151
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System-Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021; 60:21327-21333. [PMID: 34180572 DOI: 10.1002/anie.202105857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Indexed: 12/13/2022]
Abstract
A catalytic system-controlled divergent reaction strategy was here reported to construct four types of intriguing spiroheterocyclic skeletons from simple and readily available starting materials via a precise chemical bond activation/[n+1] annulation cascade. The tetraazaspiroheterocyclic and trizazspiroheterocyclic scaffolds could be independently constructed by a selective N-N bond activation/[n+1] annulation cascade, a C(sp2 )-H activation/[4+1] annulation and a novel tandem C(sp2 )-H/C(sp3 )-H bond activation/[4+1] annulation strategy, along with a broad scope of substrates, moderate to excellent yields and valuable transformations. More importantly, in these transformations, we are the first time to capture a N-N bond activation and a C(sp3 )-H bond activation of pyrazolidinones under different catalytic system.
Collapse
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Run Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
152
|
Zhong X, Tan J, Qiao J, Zhou Y, Lv C, Su Z, Dong S, Feng X. Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond via [2+2] cycloaddition and sequential transformations. Chem Sci 2021; 12:9991-9997. [PMID: 34377393 PMCID: PMC8317662 DOI: 10.1039/d1sc02681j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Efficient asymmetric synthesis of a collection of small molecules with structural diversity is highly important to drug discovery. Herein, three distinct types of chiral cyclic compounds were accessible by enantioselective catalysis and sequential transformations. Highly regio- and enantioselective [2+2] cycloaddition of (E)-alkenyloxindoles with the internal C[double bond, length as m-dash]C bond of N-allenamides was achieved with N,N'-dioxide/Ni(OTf)2 as the catalyst. Various optically active spirocyclobutyl oxindole derivatives were obtained under mild conditions. Moreover, formal [4+2] cycloaddition products occurring at the terminal C[double bond, length as m-dash]C bond of N-allenamides, dihydropyran-fused indoles, were afforded by a stereospecific sequential transformation with the assistance of a catalytic amount of Cu(OTf)2. In contrast, performing the conversion under air led to the formation of γ-lactones via the water-involved deprotection and rearrangement process. Experimental studies and DFT calculations were performed to probe the reaction mechanism.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jiuqi Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Cidan Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
153
|
Elghareeb FH, Kandil EM, Abou-Elzahab M, Abdelmoteleb M, Abozeid MA. Rigid 3D-spiro chromanone as a crux for efficient antimicrobial agents: synthesis, biological and computational evaluation. RSC Adv 2021; 11:21301-21314. [PMID: 35478839 PMCID: PMC9034028 DOI: 10.1039/d1ra03497a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 01/26/2023] Open
Abstract
The development of new and effective antimicrobial agents with novel chemical skeletons and working mechanisms is highly desirable due to the increased number of resistant microbes. Different new compounds based upon a 3D-spiro chromanone scaffold such as Mannich bases 2 and 3 in addition to azo dye 4 were synthesized. Besides, the condensation reactions of the hydrazide-spiro chromanone 8 with different ketonic reagents led to the synthesis of pyrazoles (9 & 10) and anils (11 & 13). Moreover, the methoxyl substituted spiro chromanone 14 was condensed with different hydrazines and hydrazides to give the corresponding hydrazones 15-18 in up to 85% yields. The condensation of the hydrazone 18 with salicylaldehyde yielded coumarinyl spiro chromanone 19 in an excellent yield, whereas its reaction with benzaldehyde followed by hydrazine afforded aminopyrazole derivative 21 in 82% yield. The antimicrobial evaluation suggested that hydrazide 8 has a substantial activity against different microbes (S. aureus: D = 22 mm, MIC = 1.64 μM; E. coli: D = 19 mm, MIC = 1.64 μM; C. albicans: D = 20 mm, MIC = 6.57 μM). Moreover, promising antimicrobial activities were observed for azo dye 4 (D = 13-19 mm, MIC = 5.95-11.89 μM), hydrazone 17 (D = 17-23 mm, MIC = 1.88-3.75 μM), and aminopyrazole 21 (D = 14-19 mm, MIC = 2.24-8.98 μM). The molecular docking revealed that compounds 4, 8, 17, and 21 had good to high binding affinities with different microbial targets such as penicillin-binding proteins (-7.4 to -9.9 kcal), DNA gyrase (-7.8 to -9.0 kcal), lanosterol 14-alpha demethylase (-8.2 to -11.2 kcal), and exo-beta-1,3-glucanase (-8.2 to -11.9 kcal). The QSAR analysis ascertained a good correlation between the antimicrobial activity of 3D-spiro chromanone derivatives and their structural and/or physicochemical parameters.
Collapse
Affiliation(s)
- F H Elghareeb
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - E M Kandil
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - M Abou-Elzahab
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - M Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - M A Abozeid
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| |
Collapse
|
154
|
Schmidt TA, Sparr C. Catalyst Control over Twofold and Higher-Order Stereogenicity by Atroposelective Arene Formation. Acc Chem Res 2021; 54:2764-2774. [PMID: 34056908 DOI: 10.1021/acs.accounts.1c00178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Contradictory to the first intuitive impression that forging putatively flat aromatic rings evades stereoisomerism, a striking variety of atropisomeric compounds are conceivable by the formation of arenes, offering captivating avenues for catalyst-controlled stereoselective strategies. Since the assembled atropisomeric products that contain one or several rotationally restricted single bonds are characterized by especially well defined molecular architectures, they are distinctly suitable for numerous pertinent applications. In view of the fascinating arene-forming aldol condensation pathways taking place in polyketide biosynthesis (cyclases/aromatases (CYC/ARO)), the versatile small-molecule-catalyzed aldol reaction appeared as an exceptionally appealing synthetic means to prepare various unexplored atropisomeric compounds in our efforts presented herein. In our initial studies, the use of secondary amine organocatalysts provided excellent selectivities in stereoselective arene-forming aldol condensations for a broad range of atropisomeric products, such as biaryls and rotationally restricted aromatic amides. In further analogy to polyketide biosynthesis, it was also conceivable that several aromatic rings are formed in catalytic cascade reactions. The use of small-molecule catalysts thereby enabled us to transfer this concept to the conversion of unnatural and noncanonical polyketide substrates, thus giving access to atropisomers with particular value for synthetic applications. The versatility of the stereoselective aldol reactions with numerous catalytic activation modes further provided a strategy to individually control several stereogenic axes, similar to the various methodologies developed for controlling stereocenter configurations. By the use of iterative building block additions combined with catalyst-controlled aldol reactions to form the aromatic rings, stereodivergent pathways for catalyst-substrate-matched and -mismatched products were obtained. Besides secondary amines, cinchona-alkaloid-based quaternary ammonium salts also proved to be highly efficient in overcoming severe substrate bias. The obtained atropisomeric multiaxis systems, with all of the biaryl bonds suitably restricted in rotation even at high temperatures, are spatially distinctly defined. The helical secondary structure is therefore excellently suited for several captivating applications.While previous catalyst-controlled stereoselective methods distinguish two stereoisomers for each stereogenic unit, catalyst control beyond the realms of this dualistic stereoisomerism remained unexplored. By the selective preparation of O̅ki atropisomers characterized by their sixfold stereogenicity in Rh-catalyzed [2 + 2 + 2] cyclotrimerizations, one out of the six possible stereoisomers resulting from the restricted rotation of a single bond was shown to be catalytically addressable. Catalyst control over higher-order stereogenicity therefore further interconnects conformational analysis and stereoselective catalysis and offers captivating avenues to explore uncharted stereochemical space for creating a broad range of unprecedented molecular motifs.
Collapse
Affiliation(s)
- Tanno A. Schmidt
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
155
|
Yang Y, Wang X, Ye X, Wang B, Bao X, Wang H. Advances of α-activated cyclic isothiocyanate for the enantioselective construction of spirocycles. Org Biomol Chem 2021; 19:4610-4621. [PMID: 33949598 DOI: 10.1039/d1ob00564b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The efficient and enantioselective synthesis of pharmaceutically important spirocycles has attracted the focus of organic and medicinal chemists. In this context, with the excellent reactivity of α-activated isothiocyanate as formal 1,3-dipoles in the (3 + 2) cyclization process, the cyclic isothiocyanates featuring important pharmacophores, such as oxindole, pyrazolone, and indanone moieties, have emerged as powerful precursors to access a variety of spirocycles with highly structural diversities. In addition, the facile transformations of these spirocycles have shown potential applications in drug design. This review will cover the recent advances of α-activated cyclic isothiocyanates in the enantioselective construction of spirocycles since 2015, and the applications of corresponding products in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
156
|
Zhu G, Fu W, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Multicomponent Spiropolymerization of Diisocyanides, Diethyl Acetylenedicarboxylate, and Halogenated Quinones. Macromol Rapid Commun 2021; 42:e2100029. [PMID: 33987894 DOI: 10.1002/marc.202100029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Multicomponent spiropolymerization (MCSP) provides an efficient synthetic tool for the construction of spiropolymers based on nonspiro monomers. In this study, a method of MCSP using diisocyanides 1, diethyl acetylenedicarboxylate 2, and halogenated quinones 3 is developed for the in situ construction of bis-spiropolymers with high molecular weights (Mw up to 29 200) and good yields (up to 87.7%) under mild reaction conditions. The structure of the obtained bis-spiropolymers is confirmed by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance analysis. Halogenated bis-spiropolymers show good thermal stability, good solubility, and film-forming ability. The photosensitizer rhodamine B is used as a doping agent to induce the photodegradation of the polymer P1a3c into small-molecule segments, which results in the slow release of halogenated spiro-groups under irradiation with simulated sunlight. This finding reveals that P1a3c has the potential to be applied in pesticides. Therefore, this MCSP is a novel method for preparing halogen-containing bis-spiropolymers, which accelerates the development of multifunctional polymer materials.
Collapse
Affiliation(s)
- Guinan Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Weiqiang Fu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
157
|
Ai Y, Li D, Li G, Li H, He X, Fu X, Wang Y, Zhan G, Han B. Asymmetric Synthesis of Spirocyclopentane Oxindoles
via
[2+3] Annulation with 2‐(2‐Oxoindolin‐3‐yl)malononitriles as 1,2‐Carbon Bisnucleophiles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue‐Yan Ai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Dong‐Ai Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Guo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - He‐Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Xiang‐Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Xue‐Ju Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Yu‐Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| |
Collapse
|
158
|
Xiao JA, Li JL, Cheng XL, Chen K, Peng H, Chen WQ, Su W, Huang YM, Yang H. Enantioselective formal [3+2]-cycloadditions to access spirooxindoles bearing four contiguous stereocenters through synergistic catalysis. Chem Commun (Camb) 2021; 57:4456-4459. [PMID: 33949393 DOI: 10.1039/d0cc07957j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An enantioselective ring-opening formal [3+2]-cycloaddition of spirovinylcyclopropyl oxindoles with enals via synergistic catalysis of palladium(0) and a chiral organocatalyst has been developed, affording spirooxindoles bearing four contiguous stereocenters in good yields with excellent enantioselectivities. The generality and utility of the protocol were also demonstrated through scale-up experiments and synthetic transformation of the resulting cycloadduct.
Collapse
Affiliation(s)
- Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jin-Lian Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Xiu-Liang Cheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China. and State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Hai Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Wen-Qiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Yan-Min Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
159
|
Fairuz Binte Sheikh Ismail SN, Yang B, Zhao Y. Access to 5,6-Spirocycles Bearing Three Contiguous Stereocenters via Pd-Catalyzed Stereoselective [4 + 2] Cycloaddition of Azadienes. Org Lett 2021; 23:2884-2889. [PMID: 33769066 DOI: 10.1021/acs.orglett.1c00505] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present herein a highly diastereo- and enantioselective Pd-catalyzed [4 + 2] cycloaddition of benzofuran-derived azadienes with vinyl benzoxazinanones, which represents a rare highly stereoselective cycloaddition of this class of fused azadienes as a two-atom synthon. The use of a phosphoramidite ligand bearing a chiral secondary amine with a simple biphenyl backbone proved to be the key to construct the novel spirocyclic tetrahydroquinoline scaffold containing three contiguous stereocenters as a single diastereomer in high enantioselectivity.
Collapse
Affiliation(s)
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
160
|
Laviós A, Sanz‐Marco A, Vila C, Blay G, Pedro JR. Asymmetric Organocatalytic Synthesis of
aza
‐Spirocyclic Compounds from Isothiocyanates and Isocyanides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adrián Laviós
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Amparo Sanz‐Marco
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Carlos Vila
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Gonzalo Blay
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - José R. Pedro
- Departament de Química Orgànica-Facultat de Química Universitat de València C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| |
Collapse
|
161
|
Alves NG, Alves AJS, Soares MIL, Pinho e Melo TMVD. Recent Advances in the Synthesis of Spiro‐β‐Lactams and Spiro‐δ‐Lactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nuno G. Alves
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | - Américo J. S. Alves
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | - Maria I. L. Soares
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | | |
Collapse
|
162
|
Samikannu R, Sethuraman S, Akula N, Radhakrishnan V, Kamisetti S, Banu S, Vetrichelvan M, Gupta A, Li J, Rampulla R, Mathur A. Solvent-specific, DAST-mediated intramolecular Friedel-Crafts reaction: access to dibenzoxepine-fused spirooxindoles. Org Biomol Chem 2021; 19:1760-1768. [PMID: 33538747 DOI: 10.1039/d0ob02461a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A facile, DAST-mediated intramolecular cyclization of 3-hydroxy-3-(2-((3-methoxybenzyl)oxy)phenyl)indolin-2-one derivatives for the synthesis of spirooxindoles fused with dibenzoxepine moieties is described. The success of this reaction is highly dependent on the choice of solvent (promoted by DCM and 1,2-DCE) and the electronic nature of the pendant aromatic ring, which is favored by the presence of electron-donating substituents. The reaction is believed to proceed through an intramolecular Friedel-Crafts-type reaction. Various dibenzoxepine-fused spirooxindoles were successfully synthesized in up to 98% yield. This methodology provides libraries of structurally diverse and medicinally important small molecules that could aid in the search for new bioactive molecules.
Collapse
Affiliation(s)
- Ramesh Samikannu
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Sankaranarayanan Sethuraman
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Nagaraja Akula
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Vignesh Radhakrishnan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Srinivasarao Kamisetti
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Shabana Banu
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Muthalagu Vetrichelvan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India.
| | - Jianqing Li
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney St., Cambridge, MA 02142, USA
| | - Richard Rampulla
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, USA
| | - Arvind Mathur
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore 560100, India. and Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, USA
| |
Collapse
|
163
|
Li Q, Pan R, Wang M, Yao H, Lin A. Ligand-Controlled, Palladium-Catalyzed Asymmetric [4+4] and [2+4] Cycloadditions. Org Lett 2021; 23:2292-2297. [PMID: 33683909 DOI: 10.1021/acs.orglett.1c00420] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand-controlled, palladium-catalyzed asymmetric [4+4] and [2+4] cycloaddition reactions of benzofuran-derived azadienes have been developed. Taking advantage of chiral P,N-ligand (S,Rp)-PPFA, we obtained a variety of benzofuro[2,3-c][1,5] oxazocines in good yields with excellent enantioselectivities via [4+4] cycloaddition reactions. Employing chiral P,P-ligand (S)-Cl-MeO-BIPHEP, the chemo- and regioselectivities were switched to synthesize tetrahydropyran-fused spirocyclic compounds in good efficiency via [2+4] cycloaddition reactions.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Meihui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
164
|
Yavari I, Askarian-Amiri M. A synthesis of spiroindolo[2,1-b]quinazoline-6,2'-pyrido[2,1-b][1,3]oxazines from tryptanthrins and Huisgen zwitterions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1899237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
165
|
Cocco A, Rubanu MG, Sechi ML, Frongia A, Mastrorilli P, Degennaro L, Colella M, Luisi R, Secci F. Lithiated three-membered heterocycles as chiral nucleophiles in the enantioselective synthesis of 1-oxaspiro[2,3]hexanes. Org Biomol Chem 2021; 19:1945-1949. [PMID: 33595577 DOI: 10.1039/d0ob00771d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between configurably stable α-lithiated oxiranes and 3-substituted cyclobutanones allows obtaining enantiomerically enriched cyclobutanols (er > 98 : 2). These adducts, subjected to base-mediated Payne rearrangement, lead to the synthesis of a new class of oxaspirohexanes, useful precursors of 2,4-disubstituted cyclopentanones.
Collapse
Affiliation(s)
- Andrea Cocco
- Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | - Maria Grazia Rubanu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | - Maria Laura Sechi
- Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | - Angelo Frongia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | - Pietro Mastrorilli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Leonardo Degennaro
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Marco Colella
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Renzo Luisi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Aldo Moro, Via Edoardo Orabona 4, Bari I-70125, Italy
| | - Francesco Secci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
166
|
Chen Y, Ding Z, Wang Y, Liu W, Kong W. Synthesis of Indanones and Spiroindanones by Diastereoselective Annulation Based on a Hydrogen Autotransfer Strategy. Angew Chem Int Ed Engl 2021; 60:5273-5278. [PMID: 33205565 DOI: 10.1002/anie.202013792] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/30/2022]
Abstract
An unprecedented nickel-catalyzed domino reductive cyclization of alkynes and o-bromoaryl aldehydes is described. The reaction features broad substrate scope and is tolerant of a variety of functional groups, providing straightforward access to biologically significant indanones and spiroindanone pyrrolidine derivatives in good yields with excellent regio- and diastereoselectivity. Preliminary mechanistic studies have shown that indanones are formed by the cyclization of o-bromoaryl aldehydes and alkynes to form indenol intermediates, followed by hydrogen autotransfer.
Collapse
Affiliation(s)
- Yate Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Zhengtian Ding
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Yiming Wang
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wenfeng Liu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
167
|
Brandão P, Marques CS, Carreiro EP, Pineiro M, Burke AJ. Engaging Isatins in Multicomponent Reactions (MCRs) - Easy Access to Structural Diversity. CHEM REC 2021; 21:924-1037. [PMID: 33599390 DOI: 10.1002/tcr.202000167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Multicomponent reactions (MCRs) are a valuable tool in diversity-oriented synthesis. Its application to privileged structures is gaining relevance in the fields of organic and medicinal chemistry. Isatin, due to its unique reactivity, can undergo different MCRs, affording multiple interesting scaffolds, namely oxindole-derivatives (including spirooxindoles, bis-oxindoles and 3,3-disubstituted oxindoles) and even, under certain conditions, ring-opening reactions occur that leads to other heterocyclic compounds. Over the past few years, new methodologies have been described for the application of this important and easily available starting material in MCRs. In this review, we explore these novelties, displaying them according to the structure of the final products obtained.
Collapse
Affiliation(s)
- Pedro Brandão
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal.,LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - M Pineiro
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal.,University of Evora, Department of Chemistry, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| |
Collapse
|
168
|
D B, M S AK, Krishnan J, C S A, R R A, Suresh E, Somappa SB. Base-enabled access to diastereoselective spirofuran oxindoles and γ-functionalized allenoates. Chem Commun (Camb) 2021; 57:1746-1749. [PMID: 33480914 DOI: 10.1039/d0cc07715a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Base assisted divergent reactivity of isatins and allenoates has been achieved, which afforded diastereoselective spirofuran oxindoles and γ-functionalized allenoates. The DBU mediated Morita-Baylis-Hillman (MBH) reaction followed by the cascade annulation through the stabilized β-ammonium enolate intermediate led to the spiro-framework, wherein DABCO furnished the γ-functionalized allenoates. The protocol offers access to biologically relevant functionalized oxindole scaffolds with an excellent substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Basavaraja D
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram-695019, Kerala, India.
| | | | | | | | | | | | | |
Collapse
|
169
|
Kumar AS, Chauhan S, Swamy KCK. Contrasting Carboannulation Involving δ-Acetoxy Allenoate as a Four-Carbon Synthon Using DABCO and DMAP: Access to Spiro-carbocyclic and m-Teraryl Scaffolds. Org Lett 2021; 23:1123-1129. [PMID: 33480700 DOI: 10.1021/acs.orglett.1c00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spiro-annulation involving δ-acetoxy allenoate and alkyl benzoisothiazole dioxide (N-sulfonyl ketimine) triggered by DABCO/MeCO2H combination leads to an essentially single diastereomer via chemo- and regiospecific [4 + 2]-carboannulation and a new hydroxyl group is introduced. In contrast, DMAP-catalyzed benzannulation using the same reactants affords unsymmetrical m-teraryls via Mannich coupling, sequential proton transfers, and C-N bond cleavage. Here, δ-acetoxy allenoate serves as a 4C-synthon and the carboannulation is completely base dependent and mutually exclusive.
Collapse
Affiliation(s)
- A Sanjeeva Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
170
|
Wu Y, Cui B, Long Y, Han W, Wan N, Yuan W, Chen Y. Chiral Phosphoric Acid Catalyzed (4+1) Annulation of 3‐Diazooxindoles/4‐Diazooxisoquinolines with
para
‐Quinone Methides to Access Chiral Spiro[dihydrobenzofuran‐2,3′‐oxindoles/2,4′‐oxisoquinolines]. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- You‐Cai Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi 563000 People's Republic of China
| | - Bao‐Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi 563000 People's Republic of China
| | - Yan Long
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi 563000 People's Republic of China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi 563000 People's Republic of China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi 563000 People's Republic of China
| | - Wei‐Cheng Yuan
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 People's Republic of China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi 563000 People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University Zunyi 563000 People's Republic of China
| |
Collapse
|
171
|
Gu B, Wu S, Xu H, Yang W, Liu Z, Deng W. Organocatalytic asymmetric [3 + 3] annulation of isatin N,N'-cyclic azomethine imines with enals: Efficient approach to functionalized spiro N-heterocyclic oxindoles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
172
|
Wu J, Bai L, Han L, Liu J, Luan X. A chemo- and regioselective Pd(0)-catalyzed three-component spiroannulation. Chem Commun (Camb) 2021; 57:1117-1120. [PMID: 33410450 DOI: 10.1039/d0cc07389j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemo- and regioselective Pd(0)-catalyzed spiroannulation has been successfully developed. The key feature of this method is the use of readily available 1,2-dihaloarenes, alkynes and 2-naphthols for the rapid assembly of spirocarbocyclic molecules. Mechanistic studies revealed that this domino reaction proceeded through a cascade of oxidative addition to Pd(0), alkyne migratory insertion, and 2-naphthol-facilitated dearomatizing [4+1] spiroannulation.
Collapse
Affiliation(s)
- Jiaoyu Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | | | | | | | | |
Collapse
|
173
|
Chen Y, Ding Z, Wang Y, Liu W, Kong W. Synthesis of Indanones and Spiroindanones by Diastereoselective Annulation Based on a Hydrogen Autotransfer Strategy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yate Chen
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Zhengtian Ding
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Yiming Wang
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Wenfeng Liu
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
174
|
Wang W, Bao X, Wei S, Nawaz S, Qu J, Wang B. Asymmetric sequential annulation/aldol process of 4-isothiocyanato pyrazolones and allenones: access to novel spiro[pyrrole-pyrazolones] and spiro[thiopyranopyrrole-pyrazolones]. Chem Commun (Camb) 2021; 57:363-366. [PMID: 33319884 DOI: 10.1039/d0cc07113g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic asymmetric sequential annulation/aldol reaction of 4-isothiocyanato pyrazolones and allenyl ketones has been developed, which furnished a series of spiro[pyrrole-pyrazolone] heterocycles and structurally novel spiro[thiopyranopyrrole-pyrazolone] derivatives in good yields with high to excellent enantioselectivities. Notably, parallel resolution of racemic spiro[pyrrole-pyrazolones] was achieved by a catalyst-controlled asymmetric intramolecular vinylogous aldol process. Structure diversity of the product was further enhanced by ready transformations.
Collapse
Affiliation(s)
- Wenyao Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
175
|
Xiao S, Chen B, Jiang Q, He L, Chu WD, He CY, Liu QZ. Palladium-catalyzed asymmetric [3 + 2] cycloaddition of vinyl aziridines and α,β-unsaturated imines generated in situ from aryl sulfonyl indoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00408e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first palladium-catalyzed asymmetric formal [3 + 2] cycloaddition of vinyl aziridines and in situ generated unsaturated imines has been established.
Collapse
Affiliation(s)
- Shan Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Qin Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Long He
- College of Chemistry and Materials Engineering
- Guiyang University
- Guiyang 550005
- China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- China
| |
Collapse
|
176
|
Peng CJ, Pei JP, Chen YH, Wu ZY, Liu M, Liu YK. Enantioselective organocatalytic sequential Michael-cyclization of functionalized nitroalkanes to 2-hydroxycinnamaldehydes: synthesis of benzofused dioxa[3.3.1] and oxa[4.3.1] methylene-bridged compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic enantioselective conjugate addition-initiated reaction sequence of 2-hydroxycinnamaldehydes with various functionalized nitroalkanes has been described to synthesize structurally diverse chromane-containing compounds.
Collapse
Affiliation(s)
- Chen-Jun Peng
- Molecular Synthesis Center & Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Jun-Ping Pei
- Molecular Synthesis Center & Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ying-Han Chen
- Molecular Synthesis Center & Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Zhi-Yong Wu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ming Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
177
|
Warghude PK, Sabale AS, Dixit R, Vanka K, Bhat RG. An easy and practical approach to access multifunctional cylcopentadiene- and cyclopentene-spirooxindoles via [3 + 2] annulation. Org Biomol Chem 2021; 19:4338-4345. [PMID: 33908568 DOI: 10.1039/d1ob00514f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly regioselective [3 + 2] annulation of Morita-Baylis-Hillman (MBH) carbonates of isatin with aurone/thioaurone is developed. Spiroheterocycles such as spirooxindole cyclopentadiene and spirooxindole fused hydroxy cyclopentene derivatives are constructed in one pot by exploring the reactivity of Lewis bases. Combined experimental and density functional theory (DFT) calculations offered an insight into the reaction mechanism.
Collapse
Affiliation(s)
- Prakash K Warghude
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| | - Abhijeet S Sabale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| | - Ruchi Dixit
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| |
Collapse
|
178
|
Gu X, Wei Y, Shi M. Construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine promoted by visible-light-induced photosensitization. Org Chem Front 2021. [DOI: 10.1039/d1qo01373d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible-light-induced intramolecular [2 + 2] cycloaddition of methylenecyclopropanes (MCPs) for the rapid construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine.
Collapse
Affiliation(s)
- Xintao Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
179
|
Ren JW, Xie ZZ, Zheng L, Ye ZP, Deng ZX, Zhao QL, Xiao JA, Chen K, Xiang HY, Chen XQ, Yang H. An organocatalytic enantioselective ring-reorganization domino sequence of methyleneindolinones with 2-aminomalonates. Org Chem Front 2021. [DOI: 10.1039/d0qo01364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel organocatalytic enantioselective ring-reorganization domino sequence was developed to efficiently construct polycyclic pyrrolo[3,4-c]quinolinones in high yields (up to 92%) and stereoselectivity (up to >99% ee, >20 : 1 dr).
Collapse
|
180
|
Zhou Q, Song X, Zhang X, Fan X. Synthesis of 3-spirooxindole 3 H-indoles through Rh( iii)-catalyzed [4 + 1] redox-neutral spirocyclization of N-aryl amidines with diazo oxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00551k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Presented herein is a novel synthesis of 3-spirooxindole 3H-indoles via the coupling and spirocyclization of N-aryl amidines with diazo oxindoles.
Collapse
Affiliation(s)
- Qianting Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Xia Song
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| |
Collapse
|
181
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
182
|
Zhao Q, Tang L, Jiao P. Construction of Spiro Skeletons in 2,2',3,3'-Tetrahydro-1,1'- spirobi[1 H-indene]-7,7'-diol (SPINOL) and Analogues. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
183
|
An XD, Xiao J. Recent advances in hydride transfer-involved C(sp3)–H activation reactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01502d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review summarizes the recent progresses (2016–2020) in the hydride transfer-enabled C(sp3)–H activation according to the reaction types, categorized into the intramolecular/intermolecular C(sp3)–H functionalization, and hydride reduction.
Collapse
Affiliation(s)
- Xiao-De An
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Marine Science and Engineering
| |
Collapse
|
184
|
Abstract
Spirocyclic scaffolds are incorporated in various approved drugs and drug candidates. The increasing interest in less planar bioactive compounds has given rise to the development of synthetic methodologies for the preparation of spirocyclic scaffolds. In this Perspective, we summarize the diverse synthetic routes to obtain spirocyclic systems. The impact of spirocycles on potency and selectivity, including the aspect of stereochemistry, is discussed. Furthermore, we examine the changes in physicochemical properties as well as in in vitro and in vivo ADME using selected studies that compare spirocyclic compounds to their nonspirocyclic counterparts. In conclusion, the value of spirocyclic scaffolds in medicinal chemistry is discussed.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
185
|
Jaiswal MK, Singh B, De S, Singh N, Singh RP. Stereoselective formal [3 + 3] annulation of 3-alkylidene-2-oxindoles with β,γ-unsaturated α-keto esters. Org Biomol Chem 2020; 18:9852-9862. [PMID: 33295933 DOI: 10.1039/d0ob02046j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Diazabicyclo[2.2.2]octane (DABCO)-catalyzed [3 + 3] cycloaddition reaction of 3-alkylidene-2-oxindole and β,γ-unsaturated α-keto esters under mild reaction conditions afforded the spirocyclohexene-oxindole with excellent diastereoselectivity. The [3 + 3] annulation is found to proceed through a vinylogous Michael-aldol cascade reaction and it allows rapid access to a diverse set of highly functionalized spirocyclohexene-oxindoles. Also, a bioactivity study of the compounds on mammalian sarcoma cells has reflected cell growth inhibitory/anti-cancer properties.
Collapse
Affiliation(s)
- Manish K Jaiswal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi - 110 016, India.
| | | | | | | | | |
Collapse
|
186
|
Ding Z, Wang Y, Liu W, Chen Y, Kong W. Diastereo- and Enantioselective Construction of Spirocycles by Nickel-Catalyzed Cascade Borrowing Hydrogen Cyclization. J Am Chem Soc 2020; 143:53-59. [PMID: 33356186 DOI: 10.1021/jacs.0c10055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhengtian Ding
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yiming Wang
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wenfeng Liu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yate Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
187
|
Xu YW, Li L, Hu XP. Enantioselective Copper-Catalyzed [3 + 3] Cycloaddition of Tertiary Propargylic Esters with 1 H-Pyrazol-5(4 H)-ones toward Optically Active Spirooxindoles. Org Lett 2020; 22:9534-9538. [PMID: 33236914 DOI: 10.1021/acs.orglett.0c03587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed enantioselective [3 + 3] cycloaddition of 3-ethynyl-2-oxoindolin-3-yl acetates with 1H-pyrazol-5(4H)-ones for the construction of optically active spirooxindoles bearing a spiro all-carbon quaternary stereocenter has been realized. With a combination of Cu(OTf)2 and chiral tridentate ketimine P,N,N-ligand as the catalyst, the reaction displayed broad substrate scopes, good yields, and high enantioselectivities. This represents the first catalytic asymmetric propargylic cycloaddition with tertiary propargylic esters as the bis-electrophiles for access to chiral spirocyclic frameworks.
Collapse
Affiliation(s)
- You-Wei Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 China
| | - Ling Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 China
| |
Collapse
|
188
|
Decarbonylative Issues Involved in Ru(II)‐Catalyzed [6+2−1] Annulation Reaction of Hydroxychromone with Alkyne: A DFT Study. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
189
|
Bhowmik A, Das S, Sarkar W, Saidalavi KM, Mishra A, Roy A, Deb I. Diastereoselective Spirocyclization via Intramolecular C(
sp
3
)−H Bond Functionalization Triggered by Sequential [1,5]‐Hydride Shift/Cyclization Process: Approach to Spiro‐tetrahydroquinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arup Bhowmik
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Sumit Das
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
- Academy of Scientific and Innovative Research (AcSIR). Kamla Nehru Nagar 201002 Ghaziabad India
| | - Writhabrata Sarkar
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - K. M. Saidalavi
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Aniket Mishra
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Anupama Roy
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
190
|
Wan Q, Chen L, Li S, Kang Q, Yuan Y, Du Y. Enantioselective Synthesis of Multisubstituted Spirocyclopentane Oxindoles Enabled by Pd/Chiral Rh(III) Complex Synergistic Catalysis. Org Lett 2020; 22:9539-9544. [PMID: 33263254 DOI: 10.1021/acs.orglett.0c03588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Wan
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Shiwu Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Qiang Kang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Yaofeng Yuan
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| |
Collapse
|
191
|
Li C, Zhang F, Shen Z. An efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
192
|
DMAP-catalyzed decarboxylative [3+2] cycloadditions: A strategy for diastereoselective synthesis of trifluoromethylated chromanone-fused pyrrolidinyl spirooxindoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
193
|
Sakla AP, Kansal P, Shankaraiah N. Syntheses and Applications of Spirocyclopropyl Oxindoles: A Decade Review. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001261] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Akash P. Sakla
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) 500 037 Hyderabad India
| | - Pritish Kansal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) 500 037 Hyderabad India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) 500 037 Hyderabad India
| |
Collapse
|
194
|
Kumar N, Kumar A, Sahoo SC, Chimni SS. Candida antarctica lipase-B-catalyzed kinetic resolution of 1,3-dialkyl-3-hydroxymethyl oxindoles. Chirality 2020; 32:1377-1394. [PMID: 33141985 DOI: 10.1002/chir.23284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022]
Abstract
Candida antarctica (CAL-B) lipase-catalyzed resolution of 1,3-dialkyl-3-hydroxymethyl oxindoles has been performed to obtain (R)-1,3-dialkyl-3-acetoxymethyl oxindoles with up to 99% ee and (S)-1,3-dialkyl-3-hydroxymethyl oxindoles with up to 78% ee using vinyl acetate as acylating agent and acetonitrile as solvent transforming (S)-3-allyl-3-hydroxymethyl oxindole to (3S)-1'-benzyl-5-(iodomethyl)-4,5-dihydro-2H-spiro[furan-3,3'-indolin]-2'-one. The optically active 3-substituted-3-hydroxymethyl oxindoles and spiro-oxindoles are among the key synthons in the synthesis of potentially biologically active molecules.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry-II, Guru Nanak Dev University, Amritsar, India
| | - Akshay Kumar
- Department of Chemistry, DAV University, Jalandhar, Punjab, India
| | - Subash Chandra Sahoo
- Department of Chemistry and Center of Advanced Studies in Chemistry-II, Panjab University, Chandigarh, India
| | - Swapandeep Singh Chimni
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry-II, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
195
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
196
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
197
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020; 60:13198-13224. [DOI: 10.1002/anie.202008166] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
198
|
Deng YH, Chu WD, Shang YH, Yu KY, Jia ZL, Fan CA. P(NMe2)3-Mediated Umpolung Spirocyclopropanation Reaction of p-Quinone Methides: Diastereoselective Synthesis of Spirocyclopropane-Cyclohexadienones. Org Lett 2020; 22:8376-8381. [DOI: 10.1021/acs.orglett.0c02998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, and School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Dao Chu
- College of Chemistry and Chemical Engineering, China West Normal University, No. 1 Shida Road, Nanchong 637002, China
| | - Yun-Han Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, and School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Ke-Yin Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Zhi-Long Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
199
|
Pu LY, Yang F, Chen JQ, Xiong Y, Bin HY, Xie JH, Zhou QL. Enantioselective Total Syntheses of Pentacyclic Homoproaporphine Alkaloids. Org Lett 2020; 22:7526-7530. [PMID: 32937077 DOI: 10.1021/acs.orglett.0c02720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein we report the first enantioselective total syntheses of pentacyclic homoproaporphine alkaloids by means of a route, which includes a tandem retro-oxa-Michael addition and nucleophilic substitution to generate the oxa-benzobicyclco[3.3.1]nonane core structure, a Pictet-Spengler cyclization to construct the fused B and C rings, and sequential Baeyer-Villiger oxidation and pinacol-type cyclization to install the hydroxyl-lactol moiety of D ring. With this unified route, six pentacyclic homoproaporphine alkaloids have been synthesized enantioselectively.
Collapse
Affiliation(s)
- Liu-Yang Pu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ji-Qiang Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Xiong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huai-Yu Bin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
200
|
Ogurtsov VA, Rakitin OA. Synthesis of 8-oxa-2-azaspiro[4.5]decane. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|