mohamad EA. Ex-vivo transdermal delivery of Annona squamosa entrapped in niosomes by electroporation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1719329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amr A. Abd-Elghany
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ebtesam A. Mohamad
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
168
|
Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials 2020; 232:119706. [DOI: 10.1016/j.biomaterials.2019.119706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
|
169
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
170
|
Shuddhodana, Wong PWK, Judeh Z. Continuous, high-throughput production of artemisinin-loaded supramolecular cochleates using simple off-the-shelf flow focusing device. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110410. [PMID: 31923944 DOI: 10.1016/j.msec.2019.110410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/16/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Lipid cochleates are gaining increasing interest as drug-carriers. However, their preparation relies on conventional batch processes that are complex, time consuming and lack batch-to-batch reproducibility; presenting a bottleneck for clinical translation. We report an efficient continuous preparation process for artemisinin-loaded cochleates (ART-cochleates) using inexpensive off-the-shelf flow focusing device. By carefully controlling the flow focusing parameters, we showed along with the mechanism that, ART-cochleates of uniform and tuneable size (~180 nm in width and ~1030 nm in length) were obtained with low dispersity (0.18 in width and 0.27 in length), narrow size distribution and high reproducibility compared to the batch process. The device achieved high throughput of 11.5 g/day with ART encapsulation of 64.24 ± 2.5% and loading of 83.37 ± 3.68 mg ART/g of cochleates. Art-cochleates were non-toxic and showed sustained in-vitro release of ART with effective transepithelial permeability across intestinal Caco-2 monolayer (~60% and ~25% transport for pure ART and ART-cochleates, respectively) resulting in better in-vitro bioavailability. The off-the-shelf device is envisioned to be highly promising platform for continuous and high-throughput manufacturing of drug-loaded cochleates in a controlled and reproducible manner. It has potential to enable clinical translation of drug-loaded cochleates with predicable drug release, absorption and bioavailability.
Collapse
Affiliation(s)
- Shuddhodana
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore, 62 Nanyang Drive, 637 459, Singapore.
| | - Pooi Wen Kathy Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore, 62 Nanyang Drive, 637 459, Singapore.
| | - Zaher Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore, 62 Nanyang Drive, 637 459, Singapore.
| |
Collapse
|
171
|
Costa C, Liu Z, Martins JP, Correia A, Figueiredo P, Rahikkala A, Li W, Seitsonen J, Ruokolainen J, Hirvonen SP, Aguiar-Ricardo A, Corvo ML, Santos HA. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci 2020; 8:3270-3277. [DOI: 10.1039/d0bm00743a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, a continuous two-step glass-capillary microfluidic technique to produce a multistage oral insulin delivery system is reported. This system represents a promising alternative for the common protein/peptide-loaded liposome formulations.
Collapse
|
172
|
Mohamad EA, Fahmy HM. Niosomes and liposomes as promising carriers for dermal delivery of Annona squamosa extract. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
173
|
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2020; 38:107337. [PMID: 30633954 PMCID: PMC6614024 DOI: 10.1016/j.biotechadv.2019.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Higher plant constituents have afforded clinically available anticancer drugs. These include both chemically unmodified small molecules and their synthetic derivatives currently used or those in clinical trials as antineoplastic agents, and an updated summary is provided. In addition, botanical dietary supplements, exemplified by mangosteen and noni constituents, are also covered as potential cancer chemotherapeutic agents. Approaches to metabolite purification, rapid dereplication, and biological evaluation including analytical hyphenated techniques, molecular networking, and advanced cellular and animal models are discussed. Further, enhanced and targeted drug delivery systems for phytochemicals, including micelles, nanoparticles and antibody drug conjugates (ADCs) are described herein.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Peter J Blanco Carcache
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
174
|
Webb C, Khadke S, Tandrup Schmidt S, Roces CB, Forbes N, Berrie G, Perrie Y. The Impact of Solvent Selection: Strategies to Guide the Manufacturing of Liposomes Using Microfluidics. Pharmaceutics 2019; 11:E653. [PMID: 31817217 PMCID: PMC6955969 DOI: 10.3390/pharmaceutics11120653] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022] Open
Abstract
The aim of this work was to assess the impact of solvent selection on the microfluidic production of liposomes. To achieve this, liposomes were manufactured using small-scale and bench-scale microfluidics systems using three aqueous miscible solvents (methanol, ethanol or isopropanol, alone or in combination). Liposomes composed of different lipid compositions were manufactured using these different solvents and characterised to investigate the influence of solvents on liposome attributes. Our studies demonstrate that solvent selection is a key consideration during the microfluidics manufacturing process, not only when considering lipid solubility but also with regard to the resultant liposome critical quality attributes. In general, reducing the polarity of the solvent (from methanol to isopropanol) increased the liposome particle size without impacting liposome short-term stability or release characteristics. Furthermore, solvent combinations such as methanol/isopropanol mixtures can be used to modify solvent polarity and the resultant liposome particle size. However, the impact of solvent choice on the liposome product is also influenced by the liposome formulation; liposomes containing charged lipids tended to show more sensitivity to solvent selection and formulations containing increased concentrations of cholesterol or pegylated-lipids were less influenced by the choice of solvent. Indeed, incorporation of 14 wt% or more of pegylated-lipid was shown to negate the impact of solvent selection.
Collapse
Affiliation(s)
- Cameron Webb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.W.); (S.K.); (S.T.S.); (C.B.R.); (N.F.); (G.B.)
| | - Swapnil Khadke
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.W.); (S.K.); (S.T.S.); (C.B.R.); (N.F.); (G.B.)
| | - Signe Tandrup Schmidt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.W.); (S.K.); (S.T.S.); (C.B.R.); (N.F.); (G.B.)
- Department of Infectious Disease Immunology, Center for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Carla B. Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.W.); (S.K.); (S.T.S.); (C.B.R.); (N.F.); (G.B.)
| | - Neil Forbes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.W.); (S.K.); (S.T.S.); (C.B.R.); (N.F.); (G.B.)
| | - Gillian Berrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.W.); (S.K.); (S.T.S.); (C.B.R.); (N.F.); (G.B.)
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.W.); (S.K.); (S.T.S.); (C.B.R.); (N.F.); (G.B.)
| |
Collapse
|
175
|
Delama A, Teixeira MI, Dorati R, Genta I, Conti B, Lamprou DA. Microfluidic encapsulation method to produce stable liposomes containing iohexol. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
176
|
Aghaei H, Solaimany Nazar AR. Continuous Production of the Nanoscale Liposome in a Double Flow-Focusing Microfluidic Device. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Halimeh Aghaei
- Department of Chemical Engineering, University of Isfahan, Isfahan 81746-72441, Iran
| | | |
Collapse
|
177
|
Electrostatically Driven Encapsulation of Hydrophilic, Non-Conformational Peptide Epitopes into Liposomes. Pharmaceutics 2019; 11:pharmaceutics11110619. [PMID: 31752070 PMCID: PMC6920922 DOI: 10.3390/pharmaceutics11110619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Since the first use of liposomes as carriers for antigens, much work has been done to elucidate the mechanisms involved in the encapsulation of vaccine-relevant biomolecules. However, only a few studies have specifically investigated the encapsulation of hydrophilic, non-conformational peptide epitopes. We performed comprehensive and systematic screening studies, in order to identify conditions that favor the electrostatic interaction of such peptides with lipid membranes. Moreover, we have explored bi-terminal sequence extension as an approach to modify the isoelectric point of peptides, in order to modulate their membrane binding behavior and eventually shift/expand the working range under which they can be efficiently encapsulated in an electrostatically driven manner. The findings of our membrane interaction studies were then applied to preparing peptide-loaded liposomes. Our results show that the magnitude of membrane binding observed in our exploratory in situ setup translates to corresponding levels of encapsulation efficiency in both of the two most commonly employed methods for the preparation of liposomes, i.e., thin-film hydration and microfluidic mixing. We believe that the methods and findings described in the present studies will be of use to a wide audience and can be applied to address the ongoing relevant issue of the efficient encapsulation of hydrophilic biomolecules.
Collapse
|
178
|
Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm 2019; 573:118817. [PMID: 31678520 DOI: 10.1016/j.ijpharm.2019.118817] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/20/2022]
Abstract
Transferosomes, also known as transfersomes, are ultradeformable vesicles for transdermal applications consisting of a lipid bilayer with phospholipids and an edge activator and an ethanol/aqueous core. Depending on the lipophilicity of the active substance, it can be encapsulated within the core or amongst the lipid bilayer. Compared to liposomes, transferosomes are able to reach intact deeper regions of the skin after topical administration delivering higher concentrations of active substances making them a successful drug delivery carrier for transdermal applications. Most transferosomes contain phosphatidylcholine (C18) as it is the most abundant lipid component of the cell membrane, and hence, it is highly tolerated for the skin, decreasing the risk of undesirable effects, such as hypersensitive reactions. The most common edge activators are surfactants such as sodium deoxycholate, Tween® 80 and Span® 80. Their chain length is optimal for intercalation within the C18 phospholipid bilayer. A wide variety of drugs has been successfully encapsulated within transferosomes such as phytocompounds like sinomenine or apigenin for rheumatoid arthritis and leukaemia respectively, small hydrophobic drugs but also macromolecules like insulin. The main factors to develop optimal transferosomal formulations (with high drug loading and nanometric size) are the optimal ratio between the main components as well as the critical process parameters for their manufacture. Application of quality by design (QbD), specifically design of experiments (DoE), is crucial to understand the interplay among all these factors not only during the preparation at lab scale but also in the scale-up process. Clinical trials of a licensed topical ketoprofen transferosomal gel have shown promising results in the alleviation of symptons in orthreothritis with non-severe skin and subcutaneous tissue disorders. However, the product was withdrawn from the market which probably was related to the higher cost of the medicine linked to the expensive manufacturing process required in the production of transferosomes compared to other conventional gel formulations. This example brings out the need for a careful formulation design to exploit the best properties of this drug delivery system as well as the development of manufacturing processes easily scalable at industrial level.
Collapse
|
179
|
Al-Ahmady ZS, Donno R, Gennari A, Prestat E, Marotta R, Mironov A, Newman L, Lawrence MJ, Tirelli N, Ashford M, Kostarelos K. Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13318-13331. [PMID: 31478662 DOI: 10.1021/acs.langmuir.9b00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hybrids composed of liposomes (L) and metallic nanoparticles (NPs) hold great potential for imaging and drug delivery purposes. However, the efficient incorporation of metallic NPs into liposomes using conventional methodologies has so far proved to be challenging. In this study, we report the fabrication of hybrids of liposomes and hydrophobic gold NPs of size 2-4 nm (Au) using a microfluidic-assisted self-assembly process. The incorporation of increasing amounts of AuNPs into liposomes was examined using microfluidics and compared to L-AuNP hybrids prepared by the reverse-phase evaporation method. Our microfluidics strategy produced L-AuNP hybrids with a homogeneous size distribution, a smaller polydispersity index, and a threefold increase in loading efficiency when compared to those hybrids prepared using the reverse-phase method of production. Quantification of the loading efficiency was determined by ultraviolet spectroscopy, inductively coupled plasma mass spectroscopy, and centrifugal field flow fractionation, and qualitative validation was confirmed by transmission electron microscopy. The higher loading of gold NPs into the liposomes achieved using microfluidics produced a slightly thicker and more rigid bilayer as determined with small-angle neutron scattering. These observations were confirmed using fluorescent anisotropy and atomic force microscopy. Structural characterization of the liposomal-NP hybrids with cryo-electron microscopy revealed the coexistence of membrane-embedded and interdigitated NP-rich domains, suggesting AuNP incorporation through hydrophobic interactions. The microfluidic technique that we describe in this study allows for the automated production of monodisperse liposomal-NP hybrids with high loading capacity, highlighting the utility of microfluidics to improve the payload of metallic NPs within liposomes, thereby enhancing their application for imaging and drug delivery.
Collapse
Affiliation(s)
- Zahraa S Al-Ahmady
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
- Pharmacology Department, School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| | - Roberto Donno
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Arianna Gennari
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Eric Prestat
- SuperSTEM Laboratory , SciTech Daresbury Campus , Keckwick Lane, Warrington WA4 4AD , U.K
| | - Roberto Marotta
- Electron Microscopy Laboratory , Fondazione Istituto Italiano di Tecnologia , 16163 Genova , Italy
| | | | - Leon Newman
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
| | - M Jayne Lawrence
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| | - Nicola Tirelli
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Marianne Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, IMED Biotech Unit , AstraZeneca , Macclesfield SK10 2NA , U.K
| | - Kostas Kostarelos
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| |
Collapse
|
180
|
Rasouli MR, Tabrizian M. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. LAB ON A CHIP 2019; 19:3316-3325. [PMID: 31495858 DOI: 10.1039/c9lc00637k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mixing is a crucial step in many chemical analyses and synthesis processes, particularly in nanoparticle formation, where it determines the nucleation rate, homogeneity, and physicochemical characteristics of the products. In this study, we propose an energy-efficient acoustic platform based on boundary-driven acoustic streaming, which provides the rapid mixing required to control nanoprecipitation. The device encompasses oscillatory bubbles and sharp edges in the microchannel to transform the acoustic energy into vigorous vortical fluid motions. The combination of bubbles and sharp edges at their immediate proximity induced substantially stronger acoustic microstreams than the simple superposition of their effects. The device could effectively homogenize DI water and fluorescein within a mixing length of 25.2 μm up to a flow rate of 116 μL min-1 at a driving voltage of 40 Vpp, corresponding to a mixing time of 0.8 ms. This rapid mixing was employed to mitigate some complexities in nanoparticle synthesis, namely controlling nanoprecipitation and size, batch to batch variation, synthesis throughput, and clogging. Both polymeric nanoparticles and liposomes were synthesized in this platform and showed a smaller effective size and narrower size distribution in comparison to those obtained by a hydrodynamic flow focusing method. Through changing the mixing time, the effective size of the nanoparticles could be fine-tuned for both polymeric nanoparticles and liposomes. The rapid mixing and strong vortices prevent aggregation of nanoparticles, leading to a substantially higher throughput of liposomes in comparison with that by the hydrodynamic flow focusing method. The straightforward fabrication process of the system coupled with low power consumption, high-controllability, and rapid mixing time renders this mixer a practical platform for a myriad of nano and biotechnological applications.
Collapse
Affiliation(s)
- M Reza Rasouli
- Biomedical Engineering Department-Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | - Maryam Tabrizian
- Biomedical Engineering Department-Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada. and Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
181
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
182
|
Ag Seleci D, Maurer V, Stahl F, Scheper T, Garnweitner G. Rapid Microfluidic Preparation of Niosomes for Targeted Drug Delivery. Int J Mol Sci 2019; 20:ijms20194696. [PMID: 31546717 PMCID: PMC6801367 DOI: 10.3390/ijms20194696] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Niosomes are non-ionic surfactant-based vesicles with high promise for drug delivery applications. They can be rapidly prepared via microfluidics, allowing their reproducible production without the need of a subsequent size reduction step, by controlled mixing of two miscible phases of an organic (lipids dissolved in alcohol) and an aqueous solution in a microchannel. The control of niosome properties and the implementation of more complex functions, however, thus far are largely unknown for this method. Here we investigate microfluidics-based manufacturing of topotecan (TPT)-loaded polyethylene glycolated niosomes (PEGNIO). The flow rate ratio of the organic and aqueous phases was varied and optimized. Furthermore, the surface of TPT-loaded PEGNIO was modified with a tumor homing and penetrating peptide (tLyp-1). The designed nanoparticular drug delivery system composed of PEGNIO-TPT-tLyp-1 was fabricated for the first time via microfluidics in this study. The physicochemical properties were determined through dynamic light scattering (DLS) and zeta potential analysis. In vitro studies of the obtained formulations were performed on human glioblastoma (U87) cells. The results clearly indicated that tLyp-1-functionalized TPT-loaded niosomes could significantly improve anti-glioma treatment.
Collapse
Affiliation(s)
- Didem Ag Seleci
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany.
- Centre for Pharmaceutical Engineering Research (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany.
- Centre for Pharmaceutical Engineering Research (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany.
| | - Thomas Scheper
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany.
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany.
- Centre for Pharmaceutical Engineering Research (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
183
|
Hamano N, Böttger R, Lee SE, Yang Y, Kulkarni JA, Ip S, Cullis PR, Li SD. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Mol Pharm 2019; 16:3957-3967. [PMID: 31381352 DOI: 10.1021/acs.molpharmaceut.9b00583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Curcumin exhibits potent anticancer activity via various mechanisms, but its in vivo efficacy has been hampered by poor solubility. Nanotechnology has been employed to deliver curcumin, but most of the reported systems suffered from low drug loading capacity and poor stability. Here, we report the development and optimization of a liposomal formulation for curcumin (Lipo-Cur) using an automated microfluidic technology. Lipo-Cur exhibited a mean diameter of 120 nm with a low polydispersity index (<0.2) and superior loading capacity (17 wt %) compared to other reported liposomal systems. Lipo-Cur increased the water solubility of curcumin by 700-fold, leading to 8-20-fold increased systemic exposure compared to the standard curcumin suspension formulation. When coadministered with cisplatin to tumor-bearing mice, Lipo-Cur augmented the antitumor efficacy of cisplatin in multiple mouse tumor models and decreased the nephrotoxicity. This is the first report demonstrating the dual effects of curcumin enabled by a nanoformulation in enhancing the efficacy and reducing the toxicity of a chemo-drug in animal models under a single and low dose administration.
Collapse
Affiliation(s)
| | | | | | | | | | - Shell Ip
- Precision NanoSystems Inc , Vancouver , British Columbia V6P 6T7 , Canada
| | | | | |
Collapse
|
184
|
T.S A, Shalumon K, Chen JP. Applications of Magnetic Liposomes in Cancer Therapies. Curr Pharm Des 2019; 25:1490-1504. [DOI: 10.2174/1389203720666190521114936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 12/30/2022]
Abstract
MNPs find numerous important biomedical applications owing to their high biocompatibility and unique magnetic properties at the bottom level. Among several other biomedical applications, MNPs are gaining importance in treating various kinds of cancer either as a hyperthermia agent alone or as a drug/gene carrier for single or combined therapies. At the same time, another type of nano-carrier with lipid bilayer, i.e. liposomes, has also emerged as a platform for administration of pharmaceutical drugs, which sees increasing importance as a drug/gene carrier in cancer therapy due to its excellent biocompatibility, tunable particle size and the possibility for surface modification to overcome biological barriers and to reach targeted sites. MLs that combine MNPs with liposomes are endowed with advantages of both MNPs and liposomes and are gaining importance for cancer therapy in various modes. Hence, we will start by reviewing the synthesis methods of MNPs and MLs, followed by a comprehensive assessment of current strategies to apply MLs for different types of cancer treatments. These will include thermo-chemotherapy using MLs as a triggered releasing agent to deliver drugs/genes, photothermal/ photodynamic therapy and combined imaging and cancer therapy.
Collapse
Affiliation(s)
- Anilkumar T.S
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, China
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, China
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, China
| |
Collapse
|
185
|
Abstract
Early researchers focussed on developing stimuli-responsive liposomes in order to manipulate drug release at the site of action or under certain conditions. In recent times, a great deal of efforts has been made to modify the surface of liposomes with ligands for the purpose of achieving targeted drug delivery. Due to the morphology of liposomes, their surfaces can be engineered by attaching molecules such as oligosaccharides, peptides, antibodies, antigens and oligonucleotides to the bilayer structure. Over the years, a number of techniques including the use of covalent and non-covalent linkages have been utilised in designing ligand-liposome conjugates. In this review, various strategies for the functionalisation of liposomes as well as the different types of ligand-liposome conjugates have been discussed. Finally, the pros and cons of conjugation in liposomes are concisely summarised.
Collapse
Affiliation(s)
- İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Mamudu İbrahim
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
186
|
Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:549-558. [DOI: 10.1007/s00249-019-01383-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
187
|
Continuous flow production of size-controllable niosomes using a thermostatic microreactor. Colloids Surf B Biointerfaces 2019; 182:110378. [PMID: 31352251 DOI: 10.1016/j.colsurfb.2019.110378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/16/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022]
Abstract
The new roles of vesicular systems in advanced biomedical, analytical and food science applications demand novel preparation processes designed to reach the new standards. Particle size and monodispersity have become essential properties to control. In this work, key parameters, involved in a microfluidic reactor with hydrodynamic flow focusing, were investigated in order to quantify their effects on niosomes morphology. Particular attention was given to temperature, which is both a requirement to handle non-ionic surfactants with phase transition temperature above RT, and a tailoring variable for size and monodispersity control. With this aim, niosomes with two different sorbitan esters and cholesterol as stabilizer were formulated. High resolution and conventional 3D-printing technologies were employed for the fabrication of microfluidic reactor and thermostatic systems, since this additive technology has been essential for microfluidics development in terms of cost-effective and rapid prototyping. A customised device to control temperature and facilitate visualization of the process was developed, which can be easily coupled with commercial inverted microscopes. The results demonstrated the capability of microfluidic production of niosomes within the full range of non-ionic surfactants and membrane stabilizers.
Collapse
|
188
|
Romanov V, McCullough J, Gale BK, Frost A. A Tunable Microfluidic Device Enables Cargo Encapsulation by Cell- or Organelle-Sized Lipid Vesicles Comprising Asymmetric Lipid Bilayers. ADVANCED BIOSYSTEMS 2019; 3:1900010. [PMID: 31428671 PMCID: PMC6699779 DOI: 10.1002/adbi.201900010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 01/14/2023]
Abstract
Cellular membranes play host to a wide variety of morphologically and chemically complex processes. Although model membranes, like liposomes, are already widely used to reconstitute and study these processes, better tools are needed for making model bilayers that faithfully mimic cellular membranes. Existing methods for fabricating cell-sized (μm) or organelle-sized (tens to hundreds of nanometers) lipid vesicles have distinctly different requirements. Of particular note for biology, it remains challenging for any technique to efficiently encapsulate fragile cargo molecules or to generate liposomes with stable, asymmetric lipid leaflets within the bilayer. Here a tunable microfluidic device and protocol for fabricating liposomes with desired diameters ranging from ≈10 μm to ≈100 nm are described. Lipid vesicle size is templated by the simple inclusion of a polycarbonate filter within the microfluidic system and tuned with flow rate. It is shown that the vesicles made with this device are stable, unilamellar, lipid asymmetric, and capable of supporting transmembrane protein assembly, peripheral membrane protein binding, as well as soluble cargo encapsulation (including designer nanocages for biotechnology applications). These fabricated vesicles provide a new platform for studying the biophysically rich processes found within lipid-lipid and lipid-protein systems typically associated with cellular membranes.
Collapse
Affiliation(s)
- Valentin Romanov
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - John McCullough
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Bruce K Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam Frost
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
189
|
Ionic strength for tailoring the synthesis of monomodal stealth cationic liposomes in microfluidic devices. Colloids Surf B Biointerfaces 2019; 179:233-241. [DOI: 10.1016/j.colsurfb.2019.03.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
190
|
Sedighi M, Sieber S, Rahimi F, Shahbazi MA, Rezayan AH, Huwyler J, Witzigmann D. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv Transl Res 2019; 9:404-413. [PMID: 30306459 DOI: 10.1007/s13346-018-0587-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liposomes have attracted much attention as the first nanoformulations entering the clinic. The optimization of physicochemical properties of liposomes during nanomedicine development however is time-consuming and challenging despite great advances in formulation development. Here, we present a systematic approach for the rapid size optimization of liposomes. The combination of microfluidics with a design-of-experiment (DoE) approach offers a strategy to rapidly screen and optimize various liposome formulations, i.e., up to 30 liposome formulations in 1 day. Five representative liposome formulations based on clinically approved lipid compositions were formulated using systematic variations in microfluidics flow rate settings, i.e., flow rate ratio (FRR) and total flow rate (TFR). Interestingly, flow rate-dependent DoE models for the prediction of liposome characteristics could be grouped according to lipid-phase transition temperature and surface characteristics. For all formulations, the FRR had a significant impact (p < 0.001) on hydrodynamic diameter and size distribution of liposomes, while the TFR mainly affected the production rate. Liposome characteristics remained constant for TFRs above 8 mL/min. The stability study revealed an influence of lipid:cholesterol ratio (1:1 and 2:1 ratio) and presence of PEG on liposome characteristics during storage. To validate our DoE models, we formulated liposomes incorporating hydrophobic dodecanethiol-coated gold nanoparticles. This proof-of-concept step showed that flow rate settings predicted by DoE models successfully determined the size of resulting empty liposomes (109.3 ± 15.3 nm) or nanocomposites (111 ± 17.3 nm). This study indicates that a microfluidics-based formulation approach combined with DoE is suitable for the routine development of monodisperse and size-specific liposomes in a reproducible and rapid manner.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Sandro Sieber
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Fereshteh Rahimi
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800, Kongens Lyngby, Denmark.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Dominik Witzigmann
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| |
Collapse
|
191
|
Cheung CCL, Al-Jamal WT. Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. Int J Pharm 2019; 566:687-696. [PMID: 31212051 DOI: 10.1016/j.ijpharm.2019.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023]
Abstract
Preparation of lipid-based drug delivery systems by microfluidics has been increasingly popular, due to the reproducible, continuous and scalable nature of the microfluidic process. Despite exciting development in the field, versatility and superiority of microfluidics over conventional methods still need further evidence, since preparing clinically-relevant sterically stabilised liposomes has been lacking. The present study describes the optimisation of PEGylated liposomal formulations of various rigidity using staggered herringbone micromixer (SHM). The effect of both processing parameters (total flow rate (TFR) and aqueous-to-ethanol flow rate ratio (FRR)) and formulation parameters (lipid components and composition, initial lipid concentration and aqueous media) was investigated and discussed. Liposomal formulations consist of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), with cholesterol and PEGylated lipid (DSPE-PEG2000) were successfully prepared with the desired size (∼100 nm) and dispersity (<0.2). Doxorubicin was successfully encapsulated in these liposomes at high (>80%) encapsulation efficiency using the pH-gradient remote loading method, illustrating their bilayer integrity and capability as drug delivery systems. We demonstrated that clinically-relevant PEGylated liposomal formulations could be prepared with properties comparable to conventional techniques. Limitations and recommendations on the microfluidic production of PEGylated liposomes were also discussed.
Collapse
Affiliation(s)
- Calvin C L Cheung
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
192
|
Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels. Nat Commun 2019; 10:2528. [PMID: 31175303 PMCID: PMC6555794 DOI: 10.1038/s41467-019-10505-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
While shear emulsification is a well understood industrial process, geometrical confinement in microfluidic systems introduces fascinating complexity, so far prohibiting complete understanding of droplet formation. The size of confined droplets is controlled by the ratio between shear and capillary forces when both are of the same order, in a regime known as jetting, while being surprisingly insensitive to this ratio when shear is orders of magnitude smaller than capillary forces, in a regime known as squeezing. Here, we reveal that further reduction of—already negligibly small—shear unexpectedly re-introduces the dependence of droplet size on shear/capillary-force ratio. For the first time we formally account for the flow around forming droplets, to predict and discover experimentally an additional regime—leaking. Our model predicts droplet size and characterizes the transitions from leaking into squeezing and from squeezing into jetting, unifying the description for confined droplet generation, and offering a practical guide for applications. T-junctions are a tool for droplet generation; they are well-described by models that distinguish for squeezing and jetting regimes for different capillary numbers. By considering the usually neglected corner flow, the authors identify an additional leaking regime for very low capillary numbers.
Collapse
|
193
|
Shah VM, Nguyen DX, Patel P, Cote B, Al-Fatease A, Pham Y, Huynh MG, Woo Y, Alani AWG. Liposomes produced by microfluidics and extrusion: A comparison for scale-up purposes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:146-156. [DOI: 10.1016/j.nano.2019.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
|
194
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|
195
|
Zhang Z, Yang Y, Pincet F, Llaguno MC, Lin C. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat Chem 2019. [PMID: 28644472 DOI: 10.1038/nchem.2802] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA
| | - Yang Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA.,Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Marc C Llaguno
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA.,Nanobiology Institute, Yale University; West Haven, Connecticut 06516, USA
| |
Collapse
|
196
|
Sieber S, Grossen P, Uhl P, Detampel P, Mier W, Witzigmann D, Huwyler J. Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:82-93. [DOI: 10.1016/j.nano.2018.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
|
197
|
Bolze H, Erfle P, Riewe J, Bunjes H, Dietzel A, Burg TP. A Microfluidic Split-Flow Technology for Product Characterization in Continuous Low-Volume Nanoparticle Synthesis. MICROMACHINES 2019; 10:mi10030179. [PMID: 30857317 PMCID: PMC6470898 DOI: 10.3390/mi10030179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
A key aspect of microfluidic processes is their ability to perform chemical reactions in small volumes under continuous flow. However, a continuous process requires stable reagent flow over a prolonged period. This can be challenging in microfluidic systems, as bubbles or particles easily block or alter the flow. Online analysis of the product stream can alleviate this problem by providing a feedback signal. When this signal exceeds a pre-defined range, the process can be re-adjusted or interrupted to prevent contamination. Here we demonstrate the feasibility of this concept by implementing a microfluidic detector downstream of a segmented-flow system for the synthesis of lipid nanoparticles. To match the flow rate through the detector to the measurement bandwidth independent of the synthesis requirements, a small stream is sidelined from the original product stream and routed through a measuring channel with 2 × 2 µm cross-section. The small size of the measuring channel prevents the entry of air plugs, which are inherent to our segmented flow synthesis device. Nanoparticles passing through the small channel were detected and characterized by quantitative fluorescence measurements. With this setup, we were able to count single nanoparticles. This way, we were able to detect changes in the particle synthesis affecting the size, concentration, or velocity of the particles in suspension. We envision that the flow-splitting scheme demonstrated here can be transferred to detection methods other than fluorescence for continuous monitoring and feedback control of microfluidic nanoparticle synthesis.
Collapse
Affiliation(s)
- Holger Bolze
- Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig 38106, Germany.
| | - Peer Erfle
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig 38106, Germany.
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig 38124, Germany.
| | - Juliane Riewe
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig 38106, Germany.
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig 38106, Germany.
| | - Heike Bunjes
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig 38106, Germany.
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig 38106, Germany.
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig 38106, Germany.
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig 38124, Germany.
| | - Thomas P Burg
- Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, 64283 Darmstadt, Germany.
| |
Collapse
|
198
|
Pitingolo G, Taly V, Nastruzzi C. Coins in microfluidics: From mere scale objects to font of inspiration for microchannel circuits. BIOMICROFLUIDICS 2019; 13:024106. [PMID: 31040886 PMCID: PMC6456355 DOI: 10.1063/1.5086535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The fabrication of microfluidic chips remains a complex and expensive process requiring specific equipment and protocols, often if not always limited to the most privileged laboratories. As an alternative to the most sophisticated methods, the present paper describes the fabrication of microfluidic chips by an approach that uses coins as positive master for the rapid production of multigeometry chips. All steps of chip production were carried out using inexpensive approaches by low-cost chemicals and equipment. The chips were validated by different "classic" microfluidic tasks, such as hydrodynamic focusing, droplets generation, micromixing, and on-chip cell culture. The use of coins is not only an efficient method for rapid prototyping but also represents an inspiring possibility for the design of new microfluidic chips. Finally, coin-inspired chips could represent a laboratory experiment doable at a high school level.
Collapse
Affiliation(s)
- Gabriele Pitingolo
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, F-75005 Paris, France
| | - Valerie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, F-75005 Paris, France
| | - Claudio Nastruzzi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
199
|
Wöll S, Dickgiesser S, Rasche N, Schiller S, Scherließ R. Sortagged anti-EGFR immunoliposomes exhibit increased cytotoxicity on target cells. Eur J Pharm Biopharm 2019; 136:203-212. [DOI: 10.1016/j.ejpb.2019.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
|
200
|
Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15:1-18. [PMID: 30581608 PMCID: PMC6300464 DOI: 10.1016/j.jare.2018.06.005] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023] Open
Abstract
Nonspecific distribution and uncontrollable release of drugs in conventional drug delivery systems (CDDSs) have led to the development of smart nanocarrier-based drug delivery systems, which are also known as Smart Drug Delivery Systems (SDDSs). SDDSs can deliver drugs to the target sites with reduced dosage frequency and in a spatially controlled manner to mitigate the side effects experienced in CDDSs. Chemotherapy is widely used to treat cancer, which is the second leading cause of death worldwide. Site-specific drug delivery led to a keen interest in the SDDSs as an alternative to chemotherapy. Smart nanocarriers, nanoparticles used to carry drugs, are at the focus of SDDSs. A smart drug delivery system consists of smart nanocarriers, targeting mechanisms, and stimulus techniques. This review highlights the recent development of SDDSs for a number of smart nanocarriers, including liposomes, micelles, dendrimers, meso-porous silica nanoparticles, gold nanoparticles, super paramagnetic iron-oxide nanoparticles, carbon nanotubes, and quantum dots. The nanocarriers are described in terms of their structures, classification, synthesis and degree of smartness. Even though SDDSs feature a number of advantages over chemotherapy, there are major concerns about the toxicity of smart nanocarriers; therefore, a substantial study on the toxicity and biocompatibility of the nanocarriers has been reported. Finally, the challenges and future research scope in the field of SDDSs are also presented. It is expected that this review will be widely useful for those who have been seeking new research directions in this field and for those who are about to start their studies in smart nanocarrier-based drug delivery.
Collapse
Affiliation(s)
- Sarwar Hossen
- Department of Physics, Khulna Govt. Mahila College, National University, Gazipur 1704, Bangladesh
| | - M. Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.K. Basher
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.N.H. Mia
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.T. Rahman
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M. Jalal Uddin
- Department of Radio Sciences and Engineering, KwangWoon University, Seoul 01897, Republic of Korea
| |
Collapse
|