151
|
Zhang L, Kang J, Liu S, Zhang X, Sun J, Hu Y, Yang Y, Chen L. A chemical covalent tactic for bio-thiol sensing and protein labeling agent design. Chem Commun (Camb) 2020; 56:11485-11488. [DOI: 10.1039/d0cc04169f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A chemical covalent tactic was developed for bio-thiol sensing and protein labeling agent design by the installation of a sulfoxide scaffold onto the skeleton of various fluorophores.
Collapse
Affiliation(s)
- Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jie Kang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Shudi Liu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinyu Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yuesong Hu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yang Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
152
|
Belén LH, Rangel-Yagui CDO, Beltrán Lissabet JF, Effer B, Lee-Estevez M, Pessoa A, Castillo RL, Farías JG. From Synthesis to Characterization of Site-Selective PEGylated Proteins. Front Pharmacol 2019; 10:1450. [PMID: 31920645 PMCID: PMC6930235 DOI: 10.3389/fphar.2019.01450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Covalent attachment of therapeutic proteins to polyethylene glycol (PEG) is widely used for the improvement of its pharmacokinetic and pharmacological properties, as well as the reduction in reactogenicity and related side effects. This technique named PEGylation has been successfully employed in several approved drugs to treat various diseases, even cancer. Some methods have been developed to obtain PEGylated proteins, both in multiple protein sites or in a selected amino acid residue. This review focuses mainly on traditional and novel examples of chemical and enzymatic methods for site-selective PEGylation, emphasizing in N-terminal PEGylation, that make it possible to obtain products with a high degree of homogeneity and preserve bioactivity. In addition, the main assay methods that can be applied for the characterization of PEGylated molecules in complex biological samples are also summarized in this paper.
Collapse
Affiliation(s)
- Lisandra Herrera Belén
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge F. Beltrán Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Brian Effer
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo L. Castillo
- Department of Internal Medicine East, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
153
|
Zhang X, Xu Z, Moumin DS, Ciulla DA, Owen TS, Mancusi RA, Giner JL, Wang C, Callahan BP. Protein-Nucleic Acid Conjugation with Sterol Linkers Using Hedgehog Autoprocessing. Bioconjug Chem 2019; 30:2799-2804. [PMID: 31600061 PMCID: PMC7045895 DOI: 10.1021/acs.bioconjchem.9b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hedgehog (Hh) precursor proteins contain an autoprocessing domain called HhC whose native function is protein cleavage and C-terminal glycine sterylation. The transformation catalyzed by HhC occurs in cis from a precursor protein and exhibits wide tolerance toward both sterol and protein substrates. Here, we repurpose HhC as a 1:1 protein-nucleic acid ligase, with the sterol serving as a molecular linker. A procedure is described for preparing HhC-active sterylated DNA, called steramers, using aqueous compatible chemistry and commercial reagents. Steramers have KM values of 7-11 μM and reaction t1/2 values of ∼10 min. Modularity of the HhC/steramer method is demonstrated using four different proteins along with structured and unstructured sterylated nucleic acids. The resulting protein-DNA conjugates retain the native solution properties and biochemical function. Unlike self-tagging domains, HhC does not remain fused to the conjugate; rather, enzymatic activity is mechanistically coupled to conjugate release. That unique feature of HhC, coupled with efficient kinetics and substrate tolerance, may ease access and open new applications for these suprabiological chimeras.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Chemistry Department, Binghamton University, Binghamton, New York 13902, United States
| | - Zihan Xu
- Chemistry Department, Binghamton University, Binghamton, New York 13902, United States
| | - Dina S. Moumin
- Chemistry Department, Binghamton University, Binghamton, New York 13902, United States
| | - Daniel A. Ciulla
- Chemistry Department, Binghamton University, Binghamton, New York 13902, United States
| | - Timothy S. Owen
- Chemistry Department, Binghamton University, Binghamton, New York 13902, United States
| | - Rebecca A. Mancusi
- Chemistry Department, Binghamton University, Binghamton, New York 13902, United States
| | - José-Luis Giner
- Department of Chemistry, State University of New York - ESF, Syracuse, New York 13210, United States
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Brian P. Callahan
- Chemistry Department, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
154
|
Baker SL, Kaupbayeva B, Lathwal S, Das SR, Russell AJ, Matyjaszewski K. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019; 20:4272-4298. [PMID: 31738532 DOI: 10.1021/acs.biomac.9b01271] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures. Polymers are either grafted-to or grown-from the biomacromolecule's surface, and characteristics including polymer molar mass, grafting density, and degree of branching can be controlled by changing reaction stoichiometries. The resultant conjugated products display a chimerism of properties such as polymer-induced enhancement in stability with maintained bioactivity, and while polymers are most often conjugated to proteins, they are starting to be attached to nucleic acids and lipid membranes (cells) as well. The fundamental studies with protein-polymer conjugates have improved our synthetic approaches, characterization techniques, and understanding of structure-function relationships that will lay the groundwork for creating new conjugated biomacromolecular products which could lead to breakthroughs in genetic and tissue engineering.
Collapse
Affiliation(s)
- Stefanie L Baker
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Bibifatima Kaupbayeva
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Sushil Lathwal
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Subha R Das
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Alan J Russell
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
155
|
Xie X, Li B, Wang J, Zhan C, Huang Y, Zeng F, Wu S. Tetrazine-Mediated Bioorthogonal System for Prodrug Activation, Photothermal Therapy, and Optoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41875-41888. [PMID: 31638763 DOI: 10.1021/acsami.9b13374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bioorthogonal "bond cleavage" reactions hold great promise in a variety of biological applications such as controlled activation of the drug and probe, while the application of these biocompatible reactions in living animals is still in its infancy and has yet to be further explored. Herein we demonstrate a nanosized and two-component bioorthogonal system for tumor inhibition through the combined action of chemo- and photothermal therapy. The trigger of the system was fabricated by immobilizing PEGylated tetrazine on the gold nanorods, and the bioorthogonal prodrug was synthesized by caging the drug camptothecin with vinyl ether, followed by encapsulating it with phospholipid liposomes. The tetrazine-based trigger effectively mediates the bioorthogonal reaction and triggers the release of camptothecin for chemotherapy, and the gold nanorods exhibit high photothermal capability for photothermal therapy and for three-dimensional optoacoustic imaging. Upon injection into tumor-bearing mice, the two components accumulate in the tumor region and carry out a bioorthogonal reaction therein, hence releasing the parent drug. The combined actions of chemo- and photothermal therapy greatly inhibited tumor growth in mice. This strategy may afford a promising approach for achieving controlled release of an active drug in vivo through an alternative external stimulus-a bioorthogonal reaction.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Bowen Li
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Jie Wang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Chenyue Zhan
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Yong Huang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| |
Collapse
|
156
|
Protein Chemical Labeling Using Biomimetic Radical Chemistry. Molecules 2019; 24:molecules24213980. [PMID: 31684188 PMCID: PMC6864698 DOI: 10.3390/molecules24213980] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023] Open
Abstract
Chemical labeling of proteins with synthetic low-molecular-weight probes is an important technique in chemical biology. To achieve this, it is necessary to use chemical reactions that proceed rapidly under physiological conditions (i.e., aqueous solvent, pH, low concentration, and low temperature) so that protein denaturation does not occur. The radical reaction satisfies such demands of protein labeling, and protein labeling using the biomimetic radical reaction has recently attracted attention. The biomimetic radical reaction enables selective labeling of the C-terminus, tyrosine, and tryptophan, which is difficult to achieve with conventional electrophilic protein labeling. In addition, as the radical reaction proceeds selectively in close proximity to the catalyst, it can be applied to the analysis of protein–protein interactions. In this review, recent trends in protein labeling using biomimetic radical reactions are discussed.
Collapse
|
157
|
Conibear AC, Rosengren KJ, Becker CFW, Kaehlig H. Random coil shifts of posttranslationally modified amino acids. JOURNAL OF BIOMOLECULAR NMR 2019; 73:587-599. [PMID: 31317299 PMCID: PMC6859290 DOI: 10.1007/s10858-019-00270-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/09/2019] [Indexed: 05/14/2023]
Abstract
Most eukaryotic proteins are modified during and/or after translation, regulating their structure, function and localisation. The role of posttranslational modifications (PTMs) in both normal cellular processes and in diseases is already well recognised and methods for detection of PTMs and generation of specifically modified proteins have developed rapidly over the last decade. However, structural consequences of PTMs and their specific effects on protein dynamics and function are not well understood. Furthermore, while random coil NMR chemical shifts of the 20 standard amino acids are available and widely used for residue assignment, dihedral angle predictions and identification of structural elements or propensity, they are not available for most posttranslationally modified amino acids. Here, we synthesised a set of random coil peptides containing common naturally occurring PTMs and determined their random coil NMR chemical shifts under standardised conditions. We highlight unique NMR signatures of posttranslationally modified residues and their effects on neighbouring residues. This comprehensive dataset complements established random coil shift datasets of the 20 standard amino acids and will facilitate identification and assignment of posttranslationally modified residues. The random coil shifts will also aid in determination of secondary structure elements and prediction of structural parameters of proteins and peptides containing PTMs.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
- School of Biomedical Sciences, The University of Queensland, QLD, 4072, Brisbane, Australia.
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, QLD, 4072, Brisbane, Australia
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Hanspeter Kaehlig
- Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
158
|
Hong H, Zhou Z, Zhou K, Liu S, Guo Z, Wu Z. Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies. Chem Sci 2019; 10:9331-9338. [PMID: 32110296 PMCID: PMC7006623 DOI: 10.1039/c9sc03840j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Nanobodies are a class of camelid-derived single-domain antibodies that have many potential advantages over conventional antibodies and have been utilized to develop new therapeutic strategies for cancer and other diseases. However, nanobodies lack the Fc region of a conventional antibody, which possesses many functions, e.g., eliciting antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), essential for effective immunotherapy. The small molecular size of nanobodies also leads to poor pharmacokinetics, such as short in vivo half-life. To address these deficiencies, an endogenous antibody-based strategy to reconstitute the Fc functions for nanobodies was developed. As a proof-of-principle, an anti-human EGFR nanobody, 7D12, was selected to conduct C-terminal modification with the dinitrophenyl (DNP) hapten through Sortase A-mediated site-specific ligation. It was expected that the DNP motif would recruit endogenous human anti-DNP antibodies to indirectly reinstate the Fc functions. The resultant nanobody-DNP conjugates were shown to exhibit specific and high affinity binding to human EGFR expressed on target cancer cells. It was further proved that in the presence of anti-DNP antibody, these conjugates could mediate potent ADCC and CDC in vitro and exhibit significantly elongated half-life in vivo. Ultimately, it was proven in severe combined immunodeficiency (SCID) mice that treatment with the nanobody 7D12-DNP conjugate and anti-DNP mouse serum could inhibit xenograft tumor growth efficiently. In view of the abundance of anti-DNP and other endogenous antibodies in the human blood system, this could be a generally applicable approach employed to reconstitute the Fc functions for nanobodies and develop nanobody-based cancer immunotherapy and other therapies.
Collapse
Affiliation(s)
- Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Shaozhong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhongwu Guo
- Department of Chemistry , University of Florida , 214 Leigh Hall , Gainesville , Florida 32611 , USA .
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| |
Collapse
|
159
|
Rehm FBH, Harmand TJ, Yap K, Durek T, Craik DJ, Ploegh HL. Site-Specific Sequential Protein Labeling Catalyzed by a Single Recombinant Ligase. J Am Chem Soc 2019; 141:17388-17393. [PMID: 31573802 DOI: 10.1021/jacs.9b09166] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein ligases of defined substrate specificity are versatile tools for protein engineering. Upon completion of the reaction, the products of currently reported protein ligases contain the amino acid sequence that is recognized by that same ligase, resulting in repeated cycles of ligation and hydrolysis as competing reactions. Thus, previous efforts to sequentially label proteins at distinct positions required ligases of orthogonal specificity. A recombinant Oldenlandia affinis asparaginyl endopeptidase, OaAEP1, is promiscuous for incoming nucleophiles. This promiscuity enabled us to define a nucleophile composed of natural amino acids that is ligated efficiently to the substrate yet yields a product that is poorly recognized by OaAEP1. Proteins modified with an efficient recognition module could be readily modified to yield a defined product bearing a cleavage-resistant motif, whereas proteins containing this inferior recognition motif remained essentially unmodified. We demonstrate the versatility of the N- or C-terminal protein modifications obtainable with this approach and modify the N- and C-termini of a single substrate protein in a sequential, site-specific manner in excellent yield.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Program in Cellular and Molecular Medicine , Boston Children's Hospital, Harvard Medical School , Boston , Massachussets 02115 , United States.,Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine , Boston Children's Hospital, Harvard Medical School , Boston , Massachussets 02115 , United States
| | - Kuok Yap
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Thomas Durek
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine , Boston Children's Hospital, Harvard Medical School , Boston , Massachussets 02115 , United States
| |
Collapse
|
160
|
Jaekel A, Stegemann P, Saccà B. Manipulating Enzymes Properties with DNA Nanostructures. Molecules 2019; 24:molecules24203694. [PMID: 31615123 PMCID: PMC6832416 DOI: 10.3390/molecules24203694] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids and proteins are two major classes of biopolymers in living systems. Whereas nucleic acids are characterized by robust molecular recognition properties, essential for the reliable storage and transmission of the genetic information, the variability of structures displayed by proteins and their adaptability to the environment make them ideal functional materials. One of the major goals of DNA nanotechnology-and indeed its initial motivation-is to bridge these two worlds in a rational fashion. Combining the predictable base-pairing rule of DNA with chemical conjugation strategies and modern protein engineering methods has enabled the realization of complex DNA-protein architectures with programmable structural features and intriguing functionalities. In this review, we will focus on a special class of biohybrid structures, characterized by one or many enzyme molecules linked to a DNA scaffold with nanometer-scale precision. After an initial survey of the most important methods for coupling DNA oligomers to proteins, we will report the strategies adopted until now for organizing these conjugates in a predictable spatial arrangement. The major focus of this review will be on the consequences of such manipulations on the binding and kinetic properties of single enzymes and enzyme complexes: an interesting aspect of artificial DNA-enzyme hybrids, often reported in the literature, however, not yet entirely understood and whose full comprehension may open the way to new opportunities in protein science.
Collapse
Affiliation(s)
- Andreas Jaekel
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| | - Pierre Stegemann
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| | - Barbara Saccà
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| |
Collapse
|
161
|
One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology. Nat Protoc 2019; 14:3101-3125. [DOI: 10.1038/s41596-019-0214-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
|
162
|
Lim SI. Site-specific bioconjugation and self-assembly technologies for multi-functional biologics: on the road to the clinic. Drug Discov Today 2019; 25:168-176. [PMID: 31610287 DOI: 10.1016/j.drudis.2019.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/02/2023]
Abstract
The expanding portfolio of biotherapeutics both in the research and development (R&D) and market sectors is shaping new opportunities towards multifunctional biologics (MFBs). The combination of new or pre-existing therapeutic agents into a single multifunctional format makes it possible to develop new pharmacological actions to significantly improve their efficacy and safety. In this review, I focus on novel platform technologies that are being exploited in the biotech industry to produce MFBs with potential therapeutic benefits that include half-life extension, targeted delivery, T cell engagement, and improved vaccination. In this regard, technologies of key importance are site-specific bioconjugation and self-assembly, which allow homogeneous, defined, and scalable process developments for several MFBs that are advancing towards clinical applications.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
163
|
|
164
|
Spolaore B, Fernández J, Lomonte B, Massimino ML, Tonello F. Enzymatic labelling of snake venom phospholipase A 2 toxins. Toxicon 2019; 170:99-107. [PMID: 31563525 DOI: 10.1016/j.toxicon.2019.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Almost all animal venoms contain secretory phospholipases A2 (PLA2s), 14 kDa disulfide-rich enzymes that hydrolyze membrane phospholipids at the sn-2 position, releasing lysophospholipids and fatty acids. These proteins, depending on their sequence, show a wide variety of biochemical, toxic and pharmacological effects and deserve to be studied for their numerous possible applications, and to improve antivenom drugs. The cellular localization and activity of a protein can be studied by conjugating it with a tag. In this work, we applied an enzymatic labelling method, using Streptomyces mobaraense transglutaminase, on three snake venom PLA2s: a recombinant neuro- and myotoxic group I PLA2 from Notechis scutatus scutatus, and two myotoxic group II PLA2s from Bothrops asper - one of them a natural catalytically inactive variant. We demonstrate that TGase can be used to produce active mono- or bi-derivatives of these three PLA2s modified at specific Lys residues, and that all three of these proteins, conjugated with fluorescent peptides, are internalized in primary myotubes.
Collapse
Affiliation(s)
- Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo, 5, 35131, Padova, Italy.
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | | | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Viale G. Colombo, 3, 35121, Padova, Italy.
| |
Collapse
|
165
|
Ma C, Yang Y, Xu L, Tu W, Chen F, Wang J. Rce1 suppresses invasion and metastasis of hepatocellular carcinoma via epithelial-mesenchymal transition induced by the TGF-β1/H-Ras signaling pathway. J Cell Physiol 2019; 235:2506-2520. [PMID: 31506952 DOI: 10.1002/jcp.29155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Ras converting enzyme 1 (Rce1) plays an important role in invasion and metastasis of malignancy. However, the mechanism has not yet been fully explored in hepatocellular carcinoma (HCC). Primarily, we investigated the expression of Rce1 and H-Ras influence on patient prognosis through the clinical data. Further, we analyzed the regulatory effects of Rce1/H-Ras signal pathway on the epithelial-mesenchymal transition (EMT) in vitro and in vivo. Finally, we screened out the protein which bonds with Rce1 by CO-IP experiment to discuss the mechanism of Rce1 in EMT of HCC. This research revealed a significantly decreased expression of Rce1 in HCC compared with noncancerous tissues (p < .05). In contrast, H-Ras expression was increased in the tumor. The expression of them was a close association with the differentiation and tumor-node-metastasis (TNM) stage of the tumor (p < .001; p = .035, respectively) and Rce1 was an independent prognostic indicator (95%Cl: 0.193-0.821; p = .013). Through targeted regulation of Rce1 by cDNA or small interfering RNA, results show that the lower expression of Rce1 facilitated EMT and promoted the invasion and metastasis of HCC (p < .05). Furthermore, the CO-IP experiment unfolded that Rce1 could bond with farnesyltransferase-β (FNTB) which mediated the expression of H-Ras. Conclusions: Rce1 inhibits EMT via target regulation H-Ras and suppress the early invasion and metastasis of HCC. It may be a potential therapeutic target and prognostic indicator for HCC.
Collapse
Affiliation(s)
- Chaoqun Ma
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lei Xu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tu
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Feng Chen
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Hepatobiliary Pancreatic Surgery, Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
166
|
Duan Y, Liu W, Tian L, Mao Y, Song C. Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents. Curr Top Med Chem 2019; 19:1289-1304. [PMID: 31210108 DOI: 10.2174/1568026619666190618130008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Microtubules are essential for the mitotic division of cells and have been an attractive target
for antitumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells.
In the past few years, tubulin-colchicine binding site, as one of the three binding pockets including taxol-,
vinblastine- and colchicine-binding sites, has been focused on to design tubulin-destabilizing agents including
inhibitors, antibody-drug conjugates and degradation agents. The present review is the first to
cover a systemic and recent synopsis of tubulin-colchicine binding site agents. We believe that it would
provide an increase in our understanding of receptor-ligand interaction pattern and consciousness of a
series of challenges about tubulin target druggability.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Liang Tian
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
167
|
Li N, Zhang W, Li Y, Lin JM. Analysis of cellular biomolecules and behaviors using microfluidic chip and fluorescence method. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
168
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|
169
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Development of an effective protein-labeling system based on smart fluorogenic probes. J Biol Inorg Chem 2019; 24:443-455. [PMID: 31152238 DOI: 10.1007/s00775-019-01669-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022]
Abstract
Proteins are an important component of living systems and play a crucial role in various physiological functions. Fluorescence imaging of proteins is a powerful tool for monitoring protein dynamics. Fluorescent protein (FP)-based labeling methods are frequently used to monitor the movement and interaction of cellular proteins. However, alternative methods have also been developed that allow the use of synthetic fluorescent probes to target a protein of interest (POI). Synthetic fluorescent probes have various advantages over FP-based labeling methods. They are smaller in size than the fluorescent proteins, offer a wide variety of colors and have improved photochemical properties. There are various chemical recognition-based labeling techniques that can be used for labeling a POI with a synthetic probe. In this review, we focus on the development of protein-labeling systems, particularly the SNAP-tag, BL-tag, and PYP-tag systems, and understanding the fluorescence behavior of the fluorescently labeled target protein in these systems. We also discuss the smart fluorogenic probes for these protein-labeling systems and their applications. The fluorogenic protein labeling will be a useful tool to investigate complex biological phenomena in future work on cell biology.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
170
|
Gao W, Cho E, Liu Y, Lu Y. Advances and Challenges in Cell-Free Incorporation of Unnatural Amino Acids Into Proteins. Front Pharmacol 2019; 10:611. [PMID: 31191324 PMCID: PMC6549004 DOI: 10.3389/fphar.2019.00611] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Incorporation of unnatural amino acids (UNAAs) into proteins currently is an active biological research area for various fundamental and applied science. In this context, cell-free synthetic biology (CFSB) has been developed and recognized as a robust testing and biomanufacturing platform for highly efficient UNAA incorporation. It enables the orchestration of unnatural biological machinery toward an exclusive user-defined objective of unnatural protein synthesis. This review aims to overview the principles of cell-free unnatural protein synthesis (CFUPS) systems, their advantages, different UNAA incorporation approaches, and recent achievements. These have catalyzed cutting-edge research and diverse emerging applications. Especially, present challenges and future trends are focused and discussed. With the development of CFSB and the fusion with other advanced next-generation technologies, CFUPS systems would explicitly deliver their values for biopharmaceutical applications.
Collapse
Affiliation(s)
- Wei Gao
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Eunhee Cho
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yingying Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
171
|
Di Palma G, Kotowska AM, Hart LR, Scurr DJ, Rawson FJ, Tommasone S, Mendes PM. Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8937-8944. [PMID: 30726052 DOI: 10.1021/acsami.9b00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to design surfaces with reversible, high-affinity protein binding sites represents a significant step forward in the advancement of analytical methods for diverse biochemical and biomedical applications. Herein, we report a dynamic supramolecular strategy to directly assemble proteins on surfaces based on multivalent host-guest interactions. The host-guest interactions are achieved by one-step nanofabrication of a well-oriented β-cyclodextrin host-derived self-assembled monolayer on gold (β-CD-SAM) that forms specific inclusion complexes with hydrophobic amino acids located on the surface of the protein. Cytochrome c, insulin, α-chymotrypsin, and RNase A are used as model guest proteins. Surface plasmon resonance and static time-of-flight secondary ion mass spectrometry studies demonstrate that all four proteins interact with the β-CD-SAM in a specific manner via the hydrophobic amino acids on the surface of the protein. The β-CD-SAMs bind the proteins with high nanomolar to single-digit micromolar dissociation constants ( KD). Importantly, while the proteins can be captured with high affinity, their release from the surface can be achieved under very mild conditions. Our results expose the great advantages of using a supramolecular approach for controlling protein immobilization, in which the strategy described herein provides unprecedented opportunities to create advanced bioanalytic and biosensor technologies.
Collapse
Affiliation(s)
- Giuseppe Di Palma
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Anna M Kotowska
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Lewis R Hart
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - David J Scurr
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Frankie J Rawson
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Stefano Tommasone
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Paula M Mendes
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| |
Collapse
|
172
|
|
173
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
174
|
Abstract
Site-specific incorporation of nonproteinogenic functionalities into protein targets is an important tool in both basic and applied research and represents a major challenge to protein chemists. Chemical labeling methods often target multiple positions within a protein and therefore suffer from a lack of specificity. Enzymatic protein modification is an attractive alternative due to the inherent regioselectivity and stereoselectivity of enzymes. In this chapter we describe the application of the highly specific trypsin variant trypsiligase for the site-specific modification of virtual any target protein. We present two general routes of modification resulting in either N- or C-terminal functionalized protein products. Reactions rapidly proceed under mild conditions and result in homogeneously modified proteins bearing the artificial functionality exclusively at the desired position. We detail protocols for the expression and purification of trypsiligase as well as the synthesis of peptide (ester) substrates. In addition, we provide instructions for the bioconjugation reactions and for the qualitative and quantitative analysis of reaction progress and efficiency.
Collapse
|