151
|
Zarin T, Strome B, Peng G, Pritišanac I, Forman-Kay JD, Moses AM. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. eLife 2021; 10:e60220. [PMID: 33616531 PMCID: PMC7932695 DOI: 10.7554/elife.60220] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al., 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.
Collapse
Affiliation(s)
- Taraneh Zarin
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Bob Strome
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Gang Peng
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| |
Collapse
|
152
|
Kliche J, Kuss H, Ali M, Ivarsson Y. Cytoplasmic short linear motifs in ACE2 and integrin β 3 link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. Sci Signal 2021; 14:14/665/eabf1117. [PMID: 33436498 PMCID: PMC7928716 DOI: 10.1126/scisignal.abf1117] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2, the virus that causes COVID-19, enters cells through endocytosis upon binding to the cell surface receptor ACE2 and potentially others, including integrins. Using bioinformatics, Mészáros et al. predicted the presence of short amino acid sequences, called short linear motifs (SLiMs), in the cytoplasmic tails of ACE2 and various integrins that may engage the endocytic and autophagic machinery. Using affinity binding assays, Kliche et al. not only confirmed that many of these predicted SLiMs interacted with target peptides in various components of the endocytosis and autophagy machinery, but also found that these interactions were regulated by the phosphorylation of SLiM-adjacent amino acids. Together, these findings have identified a potential link between autophagy and integrin signaling and could lead to new ways to prevent viral infection. The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin β3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 μ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin β3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Hanna Kuss
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.,WWU Münster, Institute for Evolution and Biodiversity, DE-48149 Münster, Germany
| | - Muhammad Ali
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
153
|
Seoane B, Carbone A. The complexity of protein interactions unravelled from structural disorder. PLoS Comput Biol 2021; 17:e1008546. [PMID: 33417598 PMCID: PMC7846008 DOI: 10.1371/journal.pcbi.1008546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 01/29/2021] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
The importance of unstructured biology has quickly grown during the last decades accompanying the explosion of the number of experimentally resolved protein structures. The idea that structural disorder might be a novel mechanism of protein interaction is widespread in the literature, although the number of statistically significant structural studies supporting this idea is surprisingly low. At variance with previous works, our conclusions rely exclusively on a large-scale analysis of all the 134337 X-ray crystallographic structures of the Protein Data Bank averaged over clusters of almost identical protein sequences. In this work, we explore the complexity of the organisation of all the interaction interfaces observed when a protein lies in alternative complexes, showing that interfaces progressively add up in a hierarchical way, which is reflected in a logarithmic law for the size of the union of the interface regions on the number of distinct interfaces. We further investigate the connection of this complexity with different measures of structural disorder: the standard missing residues and a new definition, called "soft disorder", that covers all the flexible and structurally amorphous residues of a protein. We show evidences that both the interaction interfaces and the soft disordered regions tend to involve roughly the same amino-acids of the protein, and preliminary results suggesting that soft disorder spots those surface regions where new interfaces are progressively accommodated by complex formation. In fact, our results suggest that structurally disordered regions not only carry crucial information about the location of alternative interfaces within complexes, but also about the order of the assembly. We verify these hypotheses in several examples, such as the DNA binding domains of P53 and P73, the C3 exoenzyme, and two known biological orders of assembly. We finally compare our measures of structural disorder with several disorder bioinformatics predictors, showing that these latter are optimised to predict the residues that are missing in all the alternative structures of a protein and they are not able to catch the progressive evolution of the disordered regions upon complex formation. Yet, the predicted residues, when not missing, tend to be characterised as soft disordered regions.
Collapse
Affiliation(s)
- Beatriz Seoane
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Paris, France
- Sorbonne Université, Institut des Sciences du Calcul et des Données, Paris, France
- Departamento de Física Teórica, Universidad Complutense, Madrid, Spain
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Paris, France
| |
Collapse
|
154
|
Teyra J, Kelil A, Jain S, Helmy M, Jajodia R, Hooda Y, Gu J, D’Cruz AA, Nicholson SE, Min J, Sudol M, Kim PM, Bader GD, Sidhu SS. Large-scale survey and database of high affinity ligands for peptide recognition modules. Mol Syst Biol 2020; 16:e9310. [PMID: 33438817 PMCID: PMC7724964 DOI: 10.15252/msb.20199310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins involved in signal transduction contain peptide recognition modules (PRMs) that recognize short linear motifs (SLiMs) within their interaction partners. Here, we used large-scale peptide-phage display methods to derive optimal ligands for 163 unique PRMs representing 79 distinct structural families. We combined the new data with previous data that we collected for the large SH3, PDZ, and WW domain families to assemble a database containing 7,984 unique peptide ligands for 500 PRMs representing 82 structural families. For 74 PRMs, we acquired enough new data to map the specificity profiles in detail and derived position weight matrices and binding specificity logos based on multiple peptide ligands. These analyses showed that optimal peptide ligands resembled peptides observed in existing structures of PRM-ligand complexes, indicating that a large majority of the phage-derived peptides are likely to target natural peptide-binding sites and could thus act as inhibitors of natural protein-protein interactions. The complete dataset has been assembled in an online database (http://www.prm-db.org) that will enable many structural, functional, and biological studies of PRMs and SLiMs.
Collapse
Affiliation(s)
- Joan Teyra
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | - Shobhit Jain
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
| | - Mohamed Helmy
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
Singapore Institute of Food and Biotechnology Innovation (SIFBI)Agency for ScienceTechnology and Research (A*STAR)Singapore CitySingapore
| | - Raghav Jajodia
- Indian Institute of Engineering Science and TechnologyShibpurIndia
| | - Yogesh Hooda
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Jun Gu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Akshay A D’Cruz
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Jinrong Min
- Structural Genomics ConsortiumUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Marius Sudol
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Philip M Kim
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Gary D Bader
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Sachdev S Sidhu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
155
|
Boateng RA, Tastan Bishop Ö, Musyoka TM. Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study. Malar J 2020; 19:442. [PMID: 33256744 PMCID: PMC7756947 DOI: 10.1186/s12936-020-03512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodial transketolase (PTKT) enzyme is one of the novel pharmacological targets being explored as potential anti-malarial drug target due to its functional role and low sequence identity to the human enzyme. Despite this, features contributing to such have not been exploited for anti-malarial drug design. Additionally, there are no anti-malarial drugs targeting PTKTs whereas the broad activity of these inhibitors against PTKTs from other Plasmodium spp. is yet to be reported. This study characterises different PTKTs [Plasmodium falciparum (PfTKT), Plasmodium vivax (PvTKT), Plasmodium ovale (PoTKT), Plasmodium malariae (PmTKT) and Plasmodium knowlesi (PkTKT) and the human homolog (HsTKT)] to identify key sequence and structural based differences as well as the identification of selective potential inhibitors against PTKTs. METHODS A sequence-based study was carried out using multiple sequence alignment, phylogenetic tree calculations and motif discovery analysis. Additionally, TKT models of PfTKT, PmTKT, PoTKT, PmTKT and PkTKT were modelled using the Saccharomyces cerevisiae TKT structure as template. Based on the modelled structures, molecular docking using 623 South African natural compounds was done. The stability, conformational changes and detailed interactions of selected compounds were accessed viz all-atom molecular dynamics (MD) simulations and binding free energy (BFE) calculations. RESULTS Sequence alignment, evolutionary and motif analyses revealed key differences between plasmodial and the human TKTs. High quality homodimeric three-dimensional PTKTs structures were constructed. Molecular docking results identified three compounds (SANC00107, SANC00411 and SANC00620) which selectively bind in the active site of all PTKTs with the lowest (better) binding affinity ≤ - 8.5 kcal/mol. MD simulations of ligand-bound systems showed stable fluctuations upon ligand binding. In all systems, ligands bind stably throughout the simulation and form crucial interactions with key active site residues. Simulations of selected compounds in complex with human TKT showed that ligands exited their binding sites at different time steps. BFE of protein-ligand complexes showed key residues involved in binding. CONCLUSIONS This study highlights significant differences between plasmodial and human TKTs and may provide valuable information for the development of novel anti-malarial inhibitors. Identified compounds may provide a starting point in the rational design of PTKT inhibitors and analogues based on these scaffolds.
Collapse
Affiliation(s)
- Rita Afriyie Boateng
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| | - Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
156
|
Hong S, Choi S, Kim R, Koh J. Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder. Mol Cells 2020; 43:899-908. [PMID: 33243935 PMCID: PMC7700844 DOI: 10.14348/molcells.2020.0186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Intrinsically disordered proteins or regions (IDPs or IDRs) are widespread in the eukaryotic proteome. Although lacking stable three-dimensional structures in the free forms, IDRs perform critical functions in various cellular processes. Accordingly, mutations and altered expression of IDRs are associated with many pathological conditions. Hence, it is of great importance to understand at the molecular level how IDRs interact with their binding partners. In particular, discovering the unique interaction features of IDRs originating from their dynamic nature may reveal uncharted regulatory mechanisms of specific biological processes. Here we discuss the mechanisms of the macromolecular interactions mediated by IDRs and present the relevant cellular processes including transcription, cell cycle progression, signaling, and nucleocytoplasmic transport. Of special interest is the multivalent binding nature of IDRs driving assembly of multicomponent macromolecular complexes. Integrating the previous theoretical and experimental investigations, we suggest that such IDR-driven multiprotein complexes can function as versatile allosteric switches to process diverse cellular signals. Finally, we discuss the future challenges and potential medical applications of the IDR research.
Collapse
Affiliation(s)
- Sunghyun Hong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangmin Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Ryeonghyeon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
157
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
158
|
Faustova I, Bulatovic L, Matiyevskaya F, Valk E, Örd M, Loog M. A new linear cyclin docking motif that mediates exclusively S-phase CDK-specific signaling. EMBO J 2020; 40:e105839. [PMID: 33210757 PMCID: PMC7809796 DOI: 10.15252/embj.2020105839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023] Open
Abstract
Cyclin‐dependent kinases (CDKs), the master regulators of cell division, are activated by different cyclins at different cell cycle stages. In addition to being activators of CDKs, cyclins recognize various linear motifs to target CDK activity to specific proteins. We uncovered a cyclin docking motif, NLxxxL, that contributes to phosphorylation‐dependent degradation of the CDK inhibitor Far1 at the G1/S stage in the yeast Saccharomyces cerevisiae. This motif is recognized exclusively by S‐phase CDK (S‐CDK) Clb5/6‐Cdc28 and is considerably more potent than the conventional RxL docking motif. The NLxxxL and RxL motifs were found to overlap in some target proteins, suggesting that cyclin docking motifs can evolve to switch from one to another for fine‐tuning of cell cycle events. Using time‐lapse fluorescence microscopy, we show how different docking connections temporally control phosphorylation‐driven target degradation. This also revealed a differential function of the phosphoadaptor protein Cks1, as Cks1 docking potentiated degron phosphorylation of RxL‐containing but not of NLxxxL‐containing substrates. The NLxxxL motif was found to govern S‐cyclin‐specificity in multiple yeast CDK targets including Fin1, Lif1, and Slx4, suggesting its wider importance.
Collapse
Affiliation(s)
- Ilona Faustova
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Luka Bulatovic
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
159
|
Roy J, Cyert MS. Cell Biology: Deciphering the ABCs of SLiMs in G1-CDK Signaling. Curr Biol 2020; 30:R1382-R1385. [PMID: 33202241 PMCID: PMC10763628 DOI: 10.1016/j.cub.2020.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new study uses an elegant in vivo assay to comprehensively characterize the LP docking motif, which determines G1-CDK substrate specificity in fungi. The authors show that LP-cyclin docking strength determines the timing of Sic1 degradation, a key cell cycle event.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
160
|
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020; 216:717-734. [PMID: 32883702 PMCID: PMC7648574 DOI: 10.1534/genetics.120.303629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC-a component specific to female germline ring canals-is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility-a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.
Collapse
Affiliation(s)
- Julianne A Gerdes
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 Connecticut
| |
Collapse
|
161
|
Duffraisse M, Paul R, Carnesecchi J, Hudry B, Banreti A, Reboulet J, Ajuria L, Lohmann I, Merabet S. Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body. J Cell Sci 2020; 133:jcs241943. [PMID: 32878938 DOI: 10.1242/jcs.241943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.
Collapse
Affiliation(s)
- Marilyne Duffraisse
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Rachel Paul
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Julie Carnesecchi
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Bruno Hudry
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Agnes Banreti
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Leiore Ajuria
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Ingrid Lohmann
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| |
Collapse
|
162
|
Tetrapeptide Ac-HAEE-NH 2 Protects α4β2 nAChR from Inhibition by Aβ. Int J Mol Sci 2020; 21:ijms21176272. [PMID: 32872553 PMCID: PMC7504039 DOI: 10.3390/ijms21176272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
The cholinergic deficit in Alzheimer’s disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aβ peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aβ peptide mediates its interaction with α4β2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aβ-α4β2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4β2 nAChR. Indeed, we discovered a 35HAEE38 site in α4β2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aβ42-α4β2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aβ via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aβ42-induced inhibition of α4β2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aβ on α4β2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4β2 nAChR-dependent cholinergic dysfunction in AD.
Collapse
|
163
|
Murphy P, Xu Y, Rouse SL, Jaffray EG, Plechanovová A, Matthews SJ, Carlos Penedo J, Hay RT. Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer. Nat Commun 2020; 11:3807. [PMID: 32733036 PMCID: PMC7393505 DOI: 10.1038/s41467-020-17647-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.
Collapse
Affiliation(s)
- Paul Murphy
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Sarah L Rouse
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Anna Plechanovová
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Steve J Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, St. Andrews, UK
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, KY16 9ST, St. Andrews, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK.
| |
Collapse
|
164
|
Dual Specificity PDZ- and 14-3-3-Binding Motifs: A Structural and Interactomics Study. Structure 2020; 28:747-759.e3. [DOI: 10.1016/j.str.2020.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
|
165
|
Yang LN, Liu H, Duan GH, Huang YM, Liu S, Fang ZG, Wu EJ, Shang L, Zhan J. The Phytophthora infestans AVR2 Effector Escapes R2 Recognition Through Effector Disordering. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:921-931. [PMID: 32212906 DOI: 10.1094/mpmi-07-19-0179-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intrinsic disorder is a common structural characteristic of proteins and a central player in the biochemical processes of species. However, the role of intrinsic disorder in the evolution of plant-pathogen interactions is rarely investigated. Here, we explored the role of intrinsic disorder in the development of the pathogenicity in the RXLR AVR2 effector of Phytophthora infestans. We found AVR2 exhibited high nucleotide diversity generated by point mutation, early-termination, altered start codon, deletion/insertion, and intragenic recombination and is predicted to be an intrinsically disordered protein. AVR2 amino acid sequences conferring a virulent phenotype had a higher disorder tendency in both the N- and C-terminal regions compared with sequences conferring an avirulent phenotype. In addition, we also found virulent AVR2 mutants gained one or two short linear interaction motifs, the critical components of disordered proteins required for protein-protein interactions. Furthermore, virulent AVR2 mutants were predicted to be unstable and have a short protein half-life. Taken together, these results support the notion that intrinsic disorder is important for the effector function of pathogens and demonstrate that SLiM-mediated protein-protein interaction in the C-terminal effector domain might contribute greatly to the evasion of resistance-protein detection in P. infestans.
Collapse
Affiliation(s)
- Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Liu
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Guo-Hua Duan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan-Mei Huang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Shiting Liu
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhi-Guo Fang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - E-Jiao Wu
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Liping Shang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiasui Zhan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
166
|
Meyer K, Selbach M. Peptide-based Interaction Proteomics. Mol Cell Proteomics 2020; 19:1070-1075. [PMID: 32345597 PMCID: PMC7338088 DOI: 10.1074/mcp.r120.002034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are often mediated by short linear motifs (SLiMs) that are located in intrinsically disordered regions (IDRs) of proteins. Interactions mediated by SLiMs are notoriously difficult to study, and many functionally relevant interactions likely remain to be uncovered. Recently, pull-downs with synthetic peptides in combination with quantitative mass spectrometry emerged as a powerful screening approach to study protein-protein interactions mediated by SLiMs. Specifically, arrays of synthetic peptides immobilized on cellulose membranes provide a scalable means to identify the interaction partners of many peptides in parallel. In this minireview we briefly highlight the relevance of SLiMs for protein-protein interactions, outline existing screening technologies, discuss unique advantages of peptide-based interaction screens and provide practical suggestions for setting up such peptide-based screens.
Collapse
Affiliation(s)
- Katrina Meyer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
167
|
Sensing HIV Protease and Its Inhibitor Using "Helical Epitope"-Imprinted Polymers. SENSORS 2020; 20:s20123592. [PMID: 32630459 PMCID: PMC7348739 DOI: 10.3390/s20123592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
A helical epitope-peptide (lle85-Gly94) was selected from the α-helix structure of the HIV protease (PR) as the template, which represents an intricate interplay between structure conformation and dimerization. The peptide template was mixed with water, trifluoroethanol (TFE), and acetonitrile (ACN) at a certain ratio to enlarge the helical conformation in the solution for the fabrication of helical epitope-mediated molecularly imprinted polymers (HEMIPs) on a quartz crystal microbalance (QCM) chip. The template molecules were then removed under equilibrium batch rebinding conditions involving 5% acetic acid/water. The resulting HEMIPs chip exhibited a high affinity toward template peptide HIV PR85-94, His-tagged HIV PR, and HIV PR, with dissociation constants (Kd) as 160, 43.3, and 78.5 pM, respectively. The detection limit of the developed HIV PR85-94 QCM sensor is 0.1 ng/mL. The HEMIPs chip exhibited a high affinity and selectivity to bind HIV PR and subsequently to an inhibitor of HIV PR (nelfinavir). The HIV PR binding site was properly oriented on the HEMIPs-chip to develop a HIV PR/HEMIPs chip, which can effectively bind nelfinavir to establish a sandwich assay. The nelfinavir then attached to the HIV PR/HEMIPs chip, which can be easily removed involving 0.8% acetic acid/water. Therefore, HIV PR/HEMIPs chip can be useful to screen for other HIV PR inhibitors. This technique may improve drug targeting for HIV therapy and also strengthen investigations into other virus assays.
Collapse
|
168
|
Upadhyayula RS. Computational Investigation of Structural Interfaces of Protein Complexes with Short Linear Motifs. J Proteome Res 2020; 19:3254-3263. [DOI: 10.1021/acs.jproteome.0c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raghavender Surya Upadhyayula
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Jaipur, Rajasthan 302001, India
| |
Collapse
|
169
|
Bugge K, Brakti I, Fernandes CB, Dreier JE, Lundsgaard JE, Olsen JG, Skriver K, Kragelund BB. Interactions by Disorder - A Matter of Context. Front Mol Biosci 2020; 7:110. [PMID: 32613009 PMCID: PMC7308724 DOI: 10.3389/fmolb.2020.00110] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms depend on timely and organized interactions between proteins linked in interactomes of high complexity. The recent increased precision by which protein interactions can be studied, and the enclosure of intrinsic structural disorder, suggest that it is time to zoom out and embrace protein interactions beyond the most central points of physical encounter. The present paper discusses protein-protein interactions in the view of structural disorder with an emphasis on flanking regions and contexts of disorder-based interactions. Context constitutes an overarching concept being of physicochemical, biomolecular, and physiological nature, but it also includes the immediate molecular context of the interaction. For intrinsically disordered proteins, which often function by exploiting short linear motifs, context contributes in highly regulatory and decisive manners and constitute a yet largely unrecognized source of interaction potential in a multitude of biological processes. Through selected examples, this review emphasizes how multivalency, charges and charge clusters, hydrophobic patches, dynamics, energetic frustration, and ensemble redistribution of flanking regions or disordered contexts are emerging as important contributors to allosteric regulation, positive and negative cooperativity, feedback regulation and negative selection in binding. The review emphasizes that understanding context, and in particular the role the molecular disordered context and flanking regions take on in protein interactions, constitute an untapped well of energetic modulation potential, also of relevance to drug discovery and development.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Inna Brakti
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catarina B. Fernandes
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper E. Dreier
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe E. Lundsgaard
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan G. Olsen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
170
|
Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Front Cell Dev Biol 2020; 8:420. [PMID: 32587856 PMCID: PMC7297954 DOI: 10.3389/fcell.2020.00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a conserved and essential intracellular mechanism for the removal of damaged components. Since autophagy deregulation is linked to different kinds of pathologies, it is fundamental to gain knowledge on the fine molecular and structural details related to the core proteins of the autophagy machinery. Among these, the family of human ATG8 proteins plays a central role in recruiting other proteins to the different membrane structures involved in the autophagic pathway. Several experimental structures are available for the members of the ATG8 family alone or in complex with their different biological partners, including disordered regions of proteins containing a short linear motif called LC3 interacting motif. Recently, the first structural details of the interaction of ATG8 proteins with biological membranes came into light. The availability of structural data for human ATG8 proteins has been paving the way for studies on their structure-function-dynamic relationship using biomolecular simulations. Experimental and computational structural biology can help to address several outstanding questions on the mechanism of human ATG8 proteins, including their specificity toward different interactors, their association with membranes, the heterogeneity of their conformational ensemble, and their regulation by post-translational modifications. We here summarize the main results collected so far and discuss the future perspectives within the field and the knowledge gaps. Our review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
171
|
Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, Palopoli N, Davey NE, Chemes LB, Gibson TJ. ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res 2020; 48:D296-D306. [PMID: 31680160 PMCID: PMC7145657 DOI: 10.1093/nar/gkz1030] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic linear motif (ELM) resource is a repository of manually curated experimentally validated short linear motifs (SLiMs). Since the initial release almost 20 years ago, ELM has become an indispensable resource for the molecular biology community for investigating functional regions in many proteins. In this update, we have added 21 novel motif classes, made major revisions to 12 motif classes and added >400 new instances mostly focused on DNA damage, the cytoskeleton, SH2-binding phosphotyrosine motifs and motif mimicry by pathogenic bacterial effector proteins. The current release of the ELM database contains 289 motif classes and 3523 individual protein motif instances manually curated from 3467 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marc Gouw
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas (IIBio) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. Av. 25 de Mayo y Francia, CP1650, Buenos Aires, Argentina
| | - Athina Diakogianni
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Dayana Bukirova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Nicolas Palopoli
- Department of Science and Technology, Universidad Nacional de Quilmes - CONICET, Bernal B1876BXD, Buenos Aires, Argentina
| | - Norman E Davey
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas (IIBio) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. Av. 25 de Mayo y Francia, CP1650, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
172
|
Niemeyer M, Moreno Castillo E, Ihling CH, Iacobucci C, Wilde V, Hellmuth A, Hoehenwarter W, Samodelov SL, Zurbriggen MD, Kastritis PL, Sinz A, Calderón Villalobos LIA. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nat Commun 2020; 11:2277. [PMID: 32385295 PMCID: PMC7210949 DOI: 10.1038/s41467-020-16147-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their AUX/IAA targets perceive the phytohormone auxin. The F-box protein TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, by adopting biochemical, structural proteomics and in vivo approaches we unveil how flexibility in AUX/IAAs and regions in TIR1 affect their conformational ensemble allowing surface accessibility of degrons. We resolve TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron’s vicinity, cooperatively position AUX/IAAs on TIR1. We identify essential residues at the TIR1 N- and C-termini, which provide non-native interaction interfaces with IDRs and the folded PB1 domain of AUX/IAAs. We thereby establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation, and might provide conformational flexibility for a multiplicity of functional states. Auxin-mediated recruitment of AUX/IAAs by the F-box protein TIR1 prompts rapid AUX/IAA ubiquitylation and degradation. By resolving auxin receptor topology, the authors show that intrinsically disordered regions near the degrons of two Aux/IAA proteins reinforce complex assembly and position Aux/IAAs for ubiquitylation.
Collapse
Affiliation(s)
- Michael Niemeyer
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Elena Moreno Castillo
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Verona Wilde
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Antje Hellmuth
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany
| | - Sophia L Samodelov
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology & Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Panagiotis L Kastritis
- ZIK HALOMEM & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
173
|
Jespersen N, Barbar E. Emerging Features of Linear Motif-Binding Hub Proteins. Trends Biochem Sci 2020; 45:375-384. [DOI: 10.1016/j.tibs.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
|
174
|
Genovese I, Carotti A, Ilari A, Fiorillo A, Battista T, Colotti G, Ivarsson Y. Profiling calcium-dependent interactions between Sorcin and intrinsically disordered regions of human proteome. Biochim Biophys Acta Gen Subj 2020; 1864:129618. [PMID: 32305337 DOI: 10.1016/j.bbagen.2020.129618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Accepted: 04/12/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Sorcin is a calcium sensor that exerts many calcium-related functions in the cells, e.g. it regulates calcium concentration in the cytoplasm, endoplasmic reticulum (ER) and mitochondria, by interacting with calcium pumps, exchangers and channels. Albeit Sorcin is an interesting potential cancer target, little is known about its interactors upon calcium-mediated activation. Our previous study suggested that Sorcin may recognize short linear binding motifs as the crystal structure revealed a self-interaction with a GYYPGG stretch in its N-terminus, and combinatorial peptide-phage display provided support for peptide-mediated interactions. METHODS In this study we screened for motif-based interactions between Sorcin and intrinsically disordered regions of the human proteome using proteomic peptide phage display (ProP-PD). We identified a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a potential novel interactor and confirm the interaction through biophysical and cell-based approaches, and provide structural information through molecular dynamics simulations. RESULTS Altogether, we identify a preferred motif in the enriched pool of binders and a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a preferred ligand. CONCLUSION Through this study we gain information on a new Sorcin binding partner and profile Sorcin's motif-based interaction. GENERAL SIGNIFICANCE The interaction between Sorcin and PPP1R3G may suggest a close dependence between glucose homeostasis and calcium concentration in the different cell compartments, opening a completely new and interesting scenery yet to be fully disclosed.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy; Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Theo Battista
- Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| |
Collapse
|
175
|
Mittal A, Changani AM, Taparia S. Unique and exclusive peptide signatures directly identify intrinsically disordered proteins from sequences without structural information. J Biomol Struct Dyn 2020; 39:2885-2893. [PMID: 32295482 DOI: 10.1080/07391102.2020.1756410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Intrinsically disordered proteins are now widely accepted to play crucial roles in biological functions. Identification of signatures of intrinsic disorder is one of the key steps towards building a proper repertoire for their occurrence in proteomes. In this work, systematic computational synthesis of a library of all possible (3368400) dipeptides, tripeptides, tetrapeptides and pentapeptides using the natural 20 amino acids allowed us to identify 36 unique tetrapeptides present exclusively in intrinsically disordered proteins and absent in the complete primary sequence space of naturally occurring structured proteins. Further, out of more than 530000 known naturally occurring primary sequences without any structural information, 1349 sequences contain the above identified unique signatures of intrinsic disorder. These sequences, having cellular functions varying from housekeeping to metabolic to transport, more than double the number of the currently known intrinsically disordered proteins. On similar lines, we report that 26577 pentapeptide signatures exclusive to intrinsically disordered proteins, and absent in naturally occurring structured proteins, identify ∼50% of more than half-a-million curated protein sequences without structural information to be intrinsically disordered. The results reported are a major leap forward in exploring functional manifestations of intrinsically disordered proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India
| | | | - Sakshi Taparia
- Department of Mathematics (Bachelors Program in Mathematics & Computing), Indian Institute of Technology Delhi (IIT Delhi), New Delhi, India
| |
Collapse
|
176
|
Sámano-Sánchez H, Gibson TJ. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem Sci 2020; 45:526-544. [PMID: 32413327 DOI: 10.1016/j.tibs.2020.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
177
|
Calcium ions modulate the structure of the intrinsically disordered Nucleobindin-2 protein. Int J Biol Macromol 2020; 154:1091-1104. [PMID: 32184136 DOI: 10.1016/j.ijbiomac.2020.03.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/05/2023]
Abstract
Nucleobindin-2 (Nucb2) is a widely expressed multi-domain protein. Nucb2 participates in many physiological processes, i.e. calcium level maintenance, feeding regulation in the hypothalamus, emotion and stress regulation, and many others. To date, this protein has not been structurally characterized. We describe the first comparative structural analysis of two homologs, a Gallus gallus and a Homo sapiens Nucb2. The in silico analysis suggested that apo-Nucb2s contain a mosaic-like structure, consisting of intertwined disordered and ordered regions. Surprisingly, the hydrogen-deuterium exchange mass spectrometry results revealed that Nucb2 is divided into two parts: an N-terminal half with a stable mosaic-like structure and a disordered C-terminal half. However, the presence of Ca2+ induces the formation of a mosaic-like structure in the C-terminal half of the Nucb2s. The Ca2+ also affects the tertiary and quaternary structure of Nucb2s. The presence of Ca2+ leads to an overall compaction of the Nucb2 molecule, resulting in structural change that is propagated along the molecule, which in turn affects the quaternary structure of the protein. Intrinsic disorder, and the mosaic-like Ca2+ dependent structure of Nucb2s, might be seen as the molecular factors responsible for their multifunctionality. Thus, Nucb2s might function as the versatile Ca2+ sensor involved in signal transduction.
Collapse
|
178
|
Amacher JF, Brooks L, Hampton TH, Madden DR. Specificity in PDZ-peptide interaction networks: Computational analysis and review. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100022. [PMID: 32289118 PMCID: PMC7138185 DOI: 10.1016/j.yjsbx.2020.100022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
179
|
Oltrogge LM, Chaijarasphong T, Chen AW, Bolin ER, Marqusee S, Savage DF. Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation. Nat Struct Mol Biol 2020; 27:281-287. [PMID: 32123388 PMCID: PMC7337323 DOI: 10.1038/s41594-020-0387-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022]
Abstract
Carboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO2-concentrating mechanism by facilitating high CO2 concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein-protein interactions that drive the assembly process. Here, studies on the α-carboxysome from Halothiobacillus neapolitanus demonstrate that Rubisco interacts with the N-terminus of CsoS2, a multivalent, intrinsically disordered protein. X-ray structural analysis of the CsoS2 interaction motif bound to Rubisco reveals a series of conserved electrostatic interactions that are only made with properly assembled hexadecameric Rubisco. Although biophysical measurements indicate this single interaction is weak, its implicit multivalency induces high-affinity binding through avidity. Taken together, our results indicate CsoS2 acts as an interaction hub to condense Rubisco and enable efficient α-carboxysome formation.
Collapse
Affiliation(s)
- Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Thawatchai Chaijarasphong
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Allen W Chen
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Eric R Bolin
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
180
|
The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation. Sci Rep 2020; 10:2068. [PMID: 32034199 PMCID: PMC7005769 DOI: 10.1038/s41598-020-58868-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions within proteins (IDRs) serve an increasingly expansive list of biological functions, including regulation of transcription and translation, protein phosphorylation, cellular signal transduction, as well as mechanical roles. The strong link between protein function and disorder motivates a deeper fundamental characterization of IDPs and IDRs for discovering new functions and relevant mechanisms. We review recent advances in experimental techniques that have improved identification of disordered regions in proteins. Yet, experimentally curated disorder information still does not currently scale to the level of experimentally determined structural information in folded protein databases, and disorder predictors rely on several different binary definitions of disorder. To link secondary structure prediction algorithms developed for folded proteins and protein disorder predictors, we conduct molecular dynamics simulations on representative proteins from the Protein Data Bank, comparing secondary structure and disorder predictions with simulation results. We find that structure predictor performance from neural networks can be leveraged for the identification of highly dynamic regions within molecules, linked to disorder. Low accuracy structure predictions suggest a lack of static structure for regions that disorder predictors fail to identify. While disorder databases continue to expand, secondary structure predictors and molecular simulations can improve disorder predictor performance, which aids discovery of novel functions of IDPs and IDRs. These observations provide a platform for the development of new, integrated structural databases and fusion of prediction tools toward protein disorder characterization in health and disease.
Collapse
|
181
|
Phillips AH, Kriwacki RW. Intrinsic protein disorder and protein modifications in the processing of biological signals. Curr Opin Struct Biol 2020; 60:1-6. [DOI: 10.1016/j.sbi.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
|
182
|
Basu S, Bahadur RP. Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins? J Struct Biol 2020; 209:107428. [DOI: 10.1016/j.jsb.2019.107428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
|
183
|
Minde DP, Ramakrishna M, Lilley KS. Biotin proximity tagging favours unfolded proteins and enables the study of intrinsically disordered regions. Commun Biol 2020; 3:38. [PMID: 31969649 PMCID: PMC6976632 DOI: 10.1038/s42003-020-0758-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Intrinsically Disordered Regions (IDRs) are enriched in disease-linked proteins known to have multiple post-translational modifications, but there is limited in vivo information about how locally unfolded protein regions contribute to biological functions. We reasoned that IDRs should be more accessible to targeted in vivo biotinylation than ordered protein regions, if they retain their flexibility in human cells. Indeed, we observed increased biotinylation density in predicted IDRs in several cellular compartments >20,000 biotin sites from four proximity proteomics studies. We show that in a biotin ‘painting’ time course experiment, biotinylation events in Escherichia coli ribosomes progress from unfolded and exposed regions at 10 s, to structured and less accessible regions after five minutes. We conclude that biotin proximity tagging favours sites of local disorder in proteins and suggest the possibility of using biotin painting as a method to gain unique insights into in vivo condition-dependent subcellular plasticity of proteins. David-Paul Minde, Manasa Ramakrishna et al. look at intrinsically disordered regions of disease-linked proteins in vivo by biotinylation. They show that biotin “painting” could be used as a method to examine the condition-dependent plasticity of proteins in vivo.
Collapse
Affiliation(s)
- David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Manasa Ramakrishna
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Road, Leicester, LE1 9HN, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
184
|
Banerjee A, Percival-Smith A. Post-translational modifications of Drosophila melanogaster HOX protein, Sex combs reduced. PLoS One 2020; 15:e0227642. [PMID: 31931520 PMCID: PMC6957346 DOI: 10.1371/journal.pone.0227642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022] Open
Abstract
Homeotic selector (HOX) transcription factors (TFs) regulate gene expression that determines the identity of Drosophila segments along the anterior-posterior (A-P) axis. The current challenge with HOX proteins is understanding how they achieve their functional specificity while sharing a highly conserved homeodomain (HD) that recognize the same DNA binding sites. One mechanism proposed to regulate HOX activity is differential post-translational modification (PTM). As a first step in investigating this hypothesis, the sites of PTM on a Sex combs reduced protein fused to a triple tag (SCRTT) extracted from developing embryos were identified by Tandem Mass Spectrometry (MS/MS). The PTMs identified include phosphorylation at S185, S201, T315, S316, T317 and T324, acetylation at K218, S223, S227, K309, K434 and K439, formylation at K218, K309, K325, K341, K369, K434 and K439, methylation at S19, S166, K168 and T364, carboxylation at D108, K298, W307, K309, E323, K325 and K369, and hydroxylation at P22, Y87, P107, D108, D111, P269, P306, R310, N321, K325, Y334, R366, P392 and Y398. Of the 44 modifications, 18 map to functionally important regions of SCR. Besides a highly conserved DNA-binding HD, HOX proteins also have functionally important, evolutionarily conserved small motifs, which may be Short Linear Motifs (SLiMs). SLiMs are proposed to be preferential sites of phosphorylation. Although 6 of 7 phosphosites map to regions of predicted SLiMs, we find no support for the hypothesis that the individual S, T and Y residues of predicted SLiMs are phosphorylated more frequently than S, T and Y residues outside of predicted SLiMs.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | | |
Collapse
|
185
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
186
|
Palopoli N, Iserte JA, Chemes LB, Marino-Buslje C, Parisi G, Gibson TJ, Davey NE. The articles.ELM resource: simplifying access to protein linear motif literature by annotation, text-mining and classification. Database (Oxford) 2020; 2020:baaa040. [PMID: 32507889 PMCID: PMC7276420 DOI: 10.1093/database/baaa040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 11/12/2022]
Abstract
Modern biology produces data at a staggering rate. Yet, much of these biological data is still isolated in the text, figures, tables and supplementary materials of articles. As a result, biological information created at great expense is significantly underutilised. The protein motif biology field does not have sufficient resources to curate the corpus of motif-related literature and, to date, only a fraction of the available articles have been curated. In this study, we develop a set of tools and a web resource, 'articles.ELM', to rapidly identify the motif literature articles pertinent to a researcher's interest. At the core of the resource is a manually curated set of about 8000 motif-related articles. These articles are automatically annotated with a range of relevant biological data allowing in-depth search functionality. Machine-learning article classification is used to group articles based on their similarity to manually curated motif classes in the Eukaryotic Linear Motif resource. Articles can also be manually classified within the resource. The 'articles.ELM' resource permits the rapid and accurate discovery of relevant motif articles thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles. Consequently, this web resource removes a critical bottleneck in scientific productivity for the motif biology field. Database URL: http://slim.icr.ac.uk/articles/.
Collapse
Affiliation(s)
- N Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Saenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | - J A Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina
| | - L B Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, Av. 25 de Mayo y Francia, San Martín, Buenos Aires B1650, Argentina
| | - C Marino-Buslje
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina
| | - G Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Saenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | - T J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - N E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
187
|
Ginell GM, Holehouse AS. Analyzing the Sequences of Intrinsically Disordered Regions with CIDER and localCIDER. Methods Mol Biol 2020; 2141:103-126. [PMID: 32696354 DOI: 10.1007/978-1-0716-0524-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrinsically disordered proteins and protein regions are ubiquitous across eukaryotic proteomes where they play a range of functional roles. Unlike folded proteins, IDRs lack a well-defined native state but exist in heterogeneous ensembles of conformations. In the absence of a defined native state, structure-guided mutations to test specific mechanistic hypotheses are generally not possible. Despite this, the use of mutations to alter sequence properties has become a relatively common approach for teasing out the relationship between sequence, ensemble, and function. A key step in designing informative mutants is the ability to identify specific sequence features that may reveal an interpretable response if perturbed. Here, we provide guidance on using the CIDER and localCIDER tools for amino acid sequence analysis, with a focus on building intuition with respect to the most commonly described features.
Collapse
Affiliation(s)
- Garrett M Ginell
- Graduate Program in Biochemistry, Biophysics, and Structural Biology, Division of Biological and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.,Center for the Science and Engineering of Living Systems, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Center for the Science and Engineering of Living Systems, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA. .,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
188
|
Abstract
Short linear motifs (SLiMs) are important mediators of interactions between intrinsically disordered regions of proteins and their interaction partners. Here, we detail instructions for the computational prediction of SLiMs in disordered protein regions, using the main tools of the SLiMSuite package: (1) SLiMProb identifies and calculates enrichment of predefined motifs in a set of proteins; (2) SLiMFinder predicts SLiMs de novo in a set of proteins, accounting for evolutionary relationships; (3) QSLiMFinder increases SLiMFinder sensitivity by focusing SLiM prediction on a specific query protein/region; (4) CompariMotif compares predicted SLiMs to known SLiMs or other SLiM predictions to identify common patterns. For each tool, command-line and online server examples are provided. Detailed notes provide additional advice on different applications of SLiMSuite, including batch running of multiple datasets and conservation masking using alignments of predicted orthologues.
Collapse
|
189
|
Hraber P, O'Maille PE, Silberfarb A, Davis-Anderson K, Generous N, McMahon BH, Fair JM. Resources to Discover and Use Short Linear Motifs in Viral Proteins. Trends Biotechnol 2020; 38:113-127. [PMID: 31427097 PMCID: PMC7114124 DOI: 10.1016/j.tibtech.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
Collapse
Affiliation(s)
- Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Paul E O'Maille
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Andrew Silberfarb
- Artificial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Katie Davis-Anderson
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nicholas Generous
- Global Security Directorate, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeanne M Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
190
|
Dubreuil B, Matalon O, Levy ED. Protein Abundance Biases the Amino Acid Composition of Disordered Regions to Minimize Non-functional Interactions. J Mol Biol 2019; 431:4978-4992. [PMID: 31442477 PMCID: PMC6941228 DOI: 10.1016/j.jmb.2019.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
In eukaryotes, disordered regions cover up to 50% of proteomes and mediate fundamental cellular processes. In contrast to globular domains, where about half of the amino acids are buried in the protein interior, disordered regions show higher solvent accessibility, which makes them prone to engage in non-functional interactions. Such interactions are exacerbated by the law of mass action, prompting the question of how they are minimized in abundant proteins. We find that interaction propensity or "stickiness" of disordered regions negatively correlates with their cellular abundance, both in yeast and human. Strikingly, considering yeast proteins where a large fraction of the sequence is disordered, the correlation between stickiness and abundance reaches R=-0.55. Beyond this global amino-acid composition bias, we identify three rules by which amino-acid composition of disordered regions adjusts with high abundance. First, lysines are preferred over arginines, consistent with the latter amino acid being stickier than the former. Second, compensatory effects exist, whereby a sticky region can be tolerated if it is compensated by a distal non-sticky region. Third, such compensation requires a lower average stickiness at the same abundance when compared to a scenario where stickiness is homogeneous throughout the sequence. We validate these rules experimentally, employing them as different strategies to rescue an otherwise sticky protein fragment from aggregation. Our results highlight that non-functional interactions represent a significant constraint in cellular systems and reveal simple rules by which protein sequences adapt to that constraint. Data from this work are deposited in Figshare, at https://doi.org/10.6084/m9.figshare.8068937.v3.
Collapse
Affiliation(s)
- Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Or Matalon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
191
|
Prestel A, Wichmann N, Martins JM, Marabini R, Kassem N, Broendum SS, Otterlei M, Nielsen O, Willemoës M, Ploug M, Boomsma W, Kragelund BB. The PCNA interaction motifs revisited: thinking outside the PIP-box. Cell Mol Life Sci 2019; 76:4923-4943. [PMID: 31134302 PMCID: PMC6881253 DOI: 10.1007/s00018-019-03150-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a cellular hub in DNA metabolism and a potential drug target. Its binding partners carry a short linear motif (SLiM) known as the PCNA-interacting protein-box (PIP-box), but sequence-divergent motifs have been reported to bind to the same binding pocket. To investigate how PCNA accommodates motif diversity, we assembled a set of 77 experimentally confirmed PCNA-binding proteins and analyzed features underlying their binding affinity. Combining NMR spectroscopy, affinity measurements and computational analyses, we corroborate that most PCNA-binding motifs reside in intrinsically disordered regions, that structure preformation is unrelated to affinity, and that the sequence-patterns that encode binding affinity extend substantially beyond the boundaries of the PIP-box. Our systematic multidisciplinary approach expands current views on PCNA interactions and reveals that the PIP-box affinity can be modulated over four orders of magnitude by positive charges in the flanking regions. Including the flanking regions as part of the motif is expected to have broad implications, particularly for interpretation of disease-causing mutations and drug-design, targeting DNA-replication and -repair.
Collapse
Affiliation(s)
- Andreas Prestel
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Nanna Wichmann
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Joao M Martins
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Riccardo Marabini
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Noah Kassem
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Sebastian S Broendum
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Olaf Nielsen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Finsen Laboratory, Biotechnology Research Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
192
|
Pabis M, Corsini L, Vincendeau M, Tripsianes K, Gibson TJ, Brack-Werner R, Sattler M. Modulation of HIV-1 gene expression by binding of a ULM motif in the Rev protein to UHM-containing splicing factors. Nucleic Acids Res 2019; 47:4859-4871. [PMID: 30892606 PMCID: PMC6511859 DOI: 10.1093/nar/gkz185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/01/2022] Open
Abstract
The HIV-1 protein Rev is essential for virus replication and ensures the expression of partially spliced and unspliced transcripts. We identified a ULM (UHM ligand motif) motif in the Arginine-Rich Motif (ARM) of the Rev protein. ULMs (UHM ligand motif) mediate protein interactions during spliceosome assembly by binding to UHM (U2AF homology motifs) domains. Using NMR, biophysical methods and crystallography we show that the Rev ULM binds to the UHMs of U2AF65 and SPF45. The highly conserved Trp45 in the Rev ULM is crucial for UHM binding in vitro, for Rev co-precipitation with U2AF65 in human cells and for proper processing of HIV transcripts. Thus, Rev-ULM interactions with UHM splicing factors contribute to the regulation of HIV-1 transcript processing, also at the splicing level. The Rev ULM is an example of viral mimicry of host short linear motifs that enables the virus to interfere with the host molecular machinery.
Collapse
Affiliation(s)
- Marta Pabis
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Lorenzo Corsini
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, 85 764, Germany
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Brno 62 500, Czech Republic
| | | | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| |
Collapse
|
193
|
Yang J, Zeng Y, Liu Y, Gao M, Liu S, Su Z, Huang Y. Electrostatic interactions in molecular recognition of intrinsically disordered proteins. J Biomol Struct Dyn 2019; 38:4883-4894. [DOI: 10.1080/07391102.2019.1692073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yunfei Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
194
|
Sanyanga TA, Nizami B, Bishop ÖT. Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency. Molecules 2019; 24:E3987. [PMID: 31690045 PMCID: PMC6864701 DOI: 10.3390/molecules24213987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Human carbonic anhydrase II (CA-II) is a Zinc (Zn 2 + ) metalloenzyme responsible for maintenance of acid-base balance within the body through the reversible hydration of CO 2 to produce protons (H + ) and bicarbonate (BCT). Due to its importance, alterations to the amino acid sequence of the protein as a result of single nucleotide variations (nsSNVs) have detrimental effects on homeostasis. Six pathogenic CA-II nsSNVs, K18E, K18Q, H107Y, P236H, P236R and N252D were identified, and variant protein models calculated using homology modeling. The effect of each nsSNV was analyzed using motif analysis, molecular dynamics (MD) simulations, principal component (PCA) and dynamic residue network (DRN) analysis. Motif analysis identified 11 functionally important motifs in CA-II. RMSD data indicated subtle SNV effects, while PCA analysis revealed that the presence of BCT results in greater conformational sampling and free energy in proteins. DRN analysis showed variant allosteric effects, and the average betweenness centrality (BC) calculations identified Glu117 as the most important residue for communication in CA-II. The presence of BCT was associated with a reduction to Glu117 usage in all variants, suggesting implications for Zn 2 + dissociation from the CA-II active site. In addition, reductions to Glu117 usage are associated with increases in the usage of the primary and secondary Zn 2 + ligands; His94, His96, His119 and Asn243 highlighting potential compensatory mechanisms to maintain Zn 2 + within the active site. Compared to traditional MD simulation investigation, DRN analysis provided greater insights into SNV mechanism of action, indicating its importance for the study of missense mutation effects in proteins and, in broader terms, precision medicine related research.
Collapse
Affiliation(s)
- Taremekedzwa Allan Sanyanga
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| | - Bilal Nizami
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary.
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
195
|
Zanzoni A, Ribeiro DM, Brun C. Understanding protein multifunctionality: from short linear motifs to cellular functions. Cell Mol Life Sci 2019; 76:4407-4412. [PMID: 31432235 PMCID: PMC11105236 DOI: 10.1007/s00018-019-03273-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
Moonlighting proteins perform multiple unrelated functions without any change in polypeptide sequence. They can coordinate cellular activities, serving as switches between pathways and helping to respond to changes in the cellular environment. Therefore, regulation of the multiple protein activities, in space and time, is likely to be important for the homeostasis of biological systems. Some moonlighting proteins may perform their multiple functions simultaneously while others alternate between functions due to certain triggers. The switch of the moonlighting protein's functions can be regulated by several distinct factors, including the binding of other molecules such as proteins. We here review the approaches used to identify moonlighting proteins and existing repositories. We particularly emphasise the role played by short linear motifs and PTMs as regulatory switches of moonlighting functions.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | - Diogo M Ribeiro
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | - Christine Brun
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France.
- CNRS, Marseille, France.
| |
Collapse
|
196
|
Sequence and Structure Properties Uncover the Natural Classification of Protein Complexes Formed by Intrinsically Disordered Proteins via Mutual Synergistic Folding. Int J Mol Sci 2019; 20:ijms20215460. [PMID: 31683980 PMCID: PMC6862064 DOI: 10.3390/ijms20215460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Intrinsically disordered proteins mediate crucial biological functions through their interactions with other proteins. Mutual synergistic folding (MSF) occurs when all interacting proteins are disordered, folding into a stable structure in the course of the complex formation. In these cases, the folding and binding processes occur in parallel, lending the resulting structures uniquely heterogeneous features. Currently there are no dedicated classification approaches that take into account the particular biological and biophysical properties of MSF complexes. Here, we present a scalable clustering-based classification scheme, built on redundancy-filtered features that describe the sequence and structure properties of the complexes and the role of the interaction, which is directly responsible for structure formation. Using this approach, we define six major types of MSF complexes, corresponding to biologically meaningful groups. Hence, the presented method also shows that differences in binding strength, subcellular localization, and regulation are encoded in the sequence and structural properties of proteins. While current protein structure classification methods can also handle complex structures, we show that the developed scheme is fundamentally different, and since it takes into account defining features of MSF complexes, it serves as a better representation of structures arising through this specific interaction mode.
Collapse
|
197
|
Yang J, Gao M, Xiong J, Su Z, Huang Y. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci 2019; 28:1952-1965. [PMID: 31441158 PMCID: PMC6798136 DOI: 10.1002/pro.3718] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
The sequence-structure-function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well-defined three-dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Meng Gao
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Junwen Xiong
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Zhengding Su
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Yongqi Huang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
198
|
Sequential, Structural and Functional Properties of Protein Complexes Are Defined by How Folding and Binding Intertwine. J Mol Biol 2019; 431:4408-4428. [DOI: 10.1016/j.jmb.2019.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
|
199
|
Garcia-Orozco KD, Cinco-Moroyoqui F, Angulo-Sanchez LT, Marquez-Rios E, Burgos-Hernandez A, Cardenas-Lopez JL, Gomez-Aguilar C, Corona-Martinez DO, Saab-Rincon G, Sotelo-Mundo RR. Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei. Biomolecules 2019; 9:E674. [PMID: 31683580 PMCID: PMC6921030 DOI: 10.3390/biom9110674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Lipases and esterases are important enzymes that share the α/β hydrolase fold. The activity and cellular localization are important characteristics to understand the role of such enzymes in an organism. (2) Methods: Bioinformatic and biochemical tools were used to describe a new α/β hydrolase from a Litopenaeus vannamei transcriptome (LvFHS for Family Serine Hydrolase). (3) Results: The enzyme was obtained by heterologous overexpression in Escherichia coli and showed hydrolytic activity towards short-chain lipid substrates and high affinity to long-chain lipid substrates. Anti-LvFHS antibodies were produced in rabbit that immunodetected the LvFSH enzyme in several shrimp tissues. (4) Conclusions: The protein obtained and analyzed was an α/β hydrolase with esterase and lipase-type activity towards long-chain substrates up to 12 carbons; its immunodetection in shrimp tissues suggests that it has an intracellular localization, and predicted roles in energy mobilization and signal transduction.
Collapse
Affiliation(s)
- Karina D Garcia-Orozco
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - Francisco Cinco-Moroyoqui
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Lucía T Angulo-Sanchez
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - Enrique Marquez-Rios
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Armando Burgos-Hernandez
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Jose L Cardenas-Lopez
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Carolina Gomez-Aguilar
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - David O Corona-Martinez
- Departamento de Ciencias de la Salud, Universidad de Sonora, Cd. 85040 Obregon, Sonora, Mexico.
| | - Gloria Saab-Rincon
- Departamento de Ingeniería Celular & Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, 62250 Cuernavaca, Morelos, Mexico.
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
200
|
Slee JA, Levine TP. Systematic prediction of FFAT motifs across eukaryote proteomes identifies nucleolar and eisosome proteins with the predicted capacity to form bridges to the endoplasmic reticulum. ACTA ACUST UNITED AC 2019; 2:1-21. [PMID: 31777772 DOI: 10.1177/2515256419883136] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER), the most pervasive organelle, exchanges information and material with many other organelles, but the extent of its inter-organelle connections and the proteins that form bridges are not well known. The integral ER membrane protein VAMP-associated protein (VAP) is found in multiple bridges, interacting with many proteins that contain a short linear motif consisting of "two phenylalanines in an acidic tract" (FFAT). The VAP-FFAT interaction is the most common mechanism by which cytoplasmic proteins, particularly inter-organelle bridges, target the ER. Therefore, predicting new FFAT motifs may both find new individual peripheral ER proteins and identify new routes of communication involving the ER. Here we searched for FFAT motifs across whole proteomes. The excess of eukaryotic proteins with FFAT motifs over background was ≥0.8%, suggesting this is the minimum number of peripheral ER proteins. In yeast, where VAP was previously known to bind 4 proteins with FFAT motifs, a detailed analysis of a subset of proteins predicted 20 FFAT motifs. Extrapolating these findings to the whole proteome estimated the number of FFAT motifs in yeast at approximately 50-55 (0.9% of proteome). Among these previously unstudied FFAT motifs, most have known functions outside the ER, so could be involved in inter-organelle communication. Many of these can target well-characterised membrane contact sites, however some are in nucleoli and eisosomes, organelles previously unknown to have molecular bridges to the ER. We speculate that the nucleolar and eisosomal proteins with predicted motifs may function while bridging to the ER, indicating novel ER-nucleolus and ER-eisosome routes of inter-organelle communication.
Collapse
Affiliation(s)
| | - Timothy P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|