151
|
Rigid-interface-locking of ZIF-8 membranes to enable for superior high-pressure propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
152
|
Behera P, Ray A, Prakash Tripathy S, Acharya L, Subudhi S, Parida K. ZIF-8 derived porous C, N co-doped ZnO modified B-g-C3N4: A Z-Scheme charge dynamics approach operative towards photocatalytic Hydrogen evolution and Ciprofloxacin degradation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
153
|
Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release 2022; 351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
154
|
Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chem 2022; 405:134842. [DOI: 10.1016/j.foodchem.2022.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
155
|
A comparison study about antibacterial activity of zeolitic imidazolate frameworks (ZIFs) prepared with various metal ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
156
|
Mohammady MS, Hashemian S, Tabatabaee M. Cu-ZIF@ Red soil nanocomposite sufficient sorbent for dye removal. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
157
|
Gao Q, Zhao Y, Gong J, Chen X, Liu W, Gao W. Construction of a polyoxometalate-based magnetic composite MOF for the effective adsorption of cationic dyes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4095-4105. [PMID: 36205110 DOI: 10.1039/d2ay00934j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adsorption and separation of dyes are extremely important as they damage the water environment and human health. ZIF-8 has the benefits of large specific surface area, explicit structure and a good confinement effect on POM, which can better facilitate the synergetic effect of POM and ZIF-8. Therefore, ZIF-8 was chosen as the support material to wrap H3PW12O40. In the present work, magnetic ZIF-8@H3PW12O40 composites were prepared by a facile impregnation synthesis strategy and applied to the adsorption of cationic dyes with methylene blue (MB) as a representative. Compared with the other three prepared materials, Fe3O4@ZIF-8@H3PW12O40 exhibited the best adsorption performance. The adsorption process conformed to the pseudo-second-order model and the Langmuir model, and the adsorption reaction was spontaneous with the maximum adsorption capacity of up to 431.03 mg g-1 within 20 min. The electrostatic attraction has been testified to be the major driving force of the adsorption process, and the material can still hold 90% of the max adsorption capacity after 5 cycles, which serve as the foundation for its further applications in the field of adsorption.
Collapse
Affiliation(s)
- Qiao Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, P. R. China.
| | - Yu Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, P. R. China.
| | - Jiyu Gong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, P. R. China.
| | - Xin Chen
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, P. R. China.
| | - Wei Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, P. R. China.
| | - Wenyi Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, P. R. China.
| |
Collapse
|
158
|
Liu W, Yu L, Cui X, Tan C, Zhang M, Wu D, Li Z, Zhang M. Polyphenylene Sulfide Ultrafine Viscous Fibrous Membrane Modified by ZIF-8 for Highly Effective Oil/Water Separation under High Salt or Alkaline Conditions. MEMBRANES 2022; 12:1017. [PMID: 36295776 PMCID: PMC9609813 DOI: 10.3390/membranes12101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The oil/water separation in harsh environments has always been a challenging topic all over the world. In this study, the ZIF-8/PPS fiber membranes were fabricated via the combination of hot pressing and in situ growth. The distribution of ZIF-8 in the membranes was adjusted by changing the ZIF-8 in situ growth time, which could control the oil/water separation effect. Due to the hydrophilic nature of the ZIF-8/PPS fiber membranes, the water molecules in the oil-in-water emulsion could quickly penetrate into the fiber membrane under the drive of pressure, gravity, and capillary force, forming a water layer on the surface of the fiber membranes. The coupling of the water layer and the fiber structure prevented direct contact between the oil molecules and the fiber membrane, thereby realizing the separation of the emulsion. The results show that when the ZIF-8 in situ growth time was 10 h, the contact angle, the porosity, and the pure water flux of the ZIF-8/PPS fiber membranes were 72.5°, 52.3%, and 12,351 L/h·m2, respectively. More importantly, the separation efficiency of M10 was 97%, and the oil/water separation efficiency reached 95% after 14 cycles. This study provides a novel strategy for preparing MOFs/fiber materials for oil/water separation in harsh environments.
Collapse
Affiliation(s)
- Wenlei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lingli Yu
- Tianjin Taipu Pharmaceutical Co., Ltd., Tianjin 300462, China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Xianfeng Cui
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Binzhou 256500, China
| | - Ce Tan
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Mengen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Di Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhenhuan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Maliang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Binzhou 256500, China
| |
Collapse
|
159
|
Metal-Organic frameworks encapsulated Ag Nanoparticle-Nanoclusters with enhanced luminescence for simultaneous detection and removal of Chromium(VI). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
160
|
Chen T, Xu Y, Chen B, Xiao H. Efficient formation of ZIF-8 promoted by DBU for the preparation of ZnO and Ce/ZnO nanomaterials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
161
|
Xu Y, Liu SY, Zeng L, Ma H, Zhang Y, Yang H, Liu Y, Fang S, Zhao J, Xu Y, Ashby CR, He Y, Dai Z, Pan Y. An Enzyme-Engineered Nonporous Copper(I) Coordination Polymer Nanoplatform for Cuproptosis-Based Synergistic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204733. [PMID: 36054475 DOI: 10.1002/adma.202204733] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Cuproptosis, a newly identified form of regulated cell death that is copper-dependent, offers great opportunities for exploring the use of copper-based nanomaterials inducing cuproptosis for cancer treatment. Here, a glucose oxidase (GOx)-engineered nonporous copper(I) 1,2,4-triazolate ([Cu(tz)]) coordination polymer (CP) nanoplatform, denoted as GOx@[Cu(tz)], for starvation-augmented cuproptosis and photodynamic synergistic therapy is developed. Importantly, the catalytic activity of GOx is shielded in the nonporous scaffold but can be "turned on" for efficient glucose depletion only upon glutathione (GSH) stimulation in cancer cells, thereby proceeding cancer starvation therapy. The depletion of glucose and GSH sensitizes cancer cells to the GOx@[Cu(tz)]-mediated cuproptosis, producing aggregation of lipoylated mitochondrial proteins, the target of copper-induced toxicity. The increased intracellular hydrogen peroxide (H2 O2 ) levels, due to the oxidation of glucose, activates the type I photodynamic therapy (PDT) efficacy of GOx@[Cu(tz)]. The in vivo experimental results indicate that GOx@[Cu(tz)] produces negligible systemic toxicity and inhibits tumor growth by 92.4% in athymic mice bearing 5637 bladder tumors. This is thought to be the first report of a cupreous nanomaterial capable of inducing cuproptosis and cuproptosis-based synergistic therapy in bladder cancer, which should invigorate studies pursuing rational design of efficacious cancer therapy strategies based on cuproptosis.
Collapse
Affiliation(s)
- Yuzhi Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hansu Ma
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuo Fang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jing Zhao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yunsheng Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zong Dai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
162
|
ZnPA@ZIF-8 nanoparticles: Synthesis, sustained release properties and anticorrosion performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
163
|
Development of Metal–Organic Frameworks (ZIF-8) as Low-Cost Carriers for Sustained Release of Hydrophobic and Hydrophilic Drugs: In Vitro Evaluation of Anti-breast Cancer and Anti-infection Effect. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
164
|
Chen J, Cheng F, Luo D, Huang J, Ouyang J, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Peng Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans 2022; 51:14817-14832. [PMID: 36124915 DOI: 10.1039/d2dt02470e] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, metal-organic frameworks (MOFs), basically inorganic-organic hybrid materials, have gained tremendous attention due to their vast applications. MOFs have shown enormous applications in almost every research field. However, the area of designing MOF materials for their biological applications is still an emerging field that needs attention. Titanium-based metal-organic framework (Ti-MOF) materials are used in many research areas due to their structural advantages, such as small particle size and large effective surface area. On the other hand, they have also shown unique advantages such as good biocompatibility, excellent catalytic oxidation and photocatalytic properties and ease of functionalization. This study reviews the recent research progress on Ti-MOFs in therapeutic areas such as antibacterial, oncology, anti-inflammation, and bone injury, which will provide new directions for further research in this biomedical field. Therefore, this article will help scientists working in the particular field to enhance their understanding of Ti-based MOFs for functional biomedical applications.
Collapse
Affiliation(s)
- Jinyi Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Fan Cheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Dongwen Luo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jiefeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan, China.
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
165
|
Gao M, Yang C, Wu C, Chen Y, Zhuang H, Wang J, Cao Z. Hydrogel-metal-organic-framework hybrids mediated efficient oral delivery of siRNA for the treatment of ulcerative colitis. J Nanobiotechnology 2022; 20:404. [PMID: 36064365 PMCID: PMC9446571 DOI: 10.1186/s12951-022-01603-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a major type of inflammatory bowel disease (IBD), which could induce bloody stool, diarrhea, colon atrophy and eventually lead to colorectal cancer. The conventional daily oral administration of drugs only relieve the inflammatory response of colon in the short term, Biological agents such as antibody drugs has proven its efficiency in inhibiting colitis, while the low drug bioavailability means that large doses of antibodies are required, ultimately causing systemic toxicity. Small interfering RNA (siRNA) has significant advantages over antibody drugs in terms of safety and efficacy, and it have been widely applied as potential candidates for a variety of inflammation-related diseases. However, oral delivery of siRNA fails to overcome the degradation of the gastrointestinal environment to produce a significant therapeutic effect in ulcerative colitis. Herein, we design the hybrid delivery system that the siRNA loaded MOF encapsulated in the sodium alginate particles to overcome the barriers in the oral process. RESULTS The hybrid delivery system (SA@MOF-siRNATNFα) was successfully constructed, and it could not only survive the low pH environment in the stomach and small intestine, but also taken up more by inflammatory macrophages, as well as released much more MOF-siRNATNFα. Moreover, SA@MOF-siRNATNFα tended to enriched and infiltrated into local colon tissues. As a result, SA@MOF-siRNATNFα significantly reduced the progression of colitis, of which the treated mice did not experience significant weight loss, bloody stools and diarrhea. CONCLUSION We confirmed that the formulation of hydrogel-metal-organic framework hybrids could improve the protection of incorporated payload in the gastric and early small intestine, enhancing the delivery of MOF-siRNA to colon.
Collapse
Affiliation(s)
- Meng Gao
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Chen Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenghu Wu
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Yue Chen
- School of Clinical Medicine, Anhui Medical University, Hefei, 230000, China
| | - Hongqin Zhuang
- School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jilong Wang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Zhiting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
166
|
Doustdar F, Ghorbani M. ZIF-8 enriched electrospun ethyl cellulose/polyvinylpyrrolidone scaffolds: The key role of polyvinylpyrrolidone molecular weight. Carbohydr Polym 2022; 291:119620. [DOI: 10.1016/j.carbpol.2022.119620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
|
167
|
Manianglung C, Lee JS, Ko YS. Olefin polymerization behavior of metallocene immobilized inside pore of metal-organic frameworks. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
168
|
Hybrid nanofiltration membranes prepared by a simultaneous synthesis method for precise molecular separation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
169
|
Zhang W, Yang K, Han X, Cai H, Lu W, Yuan Y, Zhang S, Gao F. Metal-organic frameworks decorated pomelo peel cellulose nanofibers membranes for high performance dye rejection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
170
|
Wang Q, Chen Y, Liu P, Wang Y, Yang J, Li J, Li L. CO2 Capture from High-Humidity Flue Gas Using a Stable Metal–Organic Framework. Molecules 2022; 27:molecules27175608. [PMID: 36080377 PMCID: PMC9458099 DOI: 10.3390/molecules27175608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/26/2022] Open
Abstract
The flue gas from fossil fuel power plants is a long-term stable and concentrated emission source of CO2, and it is imperative to reduce its emission. Adsorbents have played a pivotal role in reducing CO2 emissions in recent years, but the presence of water vapor in flue gas poses a challenge to the stability of adsorbents. In this study, ZIF-94, one of the ZIF adsorbents, showed good CO2 uptake (53.30 cm3/g), and the calculated CO2/N2 (15:85, v/v) selectivity was 54.12 at 298 K. Because of its excellent structural and performance stability under humid conditions, the CO2/N2 mixture was still well-separated on ZIF-94 with a separation time of 30.4 min when the relative humidity was as high as 99.2%, which was similar to the separation time of the dry gas experiments (33.2 min). These results pointed to the enormous potential applications of ZIF-94 for CO2/N2 separation under high humidity conditions in industrial settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Libo Li
- Correspondence: (Y.C.); (L.L.)
| |
Collapse
|
171
|
Exploring the Influence of the Reused Methanol Solution for the Structure and Properties of the Synthesized ZIF-8. Processes (Basel) 2022. [DOI: 10.3390/pr10091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The zeolitic imidazolate framework-8 (ZIF-8), as a kind of MOF, is widely used in sensors, gas storage/separation, drug delivery, and catalysis due to its adjustable porous structure, high surface area, and excellent chemistry tunability. ZIF-8 is constructed by Zn2+ and 2-methylimidazole and synthesized in the methanol solution. In this paper, we explored the influence of the reused methanol solution for the structure and properties of the synthesized ZIF-8. The as-synthesized ZIF-8 was characterized by an X-ray diffraction instrument (XRD), a scanning electron microscope (SEM), a specific surface area analyzer (BET), and Fourier transform infrared spectroscopy (FT-IR). The results show that the reused methanol solution does not change the phase, porous structure, and BET surface area of ZIF-8. However, the particle size of ZIF-8 increases from 50 nm to 5 um and the productive rate decreases to 7.4% when the methanol solution is reused four times. This work provides new insight into the reuse of dissolvents for the synthesis of MOFs.
Collapse
|
172
|
Li X, Liang H, Liu X, Zhang Y, Liu Z, Fan H. Zeolite Imidazolate Frameworks (ZIFs) Derived Nanomaterials and their Hybrids for Advanced Secondary Batteries and Electrocatalysis. CHEM REC 2022; 22:e202200105. [PMID: 35959942 DOI: 10.1002/tcr.202200105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022]
Abstract
Zeolite imidazolate frameworks (ZIFs), as a typical class of metal-organic frameworks (MOFs), have attracted a great deal of attention in the field of energy storage and conversation due to their chemical structure stability, facile synthesis and environmental friendliness. Among of ZIFs family, the zinc-based imidazolate framework (ZIF-8) and cobalt-based imidazolate framework (ZIF-67) have considered as promising ZIFs materials, which attributed to their tunable porosity, stable structure, and desirable electrical conductivity. To date, various ZIF-8 and ZIF67 derived materials, including carbon materials, metal oxides, sulfides, selenides, carbides and phosphides, have been successfully synthesized using ZIFs as templates and evaluated as promising electrode materials for secondary batteries and electrocatalysis. This review provides an effective guide for the comprehension of the performance optimization and application prospects of ZIFs derivatives, specifically focusing on the optimization of structure and their application in secondary batteries and electrocatalysis. In detail, we present recent advances in the improvement of electrochemical performance of ZIF-8, ZIF-67 and ZIF-8@ZIF-67 derived nanomaterials and their hybrids, including carbon materials, metal oxides, carbides, oxides, sulfides, selenides, and phosphides for high-performance secondary batteries and electrocatalysis.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China.,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huajian Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| | - Zili Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
173
|
Chai Y, Zhang Y, Wang L, Du Y, Wang B, Li N, Chen M, Ou L. In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
174
|
Khoshbin Z, Moeenfard M, Zahraee H, Davoodian N. A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: A critical role of metal organic frameworks. Talanta 2022; 246:123514. [DOI: 10.1016/j.talanta.2022.123514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022]
|
175
|
Zhang Z, Zhang J, Dou G, Zeng Q. Synthesis of PI/ZIF-8 aerogel with hierarchical porous structure for enhanced CO2 capture performance. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
176
|
Xu LH, Li Y, Li SH, Lv MY, Zhao ZP. Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS membrane-based ester/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
177
|
Hamidon NF, Tahir MIM, Latif MAM, Abdul Rahman MB. Effect of altering linker ratio on nano-ZIF-8 polymorphisms in water-based and modulator-free synthesis. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Noor Fazrieyana Hamidon
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Foundry of Reticular Materials for Sustainability (FORMS), Institute of Nanoscience and Nanotechnogy (ION2), Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | | | - Muhammad Alif Mohamad Latif
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Foundry of Reticular Materials for Sustainability (FORMS), Institute of Nanoscience and Nanotechnogy (ION2), Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
178
|
Motamedi M, Mohammadkhah S, Ramezanzadeh M, Eivaz Mohammadloo H, Ramezanzadeh B. Designing Hybrid Mesoporous Pr/Tannate-Inbuilt ZIF8-Decorated MoS 2 as Novel Nanoreservoirs toward Smart pH-Triggered Anti-corrosion/Robust Thermomechanical Epoxy Nanocoatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31170-31193. [PMID: 35762777 DOI: 10.1021/acsami.2c08781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the first time, organic tannic acid (TA) molecules and then inorganic praseodymium (Pr) cations as corrosion inhibitors were successfully loaded into a zeolitic imidazolate framework (ZIF8)-type porous coordination polymer (PCP) decorated on molybdenum disulfide, MoS2, (MS)-based transition metal dichalcogenides (TMDs) to create novel hybrid mesoporous Pr/TA-ZIF8@MS nanoreservoirs. Thereafter, the hybrid nanoreservoirs were embedded into the epoxy matrix for the preparation of smart pH-triggered nanocoatings. Characterizations of the Pr/TA-ZIF8@MS nanoreservoirs via Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG), Brunauer-Emmett-Teller (BET), and field emission-scanning electron microscopy (FE-SEM)/energy-dispersive X-ray spectroscopy (EDS) experiments confirmed the fabrication of mesoporous structures comprising Pr/TA interfacial interactions with ZIF8-decorated MS nanoplatelets possessing high thermal stability and compact/dense configuration features with a framework reorientation. A remarkable smart release of the inhibited cations (Pr3+ and Zn2+) in the presence of inbuilt TA at both acidic and alkaline media was achieved under inductively coupled plasma (ICP) examination. The superior pH-triggered self-healing inhibition through the smart controlled-release of Pr, tannate, Zn, and imidazole inhibited species/complexes from EP/Pr-TA-ZIF8@MS via ligand exchange was obtained from electrochemical impedance spectroscopy (EIS) assessments of the scratched coatings during 72 h of saline immersion. In addition, the long-term barrier-induced corrosion prevention (log |Z|10 mHz = 10.49 Ω·cm2 after 63 days) of the EP/Pr-TA-ZIF8@MS was actualized. Moreover, efficient increments of the coating cross-link density (56.45%), tensile strength (63.6%), and toughness value (56.5%) compared to the Neat epoxy coating revealed noticeable thermomechanical properties of the EP/Pr-TA-ZIF8@MS.
Collapse
Affiliation(s)
- Milad Motamedi
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
| | - Sahel Mohammadkhah
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Mohammad Ramezanzadeh
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
| | - Hossein Eivaz Mohammadloo
- Color, Resin & Surface Coatings Department, Iran Polymer and Petrochemical Institute, Tehran, P.O. Box 14965-115, Iran
| | - Bahram Ramezanzadeh
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
| |
Collapse
|
179
|
Shen B, Wang Y, Wang X, Amal FE, Zhu L, Jiang L. A Cruciform Petal-like (ZIF-8) with Bactericidal Activity against Foodborne Gram-Positive Bacteria for Antibacterial Food Packaging. Int J Mol Sci 2022; 23:ijms23147510. [PMID: 35886855 PMCID: PMC9318148 DOI: 10.3390/ijms23147510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Most antibacterial nanomaterials used in food packaging act by releasing reactive oxygen species (ROS), which cannot efficiently have an inhibitory effect by penetrating the cell wall of Gram-positive Staphylococcus aureus. In this work, we used the cruciform petal-like zeolite imidazole framework-8 (ZIF-8) synthesized in the water phase which can release active Zn compounds in aqueous solution and exert a stronger inhibitory effect on S. aureus. The experimental results demonstrated that the aqueous cruciform petal-like ZIF-8 has the same photocatalytic activity as traditional ZIF-8 and can be applied in photocatalytic bacterial inactivation. The cruciform petal-like ZIF-8 was also shown to release active Zn compounds in aqueous solution with a better antibacterial effect against S. aureus, reaching 95% inactivation efficiency. The antibacterial effect was therefore 70% higher than that of traditional ZIF-8. Based on its excellent antibacterial properties, we loaded petal-like ZIF-8, PDA and PVA onto ordinary fibers to prepare ZIF-8-Film. The results further showed that ZIF-8-Film has a high filtration capacity, which can be used in antibacterial packaging material with the required air permeability. Moreover, ZIF-8-Flim can clean the surface on its own and can maintain a sterile environment. It is different from other disposable materials on the market in that it can be reused and has a self-disinfection function.
Collapse
Affiliation(s)
- Bowen Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing 211816, China; (B.S.); (Y.W.)
| | - Yuxian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing 211816, China; (B.S.); (Y.W.)
| | - Xinlong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, China; (X.W.); (F.E.A.)
| | - Fatima Ezzahra Amal
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, China; (X.W.); (F.E.A.)
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
- Correspondence: authors: (L.Z.); (L.J.); Tel.: +86-25-58139430 (L.Z. & L.J.)
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing 211816, China; (B.S.); (Y.W.)
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, China; (X.W.); (F.E.A.)
- Correspondence: authors: (L.Z.); (L.J.); Tel.: +86-25-58139430 (L.Z. & L.J.)
| |
Collapse
|
180
|
High-performance ZIF-8/biopolymer chitosan mixed-matrix pervaporation membrane for methanol/dimethyl carbonate separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
181
|
Hu P, Yuan B, Jason Niu Q, Wang N, Zhao S, Cui J, Jiang J. In situ assembled zeolite imidazolate framework nanocrystals hybrid thin film nanocomposite membranes for brackish water desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
182
|
Guo H, Fan S, Liu J, Wang Y. A dual-pH sensitive drug release system for combinatorial delivery of 5‑fluorouracil and leucovorin calcium in colon cancer therapy. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
183
|
Adsorption of sodium dodecyl benzene sulfonate on zeolitic imidazolate framework-8 synthesized using surfactant-free microemulsion as template. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
184
|
Wu Q, Jia Y, Liu Q, Mao X, Guo Q, Yan X, Zhao J, Liu F, Du A, Yao X. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
185
|
Imtiaz A, Othman MHD, Jilani A, Khan IU, Kamaludin R, Iqbal J, Al-Sehemi AG. Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. MEMBRANES 2022; 12:membranes12070646. [PMID: 35877848 PMCID: PMC9321681 DOI: 10.3390/membranes12070646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Natural gas is an important and fast-growing energy resource in the world and its purification is important in order to reduce environmental hazards and to meet the required quality standards set down by notable pipeline transmission, as well as distribution companies. Therefore, membrane technology has received great attention as it is considered an attractive option for the purification of natural gas in order to remove impurities such as carbon dioxide (CO2) and hydrogen sulphide (H2S) to meet the usage and transportation requirements. It is also recognized as an appealing alternative to other natural gas purification technologies such as adsorption and cryogenic processes due to its low cost, low energy requirement, easy membrane fabrication process and less requirement for supervision. During the past few decades, membrane-based gas separation technology employing hollow fibers (HF) has emerged as a leading technology and underwent rapid growth. Moreover, hollow fiber (HF) membranes have many advantages including high specific surface area, fewer requirements for maintenance and pre-treatment. However, applications of hollow fiber membranes are sometimes restricted by problems related to their low tensile strength as they are likely to get damaged in high-pressure applications. In this context, braid reinforced hollow fiber membranes offer a solution to this problem and can enhance the mechanical strength and lifespan of hollow fiber membranes. The present review includes a discussion about different materials used to fabricate gas separation membranes such as inorganic, organic and mixed matrix membranes (MMM). This review also includes a discussion about braid reinforced hollow fiber (BRHF) membranes and their ability to be used in natural gas purification as they can tackle high feed pressure and aggressive feeds without getting damaged or broken. A BRHF membrane possesses high tensile strength as compared to a self-supported membrane and if there is good interfacial bonding between the braid and the separation layer, high tensile strength, i.e., upto 170Mpa can be achieved, and due to these factors, it is expected that BRHF membranes could give promising results when used for the purification of natural gas.
Collapse
Affiliation(s)
- Aniqa Imtiaz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
- Correspondence: (M.H.D.O.); or (A.J.)
| | - Asim Jilani
- Centre of Nanotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.H.D.O.); or (A.J.)
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochshule, Institute of Applied Sciences & Technology, Khanpur Road, Mang, Haripur 22650, Pakistan;
| | - Roziana Kamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
| | - Javed Iqbal
- Centre of Nanotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
186
|
Kujur S, Singh A, Singh C. Inhalation Potential of Rifampicin-Loaded Novel Metal-Organic Frameworks for Improved Lung Delivery: Physicochemical Characterization, In Vitro Aerosolization and Antimycobacterial Studies. J Aerosol Med Pulm Drug Deliv 2022; 35:259-268. [PMID: 35708625 DOI: 10.1089/jamp.2022.0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The aim of the current study was to examine the potential of a rifampicin-loaded metal-organic framework (RIF@ZIF-8) for management of tuberculosis. Materials and Methods: RIF@ZIF-8 was developed using a simple, economic, and environmentally friendly ultrasonication method. Furthermore, the developed metal-organic framework (MOF) formulations were subjected to physicochemical characterization analyses such as Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffractometry, thermogravimetric analysis, field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and UV spectroscopy. In addition, in vitro release, powder flow characterization, in vitro lung deposition, and efficacy studies against the Mycobacterium tuberculosis (MTB) H37Rv strain were performed. Results: Physicochemical characterization confirms its spherical shape and drug loading, whereas in vitro release analysis shows 80.5 ± 5.5% release of the drug from the loaded formulation within 48 hours. Furthermore, powder flow properties suggested that the nature of MOFs is free flowing. Additionally, in vitro lung deposition studies indicated an emission fraction of 88.02 ± 10.23% for the emitted dose and circa 21% fine particle fraction. The mass median aerodynamic diameter and geometric standard deviation were found to be 4.42 ± 0.07 μm and 1.55 ± 01 μm, respectively. The in vitro aerosol performance study demonstrated higher deposition at stages 3, 4, and 5 of the cascade impactors, which simulate deep lung delivery in terms of the trachea-primary bronchus and secondary and terminal bronchi of the human lung, respectively. Moreover, RIF@ZIF-8 exhibited improved antimycobacterial activity (0.0125 mg/mL) vis-à-vis an unformulated drug (0.025 mg/mL) against the MTB H37Rv strain, using the BACTEC 460TB system. Conclusions: Therefore, MOFs could be promising nanocarriers for targeting lungs and overcoming the hepatotoxicity associated with antituberculosis drugs requiring inhalation administration.
Collapse
Affiliation(s)
- Sima Kujur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to I.K. Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
187
|
Wang K, Li Y, Xie LH, Li X, Li JR. Construction and application of base-stable MOFs: a critical review. Chem Soc Rev 2022; 51:6417-6441. [PMID: 35702993 DOI: 10.1039/d1cs00891a] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials constructed from organic ligands and metal ions/clusters. Owing to their unique advantages, they have attracted more and more attention in recent years and numerous studies have revealed their great potential in various applications. Many important applications of MOFs inevitably involve harsh alkaline operational environments. To achieve high performance and long cycling life in these applications, high stability of MOFs against bases is necessary. Therefore, the construction of base-stable MOFs has become a critical research direction in the MOF field. This review gives a historic summary of the development of base-stable MOFs in the last few years. The key factors that can determine the robustness of MOFs under basic conditions are analyzed. We also demonstrate the exciting achievements that have been made by utilizing base-stable MOFs in different applications. In the end, we discuss major challenges for the further development of base-stable MOFs. Some possible methods to address these problems are presented.
Collapse
Affiliation(s)
- Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yaping Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiangyu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
188
|
Hu X, Luo M, ur Rehman M, Sun J, Yaseen HA, Irshad F, Zhao Y, Wang S, Ma X. Mechanistic insight into the electron-donation effect of modified ZIF-8 on Ru for CO2 hydrogenation to formic acid. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
189
|
Novel pH-responsive self-healing anti-corrosion coating with high barrier and corrosion inhibitor loading based on reduced graphene oxide loaded zeolite imidazole framework. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
190
|
Luo Q, Huang X, Deng Q, Zhao X, Liao H, Deng H, Dong F, Zhang T, Shi L, Jiang J. Novel 3D cross-shaped Zn/Co bimetallic zeolite imidazolate frameworks for simultaneous removal Cr(VI) and Congo Red. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40041-40052. [PMID: 35112246 DOI: 10.1007/s11356-021-18272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The photocatalytic properties of Zn/Co zeolite imidazolate frameworks (ZIF-ZnCo) prepared by various Zn/Co ratio are of significantly diversity due to the morphology structure of the ZIF-ZnCo. Thereinto, the prepared ZIF-ZnCO-8:1 is excellent capability by virtue of its 3D cross-shaped structure. Spectral test results show that as-prepared novel 3D cross-shaped ZIF-ZnCo has a lower recombination rate of electron and hole pairs than the lamellar and dodecahedral, thus improving the photocatalytic ability. The photocatalytic ability of 3D cross-shaped ZIF-ZnCo was carefully investigated for removing mixed solution of Congo Red (CR) and Cr(VI). The photocatalytic reduction ability of 3D cross-shaped ZIF-ZnCo was 22% higher than ZIF-8 for Cr(VI). Meanwhile, CR was altogether removed at dark processing and Cr(VI) was removed 70% after dark processing 120 min and photocatalytic 240 min. Therefore, the high adsorption and photocatalytic capacity denote the potential application of 3D cross-shaped ZIF-ZnCo.
Collapse
Affiliation(s)
- Qin Luo
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Xiaofeng Huang
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Qiulin Deng
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China.
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China.
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, School of Chemical Engineering, Huaiyin Institute of Technology, Jiangsu Province, Huaian, 223003, People's Republic of China.
| | - Xueyuan Zhao
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Huiwei Liao
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Hongquan Deng
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Faqin Dong
- School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China
| | - Lianjun Shi
- State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Post-Doctoral Scientific Research Station of Wengfu (Group) Co., Ltd., 3491 Baijin Road, Guiyang, 550016, People's Republic of China
| | - Jinlong Jiang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, School of Chemical Engineering, Huaiyin Institute of Technology, Jiangsu Province, Huaian, 223003, People's Republic of China
| |
Collapse
|
191
|
Ren L, Zhao J, Li W, Li Q, Zhang D, Fang W, Yan D, Li Y, Wang Q, Jin X, Cao A. Site-Specific Controlled-Release Imidazolate Framework-8 for Dazomet Smart Delivery to Improve the Effective Utilization Rate and Reduce Biotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5993-6005. [PMID: 35506688 DOI: 10.1021/acs.jafc.2c00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An accurate controlled-release strategy of pesticides is considered desirable in sustainable agriculture. A site-specific nanorelease system of dazomet (DZ) was proposed by employing the zeolitic imidazolate framework-8 composite (DZ@ZIF-8) by a one-pot method. The synthetic parameters of DZ@ZIF-8 were optimized, and the loading content of DZ was maximized. ZIF-8 endowed DZ with a pH-sensitive behavior. The collapse of the DZ@ZIF-8 structure and the site-specific release of DZ were triggered by acidic substances produced by Botrytis cinerea. In vitro and pot experiments showed that the fungicidal activity of DZ@ZIF-8 was about 36.3 and 42.7% higher than that of DZ, respectively. DZ is conventionally used before a crop is planted because of its volatility and toxicity. However, DZ@ZIF-8 could avoid phytotoxicity of DZ to plants, which made the application of DZ possible during plant growth. Moreover, the acute toxicity to zebrafish changed from high to moderate levels. This study highlights a potential strategy that improves DZ effective utilization and reduces side effects.
Collapse
Affiliation(s)
- Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianing Zhao
- School of Pharmacy China Pharmaceutical University, Jiangsu 210009, China
| | - Wenjing Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjie Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Beijing Innovation Consortium of Agriculture Research System, Beijing 100193, China
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| |
Collapse
|
192
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
193
|
Miller QRS, Pohl M, Livo K, Asgar H, Nune SK, Sinnwell MA, Prasad M, Gadikota G, McGrail BP, Schaef HT. Porous Colloidal Nanoparticles as Injectable Multimodal Contrast Agents for Enhanced Geophysical Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23420-23425. [PMID: 35575693 DOI: 10.1021/acsami.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Injecting fluids into underground geologic structures is crucial for the development of long-term strategies for managing captured carbon and facilitating sustainable energy extraction operations. We have previously reported that the injection of metal-organic frameworks (MOFs) into the subsurface can enhance seismic monitoring tools to track fluids and map complex structures, reduce risk, and verify containment in carbon storage reservoirs because of their absorption capacity of low-frequency seismic waves. Here, we demonstrate that water-based Cr/Zn/Zr MOF colloidal suspensions (nanofluids) are multimodal geophysical contrast agents that enhance near-wellbore logging tools. Based on experimental fluid-only measurements, MIL-101(Cr), ZIF-8, and UiO-66 nanofluids have distinct complex conductivity and/or low-field nuclear magnetic resonance (NMR) signatures that are relevant to field-deployed technologies, implying the potential to enhance near-wellbore monitoring of CO2 injection and associated processes with downhole logging tools. Small- and wide-angle X-ray scattering characterization of ∼0.5 wt % MIL-101(Cr) suspensions confirmed phase stability and provided insight into the fractal nature of colloidal nanoparticles. Finally, low-field (2 MHz) NMR measurements of MIL-101(Cr) nanofluid injection into a prototypical Berea sandstone demonstrate how paramagnetic high-surface area MOFs may dominate the relaxation times of hydrogen-bearing fluids in porous geologic matrices, enhancing the mapping of near-surface and near-wellbore transport pathways and advancing sustainable subsurface energy technologies.
Collapse
Affiliation(s)
- Quin R S Miller
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mathias Pohl
- Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kurt Livo
- Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hassnain Asgar
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Satish K Nune
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Manika Prasad
- Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - B Peter McGrail
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - H Todd Schaef
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
194
|
Ge J, Ohata Y, Fukuda A, Tokumoto Y, Ohnishi T, Moteki T, Ogura M. Synthesis of Carbon Nanoparticles with Cobalt-Rich Shell via Pyrolysis of Zn-ZIF@Co/Zn-ZIF: Relevance of Co(III) Precursors. Inorg Chem 2022; 61:7859-7868. [PMID: 35546085 DOI: 10.1021/acs.inorgchem.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To the best of our knowledge, this is the first report on the rapid one-pot synthesis of a unique core-shell-structured zeolitic imidazolate framework (ZIF) using Co(III) and Zn(II) precursors. The key to obtaining this unique structure is the use of a Co(III) precursor as the starting material. Transmission electron microscopy (TEM) reveals that Co was present within a 30-nm-thick shell layer of the ZIF material. Thermal decomposition of the ZIF material affords core-shell-structured carbon nanoparticles that have Co on the external surface of the carbon grain. We have previously demonstrated that this carbonaceous material obtained by thermal decomposition exhibited high performance as an adsorbent for nitric oxide, even in the presence of excess oxygen and water vapor, and therefore, it was a suitable material for NOx elimination at low temperatures. The growth mechanism of the synthesized ZIF particles and the differences between synthesized ZIF and conventional Co(II)-ZIF-67 are discussed. The reactivity of the Co(III) precursor is much lower than that of the Co(II) species, leading to slower precipitation of Co(III) than that of Zn(II), thus forming the core-shell structure.
Collapse
Affiliation(s)
- Jiachen Ge
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Atsushi Fukuda
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Yuki Tokumoto
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
195
|
Mu J, Li C, Shi Y, Liu G, Zou J, Zhang DY, Jiang C, Wang X, He L, Huang P, Yin Y, Chen X. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat Commun 2022; 13:2513. [PMID: 35523769 PMCID: PMC9076604 DOI: 10.1038/s41467-022-29772-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Therapeutic interventions of hepatic ischemia-reperfusion injury to attenuate liver dysfunction or multiple organ failure following liver surgery and transplantation remain limited. Here we present an innovative strategy by integrating a platinum nanoantioxidant and inducible nitric oxide synthase into the zeolitic imidazolate framework-8 based hybrid nanoreactor for effective prevention of ischemia-reperfusion injury. We show that platinum nanoantioxidant can scavenge excessive reactive oxygen species at the injury site and meanwhile generate oxygen for subsequent synthesis of nitric oxide under the catalysis of nitric oxide synthase. We find that such cascade reaction successfully achieves dual protection for the liver through reactive oxygen species clearance and nitric oxide regulation, enabling reduction of oxidative stress, inhibition of macrophage activation and neutrophil recruitment, and ensuring suppression of proinflammatory cytokines. The current work establishes a proof of concept of multifunctional nanotherapeutics against ischemia-reperfusion injury, which may provide a promising intervention solution in clinical use.
Collapse
Affiliation(s)
- Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Chunxiao Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yu Shi
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Guoyong Liu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chao Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Liangcan He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
196
|
Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization. Catalysts 2022. [DOI: 10.3390/catal12050521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here, for the first time, a 2D and leaf-like zeolitic imidazolate framework (ZIF-L) is reported for the synthesis of ultrahigh molecular weight (UHMW) poly(methyl methacrylate) (PMMA) with Mn up to 1390 kg mol−1. This synthesis method is a one-step process without any co-catalyst in a solvent-free medium. SEM, PXRD, FT-IR, TGA, and nitrogen sorption measurements confirmed the 2D and leaf-like structure of ZIF-L. The results of PXRD, SEM, TGA demonstrate that the catalyst ZIF-L is remarkably stable even after a long-time polymerization reaction. Zwitterionic Lewis pair polymerization (LPP) has been proposed for the catalytic performance of ZIF-L on methyl methacrylate (MMA) polymerization. This MMA polymerization is consistent with a living system, where ZIF-L could reinitiate the polymerization and propagates the process by gradually growing the polymer chains.
Collapse
|
197
|
Hierarchical porous nitrogen-doped carbon material with Fe-NX as an excellent electrocatalyst for oxygen reduction reaction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
198
|
Metal organic frameworks as a versatile platform for the radioactive iodine capture: State of the art developments and future prospects. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
199
|
Zhang Y, Zhang D, Wu X, Song R, Zhang X, Wang M, He S, Chen Q. A Novel Anderson-Evans Polyoxometalate-based Metal-organic Framework Composite for the Highly Selective Isolation and Purification of Cytochrome C from Porcine Heart. Colloids Surf B Biointerfaces 2022; 213:112420. [PMID: 35227995 DOI: 10.1016/j.colsurfb.2022.112420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
Anderson-Evans type polyoxometalate group (Na6[TeW6O24]·22 H2O, TeW6) was combined with porous metal-organic framework ZIF-8 by electrostatic interaction to obtain a novel Anderson-Evans polyoxometalate-based metal-organic framework composite, TeW6 @ZIF-8. FT-IR, Raman, XRD, TG, DSC, SEM, and TEM were used to characterize the composite. It was proved that the Anderson-Evans type polyoxometalate group TeW6 was successfully hybridized with metal-organic framework ZIF-8, and the composite possesses good stability. Based on the potential interaction between TeW6 and proteins and the coordination between imidazole groups in ZIF-8 and proteins with a porphyrin ring structure, the adsorption selectivity towards different proteins on the TeW6 @ZIF-8 composite was studied in this work. The experiment results showed that the TeW6 @ZIF-8 composite was selectively adsorbed to cytochrome C. At pH 11.0, the adsorption efficiency of 94.01% was obtained for processing 1.0 mL 100 μg mL-1 cytochrome C with 3.0 mg TeW6 @ZIF-8 composite. The adsorption behavior of cytochrome C fits well with the Langmuir adsorption model, corresponding to a theoretical adsorption capacity of 232.56 mg g-1. The retained cytochrome C could be readily recovered by 1% SDS (m/m), giving rise to a recovery of 65.6%. Circular dichroism spectra indicate no conformational change for cytochrome C after the adsorption and desorption processes, demonstrating the favorable biocompatibility of TeW6 @ZIF-8 composite. In applying practical samples, SDS-PAGE results showed that cytochrome C was successfully isolated and purified by TeW6 @ZIF-8 composite from porcine heart protein extract, which is further identified with LC-MS/MS. Thus, a new strategy for separating and purifying cytochrome C from the porcine heart using TeW6 @ZIF-8 composite as an adsorbent was established.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Dandan Zhang
- School of Public Health, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Xi Wu
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Ruizhi Song
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Xiaonan Zhang
- Translational Medicine Research Centre, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Mengmeng Wang
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Shaoheng He
- Translational Medicine Research Centre, Shenyang Medical College, Shenyang 110034, People's Republic of China
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, People's Republic of China; Translational Medicine Research Centre, Shenyang Medical College, Shenyang 110034, People's Republic of China.
| |
Collapse
|
200
|
Methane Hydrate Formation in Hollow ZIF-8 Nanoparticles for Improved Methane Storage Capacity. Catalysts 2022. [DOI: 10.3390/catal12050485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Methane hydrate has been extensively studied as a potential medium for natural gas storage and transportation. Due to their high specific surface area, tunable porous structure, and surface chemistry, metal–organic frameworks are ideal materials to exhibit the catalytic effect for the formation process of gas hydrate. In this paper, hollow ZIF-8 nanoparticles are synthesized using the hard template method. The synthesized hollow ZIF-8 nanoparticles are used in the adsorption and methane hydrate formation process. The effect of pre-adsorbed water mass in hollow ZIF-8 nanoparticles on methane storage capacity and the hydrate formation rate is investigated. The storage capacity of methane on wet, hollow ZIF-8 is augmented with an increase in the mass ratio of pre-adsorbed water and dry, hollow ZIF-8 (RW), and the maximum adsorption capacity of methane on hollow ZIF-8 with a RW of 1.2 can reach 20.72 mmol/g at 275 K and 8.57 MPa. With the decrease in RW, the wet, hollow ZIF-8 exhibits a shortened induction time and an accelerated growth rate. The formation of methane hydrate on hollow ZIF-8 is further demonstrated with the enthalpy of the generation reaction. This work provides a promising alternative material for methane storage.
Collapse
|