151
|
Cao Q, Zhang S, Zhang L, Gao F, Chen J, Dong Y, Li X. Unprecedented Application of Covalent Organic Frameworks for Polymerization Catalysis: Rh/TPB-DMTP-COF in Polymerization of Phenylacetylene and Its Functional Derivatives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13693-13704. [PMID: 33709703 DOI: 10.1021/acsami.1c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) are applied widely in organic catalysis; however, no precedent has been reported in polymerization catalysis. Herein, we report the new application of COFs for polymerization catalysis. Different amounts of homogeneous Rh catalyst are incorporated into the COF via post-treatment to give a series of TPB-DMTP-COF-X wt % Rh (b-e) containing varying amounts of Rh from 2.74 to 11.38 wt %. In contrast to the known Rh catalysts, TPB-DMTP-COF-X wt % Rh (b-e) display an uncommon synergistic effect and exceptional steric confinement effect of nanochannels. Therefore, they possess the advantages of both homogeneous catalysts in high activity and selectivity and heterogeneous catalysts in stability and recyclability with extremely high activity up to 1.3 × 107 g·molRh-1·h-1 and cis-selectivity up to 99% and can be readily recycled and reused five times in the polymerization of phenylacetylene and its derivatives, affording cis-transoidal polyphenylacetylene and its derivatives having helical structures, aggregation-induced emission properties, or fluorescence properties with narrow molecular weight distributions.
Collapse
Affiliation(s)
- Qingbin Cao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Li Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jupeng Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Yuping Dong
- Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
152
|
Hou S, Ji W, Chen J, Teng Y, Wen L, Jiang L. Free‐Standing Covalent Organic Framework Membrane for High‐Efficiency Salinity Gradient Energy Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuhua Hou
- Department of Chemistry Bohai University Jinzhou 121013 P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wentao Ji
- Department of Chemistry Bohai University Jinzhou 121013 P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianjun Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yunfei Teng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 10049 P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 10049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 10049 P. R. China
| |
Collapse
|
153
|
Hou S, Ji W, Chen J, Teng Y, Wen L, Jiang L. Free‐Standing Covalent Organic Framework Membrane for High‐Efficiency Salinity Gradient Energy Conversion. Angew Chem Int Ed Engl 2021; 60:9925-9930. [DOI: 10.1002/anie.202100205] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Shuhua Hou
- Department of Chemistry Bohai University Jinzhou 121013 P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wentao Ji
- Department of Chemistry Bohai University Jinzhou 121013 P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianjun Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yunfei Teng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 10049 P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 10049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Science Beijing 10049 P. R. China
| |
Collapse
|
154
|
Singh AK, Yadav A, Indra A, Rastogi RB. Superior performance of ultrathin metal organic framework nanosheets for antiwear and antifriction testing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
155
|
Zhou Y, Han L. Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213665] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
156
|
Jin F, Liu J, Chen Y, Zhang Z. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angew Chem Int Ed Engl 2021; 60:14222-14235. [DOI: 10.1002/anie.202011213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Fazheng Jin
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Jinjin Liu
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
157
|
Qiu T, Gao S, Liang Z, Wang D, Tabassum H, Zhong R, Zou R. Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tianjie Qiu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - De‐Gao Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Hassina Tabassum
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Ruiqin Zhong
- Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| |
Collapse
|
158
|
Qiu T, Gao S, Liang Z, Wang D, Tabassum H, Zhong R, Zou R. Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angew Chem Int Ed Engl 2021; 60:17314-17336. [DOI: 10.1002/anie.202012699] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Tianjie Qiu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - De‐Gao Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Hassina Tabassum
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Ruiqin Zhong
- Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| |
Collapse
|
159
|
Gbadamasi S, Mohiuddin M, Krishnamurthi V, Verma R, Khan MW, Pathak S, Kalantar-Zadeh K, Mahmood N. Interface chemistry of two-dimensional heterostructures - fundamentals to applications. Chem Soc Rev 2021; 50:4684-4729. [PMID: 33621294 DOI: 10.1039/d0cs01070g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional heterostructures (2D HSs) have emerged as a new class of materials where dissimilar 2D materials are combined to synergise their advantages and alleviate shortcomings. Such a combination of dissimilar components into 2D HSs offers fascinating properties and intriguing functionalities attributed to the newly formed heterointerface of constituent components. Understanding the nature of the surface and the complex heterointerface of HSs at the atomic level is crucial for realising the desired properties, designing innovative 2D HSs, and ultimately unlocking their full potential for practical applications. Therefore, this review provides the recent progress in the field of 2D HSs with a focus on the discussion of the fundamentals and the chemistry of heterointerfaces based on van der Waals (vdW) and covalent interactions. It also explains the challenges associated with the scalable synthesis and introduces possible methodologies to produce large quantities with good control over the heterointerface. Subsequently, it highlights the specialised characterisation techniques to reveal the heterointerface formation, chemistry and nature. Afterwards, we give an overview of the role of 2D HSs in various emerging applications, particularly in high-power batteries, bifunctional catalysts, electronics, and sensors. In the end, we present conclusions with the possible solutions to the associated challenges with the heterointerfaces and potential opportunities that can be adopted for innovative applications.
Collapse
|
160
|
Wang W, Zhao W, Xu H, Liu S, Huang W, Zhao Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213616] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
161
|
Yuan Y, Qiao Z, Xu J, Wang J, Zhao S, Cao X, Wang Z, Guiver MD. Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118923] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
162
|
Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat Commun 2021; 12:38. [PMID: 33397939 PMCID: PMC7782778 DOI: 10.1038/s41467-020-20298-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023] Open
Abstract
Covalent organic frameworks (COFs) are promising materials for advanced molecular-separation membranes, but their wide nanometer-sized pores prevent selective gas separation through molecular sieving. Herein, we propose a MOF-in-COF concept for the confined growth of metal-organic framework (MOFs) inside a supported COF layer to prepare MOF-in-COF membranes. These membranes feature a unique MOF-in-COF micro/nanopore network, presumably due to the formation of MOFs as a pearl string-like chain of unit cells in the 1D channel of 2D COFs. The MOF-in-COF membranes exhibit an excellent hydrogen permeance (>3000 GPU) together with a significant enhancement of separation selectivity of hydrogen over other gases. The superior separation performance for H2/CO2 and H2/CH4 surpasses the Robeson upper bounds, benefiting from the synergy combining precise size sieving and fast molecular transport through the MOF-in-COF channels. The synthesis of different combinations of MOFs and COFs in robust MOF-in-COF membranes demonstrates the versatility of our design strategy.
Collapse
Affiliation(s)
- Hongwei Fan
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Manhua Peng
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstrasse 2, 30167, Hannover, Germany
| | - Ina Strauss
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Alexander Mundstock
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Hong Meng
- Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, PR China.
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany.
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, PR China.
| |
Collapse
|
163
|
Kang Z, Guo H, Fan L, Yang G, Feng Y, Sun D, Mintova S. Scalable crystalline porous membranes: current state and perspectives. Chem Soc Rev 2021; 50:1913-1944. [PMID: 33319885 DOI: 10.1039/d0cs00786b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Crystalline porous materials (CPMs) with uniform and regular pore systems show great potential for separation applications using membrane technology. Along with the research on the synthesis of precisely engineered porous structures, significant attention has been paid to the practical application of these materials for preparation of crystalline porous membranes (CPMBs). In this review, the progress made in the preparation of thin, large area and defect-free CPMBs using classical and novel porous materials and processing is presented. The current state-of-the-art of scalable CPMBs with different nodes (inorganic, organic and hybrid) and various linking bonds (covalent, coordination, and hydrogen bonds) is revealed. The advances made in the scalable production of high-performance crystalline porous membranes are categorized according to the strategies adapted from polymer membranes (interfacial assembly, solution-casting, melt extrusion and polymerization of CPMs) and tailored based on CPM properties (seeding-secondary growth, conversion of precursors, electrodeposition and chemical vapor deposition). The strategies are compared and ranked based on their scalability and cost. The potential applications of CPMBs have been concisely summarized. Finally, the performance and challenges in the preparation of scalable CPMBs with emphasis on their sustainability are presented.
Collapse
Affiliation(s)
- Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Lili Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Ge Yang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Yang Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Svetlana Mintova
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China and Laboratoire Catalyse et Spectrochimie (LCS), Normandie University, ENSICAEN, CNRS, 6 boulevard du Marechal Juin, 14050 Caen, France.
| |
Collapse
|
164
|
Yin C, Fang S, Shi X, Zhang Z, Wang Y. Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118727] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
165
|
Feng H, Luo Y, Liu M, Chen Q, Tao Z, Xiao X. A facile cucurbit[8]uril-based porous assembly: utilization in the adsorption of drugs and their controlled release. NEW J CHEM 2021. [DOI: 10.1039/d1nj04749c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cucurbit[n]urils (Q[n]s) are essential members of the supramolecular organic framework family owing to their distinct structure.
Collapse
Affiliation(s)
- Huaming Feng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qing Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
166
|
Plant polyphenol intermediated metal-organic framework (MOF) membranes for efficient desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118726] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
167
|
Schneemann A, Dong R, Schwotzer F, Zhong H, Senkovska I, Feng X, Kaskel S. 2D framework materials for energy applications. Chem Sci 2020; 12:1600-1619. [PMID: 34163921 PMCID: PMC8179301 DOI: 10.1039/d0sc05889k] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years a massive increase in publications on conventional 2D materials (graphene, h-BN, MoS2) is documented, accompanied by the transfer of the 2D concept to porous (crystalline) materials, such as ordered 2D layered polymers, covalent-organic frameworks, and metal-organic frameworks. Over the years, the 3D frameworks have gained a lot of attention for use in applications, ranging from electronic devices to catalysis, and from information to separation technologies, mostly due to the modular construction concept and exceptionally high porosity. A key challenge lies in the implementation of these materials into devices arising from the deliberate manipulation of properties upon delamination of their layered counterparts, including an increase in surface area, higher diffusivity, better access to surface sites and a change in the band structure. Within this minireview, we would like to highlight recent achievements in the synthesis of 2D framework materials and their advantages for certain applications, and give some future perspectives.
Collapse
Affiliation(s)
- Andreas Schneemann
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Friedrich Schwotzer
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Irena Senkovska
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| |
Collapse
|
168
|
Cao L, Wang C. Metal-Organic Layers for Electrocatalysis and Photocatalysis. ACS CENTRAL SCIENCE 2020; 6:2149-2158. [PMID: 33376778 PMCID: PMC7760065 DOI: 10.1021/acscentsci.0c01150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/15/2023]
Abstract
Metal-organic layers (MOLs) are two-dimensional analogues of metal-organic frameworks (MOFs) with a high aspect ratio and thickness down to a monolayer. Active sites on MOLs are more accessible than those on MOFs thanks to the two-dimensional feature of MOLs, which allows easier chemical modification around the catalytic center. MOLs can also be assembled with other functional materials through surface anchoring sites that can facilitate charge/energy transport through the hybrid material. MOLs are thus quite suitable for interfacial catalysis like electrocatalysis and photocatalysis. In this outlook, we focus on representative progress of constructing unique interfacial sites on MOLs with designer paths for charge separation and energy transfer, as well as cooperative cavities for superior substrate adsorption and activation. We also discuss challenges and potentials in the future development of MOL catalysts and catalysts beyond MOLs.
Collapse
Affiliation(s)
- Lingyun Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
169
|
Wu MB, Yang F, Yang J, Zhong Q, Körstgen V, Yang P, Müller-Buschbaum P, Xu ZK. Lysozyme Membranes Promoted by Hydrophobic Substrates for Ultrafast and Precise Organic Solvent Nanofiltration. NANO LETTERS 2020; 20:8760-8767. [PMID: 33211495 DOI: 10.1021/acs.nanolett.0c03632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic solvent nanofiltration (OSN) is regarded as a promising separation technology in chemical and pharmaceutical industries. However, it remains a great challenge in fabricating OSN membranes with high permeability and precise selectivity by simple, transfer-free, and up-scalable processes. Herein, we report lysozyme nanofilm composite membranes (LNCM) prepared by one-step methods with hydrophobic substrates at the air/water interface. The microporous substrates not only promote the heterogeneous nucleation of amyloid-like lysozyme oligomers to construct small pores in the formed nanofilms but also benefit for the simultaneous composition of LNCM via hydrophobic interactions. The constructed nanopores are reduced to around 1.0 nm, and they are demonstrated by grazing incidence small-angle X-ray scattering with a closely packed model. The LNCM can tolerate most organic polar solvents and the permeability surpasses most of state-of-the-art OSN membranes.
Collapse
Affiliation(s)
- Ming-Bang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou 310018, China
| | - Facui Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Yang
- College of Materials, Chemistry, and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
| | - Volker Körstgen
- Heinz Maier-Leibnitz-Zentrum, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
- Heinz Maier-Leibnitz-Zentrum, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Colleage of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
170
|
|
171
|
Yang Q, Li Q, Liu Z, Wang D, Guo Y, Li X, Tang Y, Li H, Dong B, Zhi C. Dendrites in Zn-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001854. [PMID: 33103828 DOI: 10.1002/adma.202001854] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Indexed: 05/18/2023]
Abstract
Aqueous Zn batteries that provide a synergistic integration of absolute safety and high energy density have been considered as highly promising energy-storage systems for powering electronics. Despite the rapid progress made in developing high-performance cathodes and electrolytes, the underestimated but non-negligible dendrites of Zn anode have been observed to shorten battery lifespan. Herein, this dendrite issue in Zn anodes, with regard to fundamentals, protection strategies, characterization techniques, and theoretical simulations, is systematically discussed. An overall comparison between the Zn dendrite and its Li and Al counterparts, to highlight their differences in both origin and topology, is given. Subsequently, in-depth clarifications of the specific influence factors of Zn dendrites, including the accumulation effect and the cathode loading mass (a distinct factor for laboratory studies and practical applications) are presented. Recent advances in Zn dendrite protection are then comprehensively summarized and categorized to generate an overview of respective superiorities and limitations of various strategies. Accordingly, theoretical computations and advanced characterization approaches are introduced as mechanism guidelines and measurement criteria for dendrite suppression, respectively. The concluding section emphasizes future challenges in addressing the Zn dendrite issue and potential approaches to further promoting the lifespan of Zn batteries.
Collapse
Affiliation(s)
- Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Zhuoxin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Donghong Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
| | - Yongchao Tang
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Binbin Dong
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
172
|
Sui X, Yuan Z, Yu Y, Goh K, Chen Y. 2D Material Based Advanced Membranes for Separations in Organic Solvents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003400. [PMID: 33217172 DOI: 10.1002/smll.202003400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Indexed: 06/11/2023]
Abstract
2D materials have shown high potentials for fabricating next-generation membranes. To date, extensive studies have focused on the applications of 2D material membranes in gas and aqueous media. Recently, compelling opportunities emerge for 2D material membranes in separation applications in organic solvents because of their unique properties, such as ultrathin mono- to few-layers, outstanding chemical resistance toward organic solvents. Hence, this review aims to provide a timely overview of the current state-of-the-art of 2D material membranes focusing on their applications in organic solvent separations. 2D material membranes fabricated using graphene materials and a few representative nongraphene-based 2D materials, including covalent organic frameworks and MXenes, are summarized. The key membrane design strategies and their effects on separation performances in organic solvents are also examined. Last, several perspectives are provided in terms of the critical challenges for 2D material membranes, including standardization of membrane performance evaluation, improving understandings of separation mechanisms, managing the trade-off of permeability and selectivity, issues related to application versatility, long-term stability, and fabrication scalability. This review will provide a useful guide for researchers in creating novel 2D material membranes for advancing new separation techniques in organic solvents.
Collapse
Affiliation(s)
- Xiao Sui
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanxi Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
173
|
Manoranjan N, Zhang F, Wang Z, Dong Y, Fang W, Zhang Y, Zhu Y, Jin J. A Single-Walled Carbon Nanotube/Covalent Organic Framework Nanocomposite Ultrathin Membrane with High Organic Solvent Resistance for Molecule Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53096-53103. [PMID: 33169985 DOI: 10.1021/acsami.0c14825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent organic framework (COF)-based membranes are burgeoning candidates for separation technologies owing to their well-ordered channel structures. The exponential interest in the stability of the COF membrane on exposure to harsh organic solvents is directed to develop a composite membrane for dye separations in polar aprotic solvents. Here, we reported a nanocomposite membrane composing of a single-walled carbon nanotube (SWCNT)/COF (an imine-based COF) hybrid on a commercial polytetrafluoroethylene (PTFE) substrate, with a thickness of ∼58 nm prepared in a diffusion cell. This membrane displayed high permeability and stability toward nonpolar and aprotic solvents. It exhibited high permeability for lower viscous organic solvents such as hexane (66 L m-2 h-1 bar-1), acetone (60 L m-2 h-1 bar-1), and acetonitrile (59 L m-2 h-1 bar-1) with a desirable dye rejection (92.8% for Brilliant blue in acetone). The long-time operation demonstrated the excellent stability of the nanocomposite membrane. We herein reported a facile and mild method to prepare an ultrathin COF-based nanocomposite membrane with a porous, robust structure coupled with solvent durability capable of efficient dye separation.
Collapse
Affiliation(s)
- Narmadha Manoranjan
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhenyi Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Yanping Dong
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Wangxi Fang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhang Zhu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Jian Jin
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
174
|
Das S, Ben T, Qiu S, Valtchev V. Two-Dimensional COF-Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H 2/CO 2 Selectivity and Ultrahigh Gas Permeabilities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52899-52907. [PMID: 33175486 DOI: 10.1021/acsami.0c17794] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Composite membranes embodying multilayered architecture have been on an uptrend to tap the synergy between different materials to attain new heights in gas separation performance. In the light of sustainable materials research, covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have emerged as cutting-edge platforms for molecular-sieving membranes owing to their phenomenal surface areas, ultrahigh porosities, and precise control over chemical functionalities. In this study, we report for the first time a three-dimensional (3D) MOF-mediated strategy where a specially designed MOF film provides the binding sites along the vertical direction to anchor the two-dimensional (2D) COF structural building units. The strong chemical bonding between the 3D MOF and 2D COF provides a new outlook to fabricate 2D COF-based composite membranes. The π-stacked columns of 2D H2P-DHPh COF that can contribute to direct pathways for gas transport render the resulting membrane incredibly promising for high-flux gas separation. Besides, the chemical synergy between the MOF and COF endows the thus-developed H2P-DHPh COF-UiO-66 composite membrane with unprecedented H2/CO2 gas mixture selectivity (32.9) as well as ultrahigh H2 (108 341.3 Barrer) and CO2 permeabilities, which significantly outperform the present Robeson upper bound and polymer membranes hitherto reported.
Collapse
Affiliation(s)
- Saikat Das
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Teng Ben
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shilun Qiu
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Valentin Valtchev
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050 Caen, France
| |
Collapse
|
175
|
Dou H, Xu M, Wang B, Zhang Z, Wen G, Zheng Y, Luo D, Zhao L, Yu A, Zhang L, Jiang Z, Chen Z. Microporous framework membranes for precise molecule/ion separations. Chem Soc Rev 2020; 50:986-1029. [PMID: 33226395 DOI: 10.1039/d0cs00552e] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microporous framework membranes such as metal-organic framework (MOF) membranes and covalent organic framework (COF) membranes are constructed by the controlled growth of small building blocks with large porosity and permanent well-defined micropore structures, which can overcome the ubiquitous tradeoff between membrane permeability and selectivity; they hold great promise for the enormous challenging separations in energy and environment fields. Therefore, microporous framework membranes are endowed with great expectations as next-generation membranes, and have evolved into a booming research field. Numerous novel membrane materials, versatile manipulation strategies of membrane structures, and fascinating applications have erupted in the last five years. First, this review summarizes and categorizes the microporous framework membranes with pore sizes lower than 2 nm based on their chemistry: inorganic microporous framework membranes, organic-inorganic microporous framework membranes, and organic microporous framework membranes, where the chemistry, fabrications, and differences among these membranes have been highlighted. Special attention is paid to the membrane structures and their corresponding modifications, including pore architecture, intercrystalline grain boundary, as well as their diverse control strategies. Then, the separation mechanisms of membranes are covered, such as diffusion-selectivity separation, adsorption-selectivity separation, and synergetic adsorption-diffusion-selectivity separation. Meanwhile, intricate membrane design to realize synergistic separation and some emerging mechanisms are highlighted. Finally, the applications of microporous framework membranes for precise gas separation, liquid molecule separation, and ion sieving are summarized. The remaining challenges and future perspectives in this field are discussed. This timely review may provide genuine guidance on the manipulation of membrane structures and inspire creative designs of novel membranes, promoting the sustainable development and steadily increasing prosperity of this field.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Huang T, Moosa BA, Hoang P, Liu J, Chisca S, Zhang G, AlYami M, Khashab NM, Nunes SP. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat Commun 2020; 11:5882. [PMID: 33208753 PMCID: PMC7674481 DOI: 10.1038/s41467-020-19404-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system. Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here, the authors introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high performance selective separations.
Collapse
Affiliation(s)
- Tiefan Huang
- Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, 411201, Xiangtan, China
| | - Basem A Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Phuong Hoang
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiangtao Liu
- Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan Chisca
- Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gengwu Zhang
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mram AlYami
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Suzana P Nunes
- Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
177
|
Yang S, Li H, Zhang X, Du S, Zhang J, Su B, Gao X, Mandal B. Amine-functionalized ZIF-8 nanoparticles as interlayer for the improvement of the separation performance of organic solvent nanofiltration (OSN) membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118433] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
178
|
Zhu J, Yuan S, Wang J, Zhang Y, Tian M, Van der Bruggen B. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
179
|
Li P, Zhang M, Zhai Z, Wang M, Li P, Hou Y, Jason Niu Q. Precise assembly of a zeolite imidazolate framework on polypropylene support for the fabrication of thin film nanocomposite reverse osmosis membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
180
|
Wang X, Zhang D, Wu J, Protsak I, Mao S, Ma C, Ma M, Zhong M, Tan J, Yang J. Novel Salt-Responsive SiO 2@Cellulose Membranes Promote Continuous Gradient and Adjustable Transport Efficiency. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42169-42178. [PMID: 32835481 DOI: 10.1021/acsami.0c12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Continuously growing interest in the controlled and tunable transport or separation of target molecules has attracted more attention recently. However, traditional "on-off" stimuli-responsive membranes are limited to nongradient feedback, which manifests as filtration efficiency that cannot be increased or decreased gradually along with the different stimuli conditions; indeed, only the transformation of on/off state is visible. Herein, we design and fabricate a series of robust salt-responsive SiO2@cellulose membranes (SRMs) by simply combining salt-responsive poly[3-(dimethyl(4-vinylbenzyl)ammonium)propyl sulfonate] (polyDVBAPS)-modified SiO2 nanoparticles and cellulose membranes under negative-pressure filtering. The antipolyelectrolyte effect induces stretch/shrinkage of polyDVBAPS chains inside the channels and facilities the directional aperture size and surface wettability variation, greatly enhancing the variability of interfacial transport and separation efficiency. Due to the linear salt-responsive feedback mechanism, the optimal SRMs achieve highly efficient target macromolecule separation (>75%) and rapid oil/saline separation (>97%) with a continuous gradient and adjustable permeability, instead of simply an "on-off" switch. The salt-responsive factors (SiO2-polyDVBAPS) could be reversibly separated or self-assembled to membrane substrates; thus, SRMs achieved unprecedented repeatability and reusability even after long-term cyclic testing, which exceeds those of currently reported membranes. Such SRMs possess simultaneously a superfast responsive time, a controllable gradient permeability, a high gating ratio, and an excellent reusability, making our strategy a potentially exciting approach for efficient osmotic transportation and target molecule separation in a more controllable manner.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dong Zhang
- Department of Chemical, Biomolecular and Corrosion Engineering. The University of Akron, Ohio 44325, United States
| | - Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Iryna Protsak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine
| | - Shihua Mao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chunxin Ma
- State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou 570228, PR China
| | - Meng Ma
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, PR China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
181
|
He X, Yang Y, Wu H, He G, Xu Z, Kong Y, Cao L, Shi B, Zhang Z, Tongsh C, Jiao K, Zhu K, Jiang Z. De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001284. [PMID: 32715516 DOI: 10.1002/adma.202001284] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm-1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.
Collapse
Affiliation(s)
- Xueyi He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yi Yang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhongxing Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yan Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chasen Tongsh
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| | - Kui Jiao
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| | - Kongying Zhu
- Nuclear Magnetic Resonance Test Center, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
182
|
Zhai L, Yu X, Wang Y, Zhang J, Ying Y, Cheng Y, Peh SB, Liu G, Wang X, Cai Y, Zhao D. Polycrystalline rare-earth metal-organic framework membranes with in-situ healing ability for efficient alcohol dehydration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
183
|
Huang M, Chong J, Hu C, Yang Y. Ratiometric fluorescent detection of temperature and MnO4- using a modified covalent organic framework. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
184
|
Peng H, Raya J, Richard F, Baaziz W, Ersen O, Ciesielski A, Samorì P. Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza‐Diels–Alder Reaction: Towards High‐Performance Supercapacitor Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haijun Peng
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Jésus Raya
- Membrane Biophysics and NMR Institute of Chemistry UMR 7177 Université de Strasbourg Membrane Biophysics and NMR 1 Rue Blaise Pascal 67000 Strasbourg France
| | - Fanny Richard
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Walid Baaziz
- Université de Strasbourg CNRS, IPCMS UMR 7504 23 rue du Loess 67034 Strasbourg France
| | - Ovidiu Ersen
- Université de Strasbourg CNRS, IPCMS UMR 7504 23 rue du Loess 67034 Strasbourg France
| | - Artur Ciesielski
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Paolo Samorì
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
185
|
Peng H, Raya J, Richard F, Baaziz W, Ersen O, Ciesielski A, Samorì P. Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza-Diels-Alder Reaction: Towards High-Performance Supercapacitor Materials. Angew Chem Int Ed Engl 2020; 59:19602-19609. [PMID: 32634276 DOI: 10.1002/anie.202008408] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/20/2022]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted enormous attention in recent years. Recently, MOF@COF are emerging as hybrid architectures combining the unique features of the individual components to enable the generation of materials displaying novel physicochemical properties. Herein we report an unprecedented use of aza-Diels-Alder cycloaddition reaction as post-synthetic modification of MOF@COF-LZU1, to generate aza-MOFs@COFs hybrid porous materials with extended π-delocalization. A a proof-of-concept, the obtained aza-MOFs@COFs is used as electrode in supercapacitors displaying specific capacitance of 20.35 μF cm-2 and high volumetric energy density of 1.16 F cm-3 . Our approach of post-synthetic modification of MOFs@COFs hybrids implement rational design for the synthesis of functional porous materials and expands the plethora of promising application of MOFs@COFs hybrid porous materials in energy storage applications.
Collapse
Affiliation(s)
- Haijun Peng
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Jésus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, UMR 7177, Université de Strasbourg, Membrane Biophysics and NMR, 1 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Fanny Richard
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Walid Baaziz
- Université de Strasbourg, CNRS, IPCMS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France
| | - Ovidiu Ersen
- Université de Strasbourg, CNRS, IPCMS UMR 7504, 23 rue du Loess, 67034, Strasbourg, France
| | - Artur Ciesielski
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
186
|
Abdul Hamid MR, Jeong HK. Flow synthesis of polycrystalline ZIF-8 membranes on polyvinylidene fluoride hollow fibers for recovery of hydrogen and propylene. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
187
|
Qiao Z, Liang Y, Zhang Z, Mei D, Wang Z, Guiver MD, Zhong C. Ultrathin Low-Crystallinity MOF Membranes Fabricated by Interface Layer Polarization Induction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002165. [PMID: 32666633 DOI: 10.1002/adma.202002165] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Practical, ultrathin metal-organic framework (MOF) membranes have the potential to achieve otherwise difficult separations, but current fabrication methods still face challenges in the simultaneous improvement of both selectivity and permeance. Here, ultrathin, low-crystallinity-state MOF (LC-MOF) membranes are realized by a facile general method of interface layer polarization induction. This is achieved using an interface layer having metal ions with dense and uniform distribution, resulting in the creation of abundant open metal sites. Three types of LC-MOF membranes (45-150 nm) are fabricated, among which ZIF-8 membranes modified in situ with diethanolamine (DZIF-8) display the best performance for propylene/propane separation, showing unprecedented propylene permeance (2000-3000 Gas Permeance Units) with very high propylene/propane selectivity (90-120).
Collapse
Affiliation(s)
- Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Yueyao Liang
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Donghai Mei
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Michael D Guiver
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
188
|
Allendorf MD, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Electronic Devices Using Open Framework Materials. Chem Rev 2020; 120:8581-8640. [DOI: 10.1021/acs.chemrev.0c00033] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
189
|
Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules 2020; 25:molecules25143132. [PMID: 32650603 PMCID: PMC7397005 DOI: 10.3390/molecules25143132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)2 covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)2 with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)2 is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.
Collapse
|
190
|
Zhou Y, Zhang G, Li B, Wu L. Two-Dimensional Supramolecular Ionic Frameworks for Precise Membrane Separation of Small Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30761-30769. [PMID: 32462871 DOI: 10.1021/acsami.0c05947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular frameworks driven by intermolecular interactions represent a new type of porous materials differing from those driven by covalent or coordination bonding. The intermolecular interaction-induced flexible assembly structures display unique advantages in material processing, structure stimuli response, and recycling. In this work, a two-dimensional (2D) supramolecular ionic framework (SIF) was constructed through the initial ionic interaction between the host cation and polyoxometalate polyanion and then the host-guest inclusion of the formed host ionic complex with a four-arm porphyrin guest molecule following a [2+4] type reaction. Several prepared framework monolayers bearing an orthometric grid structure constituted a nanosheet-like assembly with flexibility and exhibited processability, which provided feasibility for the further preparation of separation membranes via a simple suction procedure of their dispersed suspensions in mixed solvents. The nanofiltration based on the uniform square pores under a slightly reduced pressure successfully achieved precise separation of several types of nanoparticles and molecular clusters in wide distribution at a cutting off value as small as 2.2 nm. These results also implied the potential of the present strategy for more separations at a molecular level and very fine nanoscale.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
191
|
Wang R, Wei M, Wang Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118090] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
192
|
Li C, Li S, Zhang J, Yang C, Su B, Han L, Gao X. Emerging sandwich-like reverse osmosis membrane with interfacial assembled covalent organic frameworks interlayer for highly-efficient desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118065] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
193
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
194
|
Shinde DB, Cao L, Wonanke ADD, Li X, Kumar S, Liu X, Hedhili MN, Emwas AH, Addicoat M, Huang KW, Lai Z. Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chem Sci 2020; 11:5434-5440. [PMID: 34094070 PMCID: PMC8159406 DOI: 10.1039/d0sc01679a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The advantages of two dimensional covalent organic framework membranes to achieve high flux have been demonstrated, but the capability of easy structural modification to manipulate the pore size has not been fully explored yet. Here we report the use of the Langmuir-Blodgett method to synthesize two ultrathin covalent organic framework membranes (TFP-DPF and TFP-DNF) that have a similar framework structure to our previously reported covalent organic framework membrane (TFP-DHF) but different lengths of carbon chains aiming to rationally control the pore size. The membrane permeation results in the applications of organic solvent nanofiltration and molecular sieving of organic dyes showed a systematic shift of the membrane flux and molecular weight cut-off correlated to the pore size change. These results enhanced our fundamental understanding of transport through uniform channels at nanometer scales. Pore engineering of the covalent organic framework membranes was demonstrated for the first time.
Collapse
Affiliation(s)
- Digambar B Shinde
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Xiang Li
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Sushil Kumar
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mohamed N Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Kuo-Wei Huang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
195
|
Wang J, Li N, Xu Y, Pang H. Two‐Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry 2020; 26:6402-6422. [DOI: 10.1002/chem.202000294] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/04/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ji Wang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Nan Li
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Yuxia Xu
- Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| |
Collapse
|
196
|
Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J. High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation. J Am Chem Soc 2020; 142:6872-6877. [DOI: 10.1021/jacs.0c00927] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hongwei Fan
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Manhua Peng
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany
| | - Ina Strauss
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Alexander Mundstock
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Hong Meng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| |
Collapse
|
197
|
Castro-Muñoz R, Agrawal KV, Coronas J. Ultrathin permselective membranes: the latent way for efficient gas separation. RSC Adv 2020; 10:12653-12670. [PMID: 35497580 PMCID: PMC9051376 DOI: 10.1039/d0ra02254c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane gas separation has attracted the attention of chemical engineers for the selective separation of gases. Among the different types of membranes used, ultrathin membranes are recognized to break the trade-off between selectivity and permeance to provide ultimate separation. Such success has been associated with the ultrathin nature of the selective layer as well as their defect-free structure. These membrane features can be obtained from specific membrane preparation procedures used, in which the intrinsic properties of different nanostructured materials (e.g., polymers, zeolites, covalent-organic frameworks, metal-organic frameworks, and graphene and its derivatives) also play a crucial role. It is likely that such a concept of membranes will be explored in the coming years. Therefore, the goal of this review study is to give the latest insights into the use of ultrathin selective barriers, highlighting and describing the primary membrane preparation protocols applied, such as atomic layer deposition, in situ crystal formation, interfacial polymerization, Langmuir-Blodgett technique, facile filtration process, and gutter layer formation, to mention just a few. For this, the most recent approaches are addressed, with particular emphasis on the most relevant results in separating gas molecules. A brief overview of the fundamentals for the application of the techniques is given. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are also provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Kumar Varoon Agrawal
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne Sion Switzerland
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA), Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC 50018 Zaragoza Spain
| |
Collapse
|
198
|
Wang J, Zhao L, Yan B. Indicator Displacement Assay Inside Dye-Functionalized Covalent Organic Frameworks for Ultrasensitive Monitoring of Sialic Acid, an Ovarian Cancer Biomarker. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12990-12997. [PMID: 32106673 DOI: 10.1021/acsami.0c00101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Identifying biomolecules for disease diagnosis requires simple, accurate, and reliable analytical techniques. Multiple signal transduction pathways have promoted the development of various biological analysis systems. However, most systems are largely limited by a single mechanism or model analysis, which can easily lead to false-positive/negative results. Herein, we report a covalent organic framework (COF) (TpPa-1) functionalized with a dye (fluorescein sodium) and design this hybrid material (TpPa-1@Dye) to fabricate hydrogels for subsequent analysis with the indicator displacement assay (IDA) method. Selecting a suitable metal cation (Cr3+) for the preparation of hydrogels can reduce the background fluorescence, improve the detection sensitivity, and increase the corresponding sensing selectivity. The TpPa-1@Dye functions as an indicator in the IDA-in-COF system, and Cr3+ is a receptor of the analyte (sialic acid (SA), a biomarker for ovarian cancer diagnosis). Based on the above studies, the integrative logic operations (AND + IMP) are further established, it helps in elucidating the design rules of the IDA-in-COF approach. This work represents the first effort in designing IDA-in-COF luminescent sensors with an On-Off-On mechanism to determine biomarkers and provides a new approach for developing hybrid COF luminescent materials as analysis platforms for human health monitoring.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
199
|
Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Covalent organic frameworks for separation applications. Chem Soc Rev 2020; 49:708-735. [PMID: 31993598 DOI: 10.1039/c9cs00827f] [Citation(s) in RCA: 544] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with highly tuneable structures and functionalities. COFs have been proposed as ideal materials for applications in the energy-intensive field of molecular separation due to their notable intrinsic features such as low density, exceptional stability, high surface area, and readily adjustable pore size and chemical environment. This review attempts to highlight the key advancements made in the synthesis of COFs for diverse separation applications such as water treatment or the separation of gas mixtures and organic molecules, including chiral and isomeric compounds. Methods proposed for the fabrication of COF-based columns and continuous membranes for practical applications are also discussed in detail. Finally, a perspective regarding the remaining challenges and future directions for COF research in the field of separation has also been presented.
Collapse
Affiliation(s)
- Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | | | |
Collapse
|
200
|
Li G, Wang W, Fang Q, Liu F. Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|