151
|
Navdaev A, Lochnit G, Eble JA. The rhodocetin αβ subunit targets GPIb and inhibits von Willebrand factor induced platelet activation. Toxicon 2011; 57:1041-8. [PMID: 21524659 DOI: 10.1016/j.toxicon.2011.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 11/29/2022]
Abstract
Rhodocetin, a heterotetrameric snake C-type lectin from Calloselasma rhodostoma is a specific antagonist of α2β1 integrin. Its γδ subunit is responsible for binding to α2β1 integrin. In this study we show that the rhodocetin αβ subunit can bind to platelet glycoprotein GPIb. Binding of the rhodocetin αβ subunit does not depend on divalent cations. When added to washed human platelets the rhodocetin αβ subunit effectively inhibits platelet aggregation induced by von Willebrand factor plus ristocetin. In contrast, it does not affect collagen-induced platelet activation. By itself the rhodocetin αβ subunit does not induce any changes when added to washed platelets or platelet-rich plasma. However, rhodocetin αβ, after biotinylation and cross-linkage with avidin induces small platelet agglutination but not aggregation. These agglutinated platelets change their pattern of protein tyrosine phosphorylation slightly as kinase p72SYK but not p125FAK is phosphorylated.
Collapse
Affiliation(s)
- Alexey Navdaev
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Dept. Vascular Matrix Biology, Frankfurt University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
152
|
Unsworth AJ, Smith H, Gissen P, Watson SP, Pears CJ. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem 2011; 286:21073-82. [PMID: 21489985 PMCID: PMC3122168 DOI: 10.1074/jbc.m110.187138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in d-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca2+, and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca2+. Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCϵ but not PKCθ. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca2+. This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca2+ concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.
Collapse
Affiliation(s)
- Amanda J Unsworth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
153
|
Phelan M, Kerins D. The potential role of milk-derived peptides in cardiovascular disease. Food Funct 2011; 2:153-67. [PMID: 21779574 DOI: 10.1039/c1fo10017c] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioactive peptides derived from milk proteins are of particular interest to the food industry due to the potential functional and physiological roles that they demonstrate, particularly in relation to cardiovascular disease (CVD). By 2020 it is estimated that heart disease and stroke will become the leading cause of death and disability worldwide. Acute and chronic cardiovascular events may result from alterations in the activity of the renin-angiotensin aldosterone system and activation of the coagulation cascade and of platelets. Medications that inhibit angiotensin converting enzyme (ACE) are widely prescribed in the treatment and prevention of cardiovascular disease. ACE inhibitory peptides are of particular interest due to the presence of encrypted inhibitory peptide sequences. In particular, Ile-Pro-Pro and Val-Pro-Pro are fore runners in ACE inhibition, and have been incorporated into commercial products. Additionally, studies to identify additional novel peptides with similar bio-activity and the ability to withstand digestion during transit through the gastrointestinal tract are ongoing. The potential sources of such peptides in cheese and other dairy products are discussed. Challenges to the bio-availability of such peptides in the gastro intestinal tract are also reviewed. Activation of platelets and the coagulation cascade play a central role in the progression of cardiovascular disease. Platelets from such patients show spontaneous aggregation and an increased sensitivity to agonists which results in vascular damage and endothelial dysfunction associated with CVD. Peptide sequences exhibiting anti-thrombotic activity have been identified from fermented milk products. Studies on such peptides are reviewed and their effects on platelet function are discussed. Finally the ability of food derived peptides to decrease the formation of blood clots (thrombi) is reviewed. In conclusion, due to the widespread nature of cardiovascular disease, the identification of food derived compounds that exhibit a beneficial effect in such widespread areas of CVD regulation will have strong clinical potential. Due to the perception that food derived products have an acceptable risk profile they have the potential for widespread acceptance by the public. In this review, selected biological effects relating to CVD are discussed with a view to providing essential information to researchers.
Collapse
Affiliation(s)
- Martha Phelan
- Food for Health Ireland, University College Cork, Western Road, Cork, Ireland
| | | |
Collapse
|
154
|
Mahaut-Smith MP, Jones S, Evans RJ. The P2X1 receptor and platelet function. Purinergic Signal 2011; 7:341-56. [PMID: 21484087 PMCID: PMC3166991 DOI: 10.1007/s11302-011-9224-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/22/2011] [Indexed: 12/17/2022] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca(2+), leading to shape change, movement of secretory granules and low levels of α(IIb)β(3) integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, UK,
| | | | | |
Collapse
|
155
|
Kamruzzaman SM, Endale M, Oh WJ, Park SC, Kim TH, Lee IK, Cho JY, Park HJ, Kim SK, Yun BS, Rhee MH. Antiplatelet activity of Phellinus baummii methanol extract is mediated by cyclic AMP elevation and inhibition of collagen-activated integrin-α(IIb) β₃ and MAP kinase. Phytother Res 2011; 25:1596-603. [PMID: 21394810 DOI: 10.1002/ptr.3450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/09/2011] [Accepted: 01/26/2011] [Indexed: 01/12/2023]
Abstract
Phellinus baumii is a mushroom that has been used as folk medicine against various diseases and is reported to have antidiabetic, anticancer, antioxidant, antiinflammatory and antihypertensive activities. However, information on the effects of P. baumii extract in platelet function is limited. Therefore, the aim of this study was to examine the impact of a P. baumii methanol extract (PBME) on platelet activation and to investigate the mechanism behind its antiplatelet activity. PBME effects on agonist-induced platelet aggregation, granule secretion, [Ca²⁺](i) mobilization, α(IIb) β₃ activation, cyclic AMP release and mitogen-activated protein kinase (MAPK) phosphorylations were studied using rat platelets. PBME dose-dependently inhibited collagen, thrombin and ADP-induced platelet aggregation with an IC₅₀ of 51.0 ± 2.4, 54.0 ± 2.1 and 53.0 ± 4.3 μg/mL, respectively. Likewise, thrombin-induced [Ca²⁺](i) and collagen-activated ATP secretions were suppressed in PBME treated platelets. Aggregation and ATP secretion were also markedly attenuated by PBME alone or in combination with PP2 (Src inhibitor) and U-73122 (PLC inhibitor) in collagen-stimulated platelets. Besides, PBME treatment elevated basal cyclic AMP levels and inhibited collagen-induced integrin-α(IIb) β₃ activation. Moreover, PBME attenuated extracellular-signal-regulated protein kinase 2 (ERK2) and c-Jun N-terminal kinase 1 (JNK1) phosphorylations. Further PD98059 (ERK inhibitor) and SP60025 (JNK inhibitor) reduced collagen-induced platelet aggregation and ATP secretion. In conclusion, the observed PBME antiplatelet activity may be mediated by activation of cyclic AMP and inhibition of ERK2 and JNK1 phosphorylations. Finally, these data suggest that PBME may have therapeutic potential for the treatment of cardiovascular diseases that involve aberrant platelet function.
Collapse
Affiliation(s)
- S M Kamruzzaman
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Turner EC, Kavanagh DJ, Mulvaney EP, McLean C, Wikström K, Reid HM, Kinsella BT. Identification of an interaction between the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor with protein kinase C-related kinase (PRK) 1: implications for prostate cancer. J Biol Chem 2011; 286:15440-57. [PMID: 21357687 DOI: 10.1074/jbc.m110.181180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, thromboxane (TX) A(2) signals through the TPα and TPβ isoforms of the TXA(2) receptor or TP. Here, the RhoA effector protein kinase C-related kinase (PRK) 1 was identified as an interactant of both TPα and ΤPβ involving common and unique sequences within their respective C-terminal (C)-tail domains and the kinase domain of PRK1 (PRK1(640-942)). Although the interaction with PRK1 is constitutive, agonist activation of TPα/TPβ did not regulate the complex per se but enhanced PRK1 activation leading to phosphorylation of its general substrate histone H1 in vitro. Altered PRK1 and TP expression and signaling are increasingly implicated in certain neoplasms, particularly in androgen-associated prostate carcinomas. Agonist activation of TPα/TPβ led to phosphorylation of histone H3 at Thr(11) (H3 Thr(11)), a previously recognized specific marker of androgen-induced chromatin remodeling, in the prostate LNCaP and PC-3 cell lines but not in primary vascular smooth muscle or endothelial cells. Moreover, this effect was augmented by dihydrotestosterone in androgen-responsive LNCaP but not in nonresponsive PC-3 cells. Furthermore, PRK1 was confirmed to constitutively interact with TPα/TPβ in both LNCaP and PC-3 cells, and targeted disruption of PRK1 impaired TPα/TPβ-mediated H3 Thr(11) phosphorylation in, and cell migration of, both prostate cell types. Collectively, considering the role of TXA(2) as a potent mediator of RhoA signaling, the identification of PRK1 as a bona fide interactant of TPα/TPβ, and leading to H3 Thr(11) phosphorylation to regulate cell migration, has broad functional significance such as within the vasculature and in neoplasms in which both PRK1 and the TPs are increasingly implicated.
Collapse
Affiliation(s)
- Elizebeth C Turner
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
157
|
Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 2011; 130:157-76. [PMID: 21277893 DOI: 10.1016/j.pharmthera.2011.01.010] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 12/18/2022]
Abstract
The bark and/or seed cones of the Magnolia tree have been used in traditional herbal medicines in Korea, China and Japan. Bioactive ingredients such as magnolol, honokiol, 4-O-methylhonokiol and obovatol have received great attention, judging by the large number of investigators who have studied their pharmacological effects for the treatment of various diseases. Recently, many investigators reported the anti-cancer, anti-stress, anti-anxiety, anti-depressant, anti-oxidant, anti-inflammatory and hepatoprotective effects as well as toxicities and pharmacokinetics data, however, the mechanisms underlying these pharmacological activities are not clear. The aim of this study was to review a variety of experimental and clinical reports and, describe the effectiveness, toxicities and pharmacokinetics, and possible mechanisms of Magnolia and/or its constituents.
Collapse
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
158
|
Harper MT, Sage SO. Src family tyrosine kinases activate thrombin-induced non-capacitative cation entry in human platelets. Platelets 2011; 21:445-50. [PMID: 20482247 DOI: 10.3109/09537104.2010.483295] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelet activation is critically regulated by an increase in intracellular calcium concentration ([Ca2+](i)). Although Ca2+ release from intracellular Ca2+ stores and subsequent store-operated Ca2+ entry are often thought to be the major contributors to increases in [Ca2+](i) evoked by most agonists, high concentrations of thrombin activate a Ca2+ entry pathway that is independent of Ca2+ store depletion (known as 'non-capacitative cation entry'-NCCE). The channel that conducts NCCE has not previously been clearly identified, and the mechanisms that regulate its activation are also unknown. Here we have investigated NCCE using fura-2-loaded human platelets. To investigate NCCE independently of other Ca2+ signaling pathways, the intracellular Ca2+ stores were first rapidly depleted in the absence of extracellular Ca2+. Sr2+ was then added to monitor maximal store-operated cation influx. Thrombin was then added to stimulate NCCE. Flufenamic acid, which inhibits Ca2+ entry through most TRPC isoforms, but potentiates entry through TRPC6, was found to block store-operated cation entry. In contrast, thrombin-induced NCCE was increased, suggesting the possible involvement of TRPC6. Since TRPC6 is regulated by Src family tyrosine kinases in some cells, we investigated the possible role of this kinase family in NCCE. PP2, a Src family tyrosine kinase inhibitor, completely abolished thrombin-induced NCCE. Furthermore, NCCE was enhanced by phenylarsine oxide and could be directly induced by vanadyl hydroperoxide, both tyrosine phosphatase inhibitors. These data indicate that Src family tyrosine kinase activation is a required step in NCCE activation. In conclusion NCCE may be an important regulator of platelet activation when local thrombin concentrations are high.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB23EG, UK.
| | | |
Collapse
|
159
|
Mori K, Kikuchi H, Obara Y, Iwashita M, Azumi Y, Kinugasa S, Inatomi S, Oshima Y, Nakahata N. Inhibitory effect of hericenone B from Hericium erinaceus on collagen-induced platelet aggregation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1082-1085. [PMID: 20637576 DOI: 10.1016/j.phymed.2010.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/26/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Platelet aggregation in the blood vessel causes thrombosis. Therefore, inhibitors of platelet aggregation promise to be preventive or therapeutic agents of various vascular diseases, including myocardial infarction and stroke. In the present study, we found that hericenone B had a strong anti-platelet activity and it might be a novel compound for antithrombotic therapy possessing a novel mechanism. Prior to this study, we examined anti-platelet aggregation activity of ethanol extracts of several species of mushrooms, and found that extract of Hericium erinaceus potently inhibited platelet aggregation induced by collagen. Therefore, we first fractionated the ethanol extract of H. erinaceus to identify the active substances. The anti-platelet activity of each fraction was determined using washed rabbit platelets. As a result, an active component was isolated and identified as hericenone B. Hericenone B selectively inhibited collagen-induced platelet aggregation, but it did not suppress the aggregation induced by U46619 (TXA₂ analogue), ADP, thrombin, or adrenaline. Furthermore, hericenone B did not inhibit arachidonic acid- or convulxin (GPVI agonist)-induced platelet aggregation. Therefore, hericenone B was considered to block collagen signaling from integrin α2/β1 to arachidonic acid release. Moreover, we found that collagen-induced aggregation was inhibited by hericenone B in human platelets, similar to in rabbit platelets.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Stoll G, Kleinschnitz C, Nieswandt B. Combating innate inflammation: a new paradigm for acute treatment of stroke? Ann N Y Acad Sci 2010; 1207:149-54. [PMID: 20955438 DOI: 10.1111/j.1749-6632.2010.05730.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interference with early steps of platelet adhesion/activation by inhibition of the von Willebrand factor (vWF) receptor glycoprotein (GP)Ib, its ligand vWF, or the collagen receptor GPVI, profoundly limits infarction in the mouse stroke model of transient middle cerebral artery occlusion (tMCAO). A similar pathogenic role was revealed for coagulation factor XII (FXII). Although these findings strongly suggest that microvascular thrombus formation is the leading pathophysiological event in acute stroke, recent studies have shown that these molecules have the additional capacity to guide inflammatory processes, thereby providing an intriguing alternative mechanistic explanation for these observations. Surprisingly, mice lacking T cells are also protected from acute stroke, and these T cell effects are antigen independent. Thus, acute ischemic stroke can be redefined as a thrombo-inflammatory disorder, and multifunctional molecules such as GPIb, GPVI, and FXII may provide new therapeutic targets linking inflammation and thrombus formation.
Collapse
Affiliation(s)
- Guido Stoll
- Department of Neurology, University of Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
161
|
Colace T, Falls E, Zheng XL, Diamond SL. Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow. Ann Biomed Eng 2010; 39:922-9. [PMID: 20949319 DOI: 10.1007/s10439-010-0182-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/06/2010] [Indexed: 11/28/2022]
Abstract
In a focal injury model, platelets adhere and activate under flow on a collagen-coated surface, creating a field of individual platelet aggregates. These aggregates exhibit distinct structural characteristics that are linked to the local flow conditions. By combining image analysis techniques and epifluorescence microscopy, we developed a robust strategy for quantifying the characteristic instantaneous width and length of a growing platelet deposit. We have confirmed the technique using model images consisting of ellipsoid objects and quantified the shear rate-dependent nature of aggregate morphology. Venous wall shear rate conditions (100 s(-1)) generated small, circular platelet deposits, whereas elevated arterial shear rates (500 and 1000 s(-1)) generated platelet masses elongated twofold in the direction of flow. At 2000 s(-1), an important regime for von Willebrand Factor (vWF)-mediated recruitment, we observed sporadic platelet capture events on collagen that led to rapidly growing deposits. Furthermore, inter-donor differences were investigated with respect to aggregate growth rate. After perfusion at elevated shear rates (1000 s(-1)) for 5 min, we identified a twofold increase in aggregate size (81.5 ± 24.6 μm; p < 0.1) and a threefold increase in growth rate parallel to the flow (0.40 ± 0.09 μm/s; p < 0.01) for an individual donor. Suspecting a role for vWF, we found that this donor had a twofold increase in soluble vWF relative to the other donors and pooled plasma. Microfluidic devices in combination with automated morphology analysis offer new tools for characterizing clot development under flow.
Collapse
Affiliation(s)
- T Colace
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, 1024 Vagelos Research Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
162
|
|
163
|
Kamruzzaman SM, Endale M, Oh WJ, Park SC, Kim KS, Hong JH, Kwak YS, Yun BS, Rhee MH. Inhibitory effects of Bulnesia sarmienti aqueous extract on agonist-induced platelet activation and thrombus formation involves mitogen-activated protein kinases. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:614-620. [PMID: 20558266 DOI: 10.1016/j.jep.2010.05.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/10/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE B. sarmienti has long been recognized in folk medicine as a medicinal plant with various medicinal uses. Traditionally, it has been appreciated for the skin-healing properties of its essence. The bark has also been employed to treat stomach and cardiovascular disorders and reported to have antitumor, antioxidant and anti-inflammatory activities. However, information on its antiplatelet activity is limited. AIM OF THE STUDY To examined the effects of B. sarmienti aqueous extract (BSAE) in platelet physiology. MATERIALS AND METHODS The anti-platelet activity of BSAE was studied using rat platelets for in vitro determination of the extract effect on agonist-induced platelet aggregation, ATP secretion, [Ca(2+)](i) mobilization and MAP kinase phosphorylation. The extract in vivo effects was also examined in arterio-venous shunt thrombus formation in rats, and tail bleeding time in mice. RESULT HPLC chromatographic analysis revealed that B. sarmienti extract contained (+)-catechin (C), (-)-epigallocatechin (EGC), (-)-epicatechin (EC), and (-)-epicatechin gallate (ECG). BSAE, significantly and dose dependently, inhibited collagen, thrombin, or ADP-induced platelet aggregation. The 50 percent inhibitory concentrations (IC(50)) of the extract for collagen, thrombin and ADP-induced platelet aggregation were 45.3+/-2.6, 100+/-5.6 and 110+/-4.6 microg/ml, respectively. Collagen activated ATP release and thrombin-induced intracellular Ca(2+) concentration were reduced in BSAE-treated platelets. In addition, the extract in vivo activity showed that BSAE at 100 mg/kg significantly attenuated thrombus formation in rat extracorporeal shunt model while mice tail bleeding time was not affected. Moreover, BSAE attenuated p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. CONCLUSION BSAE inhibits platelet activation, granule secretion, aggregation, and thrombus formation without affecting bleeding time, and that this effect is mediated by inhibition of P38, JNK1 and ERK2 phosphorylations. The ability of BSAE to inhibit platelet function might be relevant in cases involving aberrant platelet activation where the plant extract could be considered as a candidate to anti-platelet and antithrombotic agent.
Collapse
Affiliation(s)
- S M Kamruzzaman
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Shah I, Khan SO, Malhotra S, Fischell T. Eptifibatide: The evidence for its role in the management of acute coronary syndromes. CORE EVIDENCE 2010; 4:49-65. [PMID: 20694065 PMCID: PMC2899786 DOI: 10.2147/ce.s6008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Indexed: 11/29/2022]
Abstract
Introduction: Acute coronary syndromes and non-Q-wave myocardial infarction are often initiated by platelet activation. Eptifibatide is a cyclic heptapeptide and is the third inhibitor of glycoprotein (Gp) IIb/IIIa that has found broad acceptance after the specific antibody abciximab and the nonpeptide tirofiban entered the global market. Gp IIb/IIIa inhibitors act by inhibiting the final common pathway of platelet aggregation, and play an important role in the management of acute coronary syndromes. Aims: This review assesses the evidence for therapeutic value of eptifibatide as a Gp IIb/IIIa inhibitor in patients with acute coronary syndromes. Evidence review: Several large, randomized controlled trials show that eptifibatide as adjunctive therapy to standard care in patients with non-ST segment elevation acute coronary syndrome is associated with a significant reduction in the incidence of death or myocardial infarction. Data are limited regarding the use of eptifibatide in patients with ST segment elevation myocardial infarction. Cost-effectiveness analysis indicates that eptifibatide is associated with a favorable cost-effectiveness ratio relative to standard care. According to US cost-effectiveness analysis about 70% of the acquisition costs of eptifibatide are offset by the reduced medical resource consumption during the first year. Eptifibatide was well tolerated in most of the trials. Bleeding is the most commonly reported adverse event, with most major bleeding episodes occurring at the vascular access site. Major intracranial bleeds, stroke, or profound thrombocytopenia rarely occurred during eptifibatide treatment. Place in therapy: Eptifibatide has gained widespread acceptance as an adjunct to standard anticoagulation therapy in patients with acute coronary syndromes, and may be particularly useful in the management of patients with elevated troponin or undergoing percutaneous coronary interventions.
Collapse
Affiliation(s)
- Ibrahim Shah
- Borgess Heart Institute, Kalamazoo, Michigan, USA
| | | | | | | |
Collapse
|
165
|
White-Adams TC, Berny MA, Patel IA, Tucker EI, Gailani D, Gruber A, McCarty OJT. Laminin promotes coagulation and thrombus formation in a factor XII-dependent manner. J Thromb Haemost 2010; 8:1295-301. [PMID: 20796202 PMCID: PMC4367539 DOI: 10.1111/j.1538-7836.2010.03850.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Laminin is the most abundant non-collagenous protein in the basement membrane. Recent studies have shown that laminin supports platelet adhesion, activation and aggregation under flow conditions, highlighting a possible role for laminin in hemostasis. OBJECTIVE To investigate the ability of laminin to promote coagulation and support thrombus formation under shear. RESULTS AND METHODS Soluble laminin accelerated factor (F) XII activation in a purified system, and shortened the clotting time of recalcified plasma in a FXI- and FXII-dependent manner. Laminin promoted phosphatidylserine exposure on platelets and supported platelet adhesion and fibrin formation in recalcified blood under shear flow conditions. Fibrin formation in laminin-coated capillaries was abrogated by an antibody that interferes with FXI activation by activated FXII, or an antibody that blocks activated FXI activation of FIX. CONCLUSION This study identifies a role for laminin in the initiation of coagulation and the formation of platelet-rich thrombi under shear conditions in a FXII-dependent manner.
Collapse
Affiliation(s)
- T C White-Adams
- Division of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Fan HY, Fu FH, Yang MY, Xu H, Zhang AH, Liu K. Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb Res 2010; 126:e17-22. [PMID: 20451955 DOI: 10.1016/j.thromres.2010.04.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 04/06/2010] [Accepted: 04/10/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Salvianolic acid A (SAA), the water-soluble phenolic acids in Salvia miltiorrhiza, has shown the most potent bioactivities, including protection against cerebral lesion, defense from oxidative damage and improvement of remembrance. In the present study, we studied the antiplatelet and antithrombotic effects of a newly synthesized SAA with different methods both in vitro and in vivo. MATERIALS AND METHODS We tested the effect of antithrombotic activity of SAA in arterio-venous shunt model. The effects of SAA on adenosine diphosphate (ADP)-, Thrombin-, Arachidonic acid- induced rat platelets aggregation were tested both in vivo and in vitro. The activity of SAA on washed human platelet aggregation was determined by ADP stimulation. We also evaluated its property of modulation of hemorheology, assessed its bleeding side effect by measuring coagulation parameters after intravenous administration for 5 days and investigated the potential mechanisms underlying such activities. RESULTS AND CONCLUSIONS In vivo, SAA significantly reduced thrombus weight in the model of arterio-venous shunt. Meanwhile, SAA increased plasma cAMP level determined by radioimmunoassay in the same model. Intravenously administrated SAA (2.5-10 mg/kg) inhibited platelet aggregation induced by ADP in a dose-dependent manner. Notably, SAA did not affect coagulation parameters in rats after intravenous administration SAA for successive 5 days. In vitro, pretreatment with SAA on washed rat and human platelets significantly inhibited various agonists stimulated platelet aggregation and caused an increase in cAMP level in platelets activated by ADP. These findings support our hypothesis that SAA possesses antithrombotic activities. The antithrombotic effect might be related to its antiplatelet action and ability to modulate hemorheology without affecting coagulation system. The mechanisms underlying such activities may involve the induction of cAMP.
Collapse
Affiliation(s)
- Hua-Ying Fan
- College of Life Science, Jilin University, No. 2699 Qian Road, 130012 Changchun, Jilin, PR China
| | | | | | | | | | | |
Collapse
|
167
|
The Beneficial Effect of Swirling Flow on Platelet Adhesion to the Surface of a Sudden Tubular Expansion Tube: Its Potential Application in End-to-End Arterial Anastomosis. ASAIO J 2010; 56:172-9. [DOI: 10.1097/mat.0b013e3181d0ea15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
168
|
David T, Strassel C, Eckly A, Cazenave JP, Gachet C, Lanza F. The platelet glycoprotein GPIbbeta intracellular domain participates in von Willebrand factor induced-filopodia formation independently of the Ser 166 phosphorylation site. J Thromb Haemost 2010; 8:1077-87. [PMID: 19694944 DOI: 10.1111/j.1538-7836.2009.03590.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY BACKGROUND Circulating platelets are initially recruited at the site of vessel injury by von Willebrand factor (VWF) immobilized on collagen fibers. This process, mediated by the GPIb-V-IX complex, is accompanied by specific intracellular signaling leading to reorganization of the platelet actin cytoskeleton and extension of filopodia. OBJECTIVES/METHODS To evaluate the GPIbalpha and GPIbbeta intracellular domains contribution to this signaling, we generated Chinese hamster ovary (CHO) cells expressing a GPIb-IX complex with mutant forms of the two subunits and we measured their ability to extend filopodia upon adhesion on a VWF matrix. RESULTS Complete intracellular deletion or elimination of the filamin or the 14-3-3zeta binding sites in GPIbalpha did not prevent filopodia extension. In contrast, deletion of the juxtamembrane (Leu(150)-Arg(160)) or central (Ala(159)-Pro(170)) intracellular segment of GPIbbeta resulted in a 21% and 23% reduction in the number of cells extending filopodia, respectively. This occurred without decreasing adhesion efficiency or GPIb-IX association with filamin A or 14-3-3zeta. Alanine scanning mutagenesis of the Leu(150)-Pro(170) segment identified Arg(164), Leu(165), Leu(167), Thr(168) and Pro(170) as important residues for efficient filopodia formation. Surprisingly, mutation of the Ser(166) PKA phosphorylation site did not alter adhesion and shape change. A role for the GPIbbeta subunit was reinforced by the decreased capacity to extend filopodia upon adhesion on VWF of platelets from knock-in mice expressing a GPIbbeta intracellular deletion mutant. CONCLUSIONS Altogether, our results strongly support participation of GPIbbeta and its intracellular region in GPIb-dependent platelet activation and shape change triggered by a VWF matrix.
Collapse
Affiliation(s)
- T David
- EFS-Alsace, Inserm, UMR-S949, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
169
|
Gardiner EE. A GPIb-IX-V complex signaling environment. J Thromb Haemost 2010; 8:1075-6. [PMID: 19566790 DOI: 10.1111/j.1538-7836.2009.03534.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
See also David T, Strassel C, Eckly A, Cazenave J-P, Gachet C, Lanza F. The platelet glycoprotein GPIbbeta intracellular domain participates in von Willebrand factor induced-filopodia formation independently of the Ser 166 phosphorylation site. This issue, pp 1077-87.
Collapse
Affiliation(s)
- E E Gardiner
- Australian Centre for Blood Diseases, Monash University, AMREP, Melbourne, Victoria, Australia.
| |
Collapse
|
170
|
Harper MT, Poole AW. Protein kinase Ctheta negatively regulates store-independent Ca2+ entry and phosphatidylserine exposure downstream of glycoprotein VI in platelets. J Biol Chem 2010; 285:19865-73. [PMID: 20388711 PMCID: PMC2888397 DOI: 10.1074/jbc.m109.085654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Platelet activation must be tightly controlled to provide an effective, but not excessive, response to vascular injury. Cytosolic calcium is a critical regulator of platelet function, including granule secretion, integrin activation, and phosphatidylserine (PS) exposure. Here we report that the novel protein kinase C isoform, PKCtheta, plays an important role in negatively regulating Ca(2+) signaling downstream of the major collagen receptor, glycoprotein VI (GPVI). This limits PS exposure and so may prevent excessive platelet procoagulant activity. Stimulation of GPVI resulted in significantly higher and more sustained Ca(2+) signals in PKCtheta(-/-) platelets. PKCtheta acts at multiple distinct sites. PKCtheta limits secretion, reducing autocrine ADP signaling that enhances Ca(2+) release from intracellular Ca(2+) stores. PKCtheta thereby indirectly regulates activation of store-operated Ca(2+) entry. However, PKCtheta also directly and negatively regulates store-independent Ca(2+) entry. This pathway, activated by the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol, was enhanced in PKCtheta(-/-) platelets, independently of ADP secretion. Moreover, LOE-908, which blocks 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry but not store-operated Ca(2+) entry, blocked the enhanced GPVI-dependent Ca(2+) signaling and PS exposure seen in PKCtheta(-/-) platelets. We propose that PKCtheta normally acts to restrict store-independent Ca(2+) entry during GPVI signaling, which results in reduced PS exposure, limiting platelet procoagulant activity during thrombus formation.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD Bristol, United Kingdom
| | | |
Collapse
|
171
|
Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost 2010; 8:454-62. [PMID: 20002545 DOI: 10.1111/j.1538-7836.2009.03722.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelet activation is a complex balance of positive and negative signaling pathways. The protein kinase C (PKC) family is a major regulator of platelet granule secretion, integrin activation, aggregation, spreading and procoagulant activity. As broad-spectrum PKC inhibitors reduce secretion and aggregation, the PKC family is generally considered to be a positive regulator of platelet activation. However, the individual members of the PKC family that are expressed in platelets are regulated in different ways, and an increasing body of evidence indicates that they have distinct, and often opposing, roles. Many of the recent advances in understanding the contributions of individual PKC isoforms have come from mouse gene knockout studies. PKCalpha, a classic isoform, is an essential positive regulator of granule secretion and thrombus formation, both in vitro and in vivo. Mice lacking PKCalpha show much reduced thrombus formation in vivo but do not have a bleeding defect, suggesting that PKCalpha could be an attractive antithrombotic target. Important, apparently non-redundant, roles, both positive and negative, for the novel PKC isoforms delta, theta and epsilon in granule secretion have also been proposed, indicating highly complex regulation of this essential process. Similarly, PKCbeta, PKCdelta and PKCtheta have non-redundant roles in platelet spreading, as absence of either PKCbeta or PKCtheta reduces spreading, whereas PKCdelta negatively regulates filopodial formation. This negative signaling by PKCdelta may reduce platelet aggregation and so restrict thrombus formation. In this review, we discuss the current understanding of the regulation and functions of individual PKC isoforms in platelet activation and thrombus formation.
Collapse
Affiliation(s)
- M T Harper
- Department of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
172
|
Piccione G, Assenza A, Casella S, Giannetto C, Tosto F, Caola G. Modifications of platelet aggregation during treadmill section and obstacle course in athletic horse. ACTA VET-BEOGRAD 2010. [DOI: 10.2298/avb1003165p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
173
|
Jackson SP, Schoenwaelder SM. PI 3-Kinase p110β regulation of platelet integrin α(IIb)β3. Curr Top Microbiol Immunol 2010; 346:203-24. [PMID: 20517720 DOI: 10.1007/82_2010_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hemopoietic cells express relatively high levels of the type I phosphoinositide (PI) 3-kinase isoforms, with p110δ and γ exhibiting specialized signaling functions in neutrophils, monocytes, mast cells, and lymphocytes. In platelets, p110β appears to be the dominant PI 3-kinase isoform regulating platelet activation, irrespective of the nature of the primary platelet activating stimulus. Based on findings with isoform-selective p110β pharmacological inhibitors and more recently with p110β-deficient platelets, p110β appears to primarily signal downstream of G(i)- and tyrosine kinase-coupled receptors. Functionally, inhibition of p110β kinase function leads to a marked defect in integrin α(IIb)β₃ adhesion and reduced platelet thrombus formation in vivo. This defect in platelet adhesive function is not associated with increased bleeding, suggesting that therapeutic targeting of p110β may represent a safe approach to reduce thrombotic complications in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Shaun P Jackson
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
174
|
Reininger AJ. Thrombusformation im Blutfluss. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
175
|
Lee HS, Kim SD, Lee WM, Endale M, Kamruzzaman SM, Oh WJ, Cho JY, Kim SK, Cho HJ, Park HJ, Rhee MH. A noble function of BAY 11-7082: Inhibition of platelet aggregation mediated by an elevated cAMP-induced VASP, and decreased ERK2/JNK1 phosphorylations. Eur J Pharmacol 2009; 627:85-91. [PMID: 19913011 DOI: 10.1016/j.ejphar.2009.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/12/2009] [Accepted: 11/03/2009] [Indexed: 12/18/2022]
Abstract
Platelets, though anucleated, possess several transcription factors, including NF-kappaB, that exert non-genomic functions regulating platelet activation. Since platelets have not only been recognized as central players of homeostasis, but also participated in pathological conditions such as thrombosis, atherosclerosis, and inflammation, we examined rat platelet NF-kappaB expression and evaluated the effects of anti-inflammatory drug BAY 11-7082, an inhibitor of NF-kappaB activation, in platelet physiology. Western blotting revealed that rat platelets express NF-kappaB. BAY 11-7082, dose dependently, inhibited collagen- or thrombin-induced-platelet aggregation. ATP release, TXB(2) formation, P-selectin expression, and intercellular Ca(2+) concentration activated by collagen were reduced in BAY 11-7082-treated platelets. BAY 11-7082 elevated intracellular levels of cAMP, but not cGMP, and its co-incubation with cAMP-activating agent (forskolin) or its hydrolyzing enzyme inhibitor (3-isobutyl-1-methylxanthine, IBMX), synergistically inhibited collagen-induced-platelet aggregation. In addition, vasodilator-stimulated-phosphoprotein (VASP) phosphorylation was enhanced in BAY 11-7082-treated platelets, which was partially inhibited by a protein kinase A (PKA) inhibitor, H-89. Moreover, while p38 mitogen-activated protein kinase (MAPK) was not affected, BAY 11-7082 attenuated c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. In conclusion, BAY 11-7082 inhibits platelet activation, granule secretion, and aggregation, and that this effect is mediated by inhibition of JNK1 and ERK2 phosphorylations, and partially by stimulation of cAMP-dependent PKA VASP phosphorylation. The ability of BAY 11-7082 to inhibit platelet function might be relevant in cases involving aberrant platelet activation where the drug is considered as anti-atherothrombosis, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Hyun-Sub Lee
- College of Biomedical Science and Engineering, and Regional Research Center, Inje University, Gimhae 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
In this issue of Blood, van der Meijden and colleagues report on the mechanisms by which collagen exposure in flow-dependent circulation contributes to thrombus formation.
Collapse
|
177
|
Abstract
Damage to the integrity of the vessel wall leads to exposure of the subendothelial extracellular matrix (ECM), triggering platelet activation and aggregation. This process is essential for primary hemostasis but it may also lead to arterial thrombosis. Although the mechanisms underlying platelet activation on the ECM are well explored, it is less clear which receptors mediate cellular activation in a growing thrombus. Here we studied the role of the recently identified C-type lectin-like receptor 2 (CLEC-2) in this process. We show that anti-CLEC-2 antibody treatment of mice leads to complete and highly specific loss of CLEC-2 in circulating platelets for several days. CLEC-2-deficient platelets displayed normal adhesion under flow, but subsequent aggregate formation was severely defective in vitro and in vivo. As a consequence, CLEC-2 deficiency was associated with increased bleeding times and profound protection from occlusive arterial thrombus formation. These results reveal an essential function of CLEC-2 in hemostasis and thrombosis.
Collapse
|
178
|
Guidetti GF, Bernardi B, Consonni A, Rizzo P, Gruppi C, Balduini C, Torti M. Integrin alpha2beta1 induces phosphorylation-dependent and phosphorylation-independent activation of phospholipase Cgamma2 in platelets: role of Src kinase and Rac GTPase. J Thromb Haemost 2009; 7:1200-6. [PMID: 19422462 DOI: 10.1111/j.1538-7836.2009.03444.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Platelet adhesion promoted by integrin alpha2beta1 induces integrin alpha(IIb)beta3 activation through the phospholipase C (PLC)-dependent stimulation of the small GTPase Rap1b. OBJECTIVE To analyze the mechanism of PLC activation downstream of alpha2beta1 that is required for regulation of Rap1b and alpha(IIb)beta3. METHODS Human and murine platelets were allowed to adhere to immobilized type I monomeric collagen through alpha2beta1. Tyrosine phosphorylation of PLCgamma2, PLC activation, accumulation of GTP-bound Rap1b and fibrinogen binding were measured and compared. RESULTS Integrin alpha2beta1 recruitment induced an evident PLC activation that was concomitant with robust tyrosine phosphorylation of PLCgamma2, and was suppressed in platelets from PLCgamma2-knockout mice. Moreover, PLCgamma2(-/-) platelets were unable to accumulate active Rap1b and to activate alpha(IIb)beta3 upon adhesion through alpha2beta1. Inhibition of Src kinases completely prevented tyrosine phosphorylation of PLCgamma2 in adherent platelets, but did not affect its activation, and both Rap1b and alpha(IIb)beta3 stimulation occurred normally. Importantly, alpha(IIb)beta3-induced phosphorylation and activation of PLCgamma2, as well as accumulation of active Rap1b, were totally suppressed by Src inhibition. Integrin alpha2beta1 recruitment triggered the Src kinase-independent activation of the small GTPase Rac1, and activation of Rac1 was not required for PLCgamma2 phosphorylation. However, when phosphorylation of PLCgamma2 was blocked by the Src kinase inhibitor PP2, prevention of Rac1 activation significantly reduced PLCgamma2 activation, GTP-Rap1b accumulation, and alpha(IIb)beta3 stimulation. CONCLUSIONS Src kinases and the Rac GTPases mediate independent pathways for PLCgamma2 activation downstream of alpha2beta1.
Collapse
Affiliation(s)
- G F Guidetti
- Department of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
179
|
Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O'Callaghan K, Covic L, Kuliopulos A. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 2009; 137:332-43. [PMID: 19379698 DOI: 10.1016/j.cell.2009.02.018] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 12/01/2008] [Accepted: 02/05/2009] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteases (MMPs) play important roles in normal and pathological remodeling processes including atherothrombotic disease, inflammation, angiogenesis, and cancer. MMPs have been viewed as matrix-degrading enzymes, but recent studies have shown that they possess direct signaling capabilities. Platelets harbor several MMPs that modulate hemostatic function and platelet survival; however their mode of action remains unknown. We show that platelet MMP-1 activates protease-activated receptor-1 (PAR1) on the surface of platelets. Exposure of platelets to fibrillar collagen converts the surface-bound proMMP-1 zymogen to active MMP-1, which promotes aggregation through PAR1. Unexpectedly, MMP-1 cleaves PAR1 at a distinct site that strongly activates Rho-GTP pathways, cell shape change and motility, and MAPK signaling. Blockade of MMP1-PAR1 curtails thrombogenesis under arterial flow conditions and inhibits thrombosis in animals. These studies provide a link between matrix-dependent activation of metalloproteases and platelet-G protein signaling and identify MMP1-PAR1 as a potential target for the prevention of arterial thrombosis.
Collapse
Affiliation(s)
- Vishal Trivedi
- Department of Medicine, Tufts University School of Medicine, Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
180
|
O'Connor MN, Salles II, Cvejic A, Watkins NA, Walker A, Garner SF, Jones CI, Macaulay IC, Steward M, Zwaginga JJ, Bray SL, Dudbridge F, de Bono B, Goodall AH, Deckmyn H, Stemple DL, Ouwehand WH. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins. Blood 2009; 113:4754-62. [PMID: 19109564 PMCID: PMC2680375 DOI: 10.1182/blood-2008-06-162693] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 11/14/2008] [Indexed: 01/27/2023] Open
Abstract
In this study, we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell, the megakaryocyte, together with nucleated blood cell elements, endothelial cells, and erythroblasts, identified novel platelet membrane proteins with hitherto unknown roles in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)-based knockdown of 5 of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet glycoprotein (GP) IIb and the coagulation protein factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of 4 of the 5 novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.
Collapse
Affiliation(s)
- Marie N O'Connor
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Sun C, Chen Y, Zhang W, Yu S. Association between von Willebrand factor gene polymorphism and preeclampsia. J Perinat Med 2009; 37:36-42. [PMID: 19021456 DOI: 10.1515/jpm.2009.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS The aims of this study were to assess whether the Msp I polymorphism of von Willebrand factor (vWF)(intron 19) gene differs between patients with preeclampsia and normal pregnancies in Chinese Han population, and to study the relationship between the Msp I polymorphism in the vWF(intron 19) gene and severity of preeclampsia symptoms within the preeclampsia group. METHODS In this case-control study, peripheral blood samples of 70 patients with preeclampsia and 82 normal pregnancies were genotyped for the Msp I polymorphism in vWF(intron 19) gene on the basis of a hospital-based study. The genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing techniques. RESULTS The genotype frequencies for M+/M+, M+/M- and M-/M- were 22.9, 45.7 and 31.4% in patients with preeclampsia, and 1.2, 36.6 and 62.2% in normal pregnancies, respectively. The frequency of the M+ allele in patients with preeclampsia was significantly higher than in normal pregnancies (45.7 vs. 19.5%). CONCLUSIONS The Msp I polymorphism in intron 19 (M+ allele) of vWF gene is associated with the development and the severity of preeclampsia, and may be a susceptibility factor for preeclampsia.
Collapse
Affiliation(s)
- Chengjuan Sun
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of China
| | | | | | | |
Collapse
|
182
|
Liu FC, Liao CH, Chang YW, Liou JT, Day YJ. Splitomicin suppresses human platelet aggregation via inhibition of cyclic AMP phosphodiesterase and intracellular Ca++ release. Thromb Res 2009; 124:199-207. [PMID: 19327818 DOI: 10.1016/j.thromres.2009.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 01/03/2023]
Abstract
Splitomicin is derived from beta-naphthol and is an inhibitor of Silent Information Regulator 2 (SIR2). Its naphthoic moiety might be responsible for its inhibitory effects on platelets. The major goal of our study was to examine possible mechanisms of action of splitomicin on platelet aggregation in order to promote development of a novel anti-platelet aggregation therapy for cardiovascular and cerebrovascular diseases. To study the inhibitory effects of splitomicin on platelet aggregation, we used washed human platelets, and monitored platelet aggregation and ATP release induced by thrombin (0.1 U/ml), collagen (2 microg/ml), arachidonic acid (AA) (0.5 mM), U46619 (2 microM) or ADP (10 microM). Splitomicin inhibited platelet aggregation induced by thrombin, collagen, AA and U46619 with a concentration dependent manner. Splitomicin increased cAMP and this effect was enhanced when splitomicin (150 microM) was combined with PGE1 (0.5 microM). It did not further increase cAMP when combined with IBMX. This data indicated that splitomicin increases cAMP by inhibiting activity of phosphodiestease. In addition, splitomicin (300 microM) attenuated intracellular Ca(++) mobilization, and production of thromboxane B2 (TXB2) in platelets that was induced by thrombin, collagen, AA or U46619. The inhibitory mechanism of splitomicin on platelet aggregation may increase cyclic AMP levels via inhibition of cyclic AMP phosphodiesterase activity and subsequent inhibition of intracellular Ca(++) mobilization, TXB2 formation and ATP release.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
| | | | | | | | | |
Collapse
|
183
|
Lee JJ, Jin YR, Yu JY, Munkhtsetseg T, Park ES, Lim Y, Kim TJ, Pyo MY, Hong JT, Yoo HS, Kim Y, Yun YP. Antithrombotic and antiplatelet activities of fenofibrate, a lipid-lowering drug. Atherosclerosis 2009; 206:375-82. [PMID: 19345949 DOI: 10.1016/j.atherosclerosis.2009.02.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 01/29/2009] [Accepted: 02/23/2009] [Indexed: 11/30/2022]
Abstract
Fenofibrate, a lipid-lowering drug, inhibits hydroxyl-methylglutaryl coenzyme A (HMG-CoA)-reductase activity, thus reducing cholesterol synthesis and increasing the clearance of circulating LDL-cholesterol via the high affinity receptor system. In addition, fenofibrate has beneficial effects such as the inhibition of tissue factor expression, antithrombotic effect and anti-inflammatory effect. The aim of this study was to investigate the effects of fenofibrate on thrombus formation in vivo and platelet activation in vitro and ex vivo. The carotid arteries of male Sprague-Dawley rats were subjected to chemical injury by FeCl(3), and then blood flow was measured with a blood flowmeter. Fenofibrate (200 and 400mg/kg/day for 1 week) delayed the time to occlusion by 61.3% (p<0.05, n=10) and 90.7% (p<0.01, n=10), respectively. Fenofibrate also significantly inhibited ex vivo platelet aggregations induced by collagen (7.5microg/ml) (p<0.01, n=11) and ADP (10microM) (p<0.01, n=11), respectively, but did not affect coagulation times following activated partial thromboplastin and prothrombin activation, indicating the antithrombotic effect was mediated by its inhibition on platelet activation rather than coagulation system. This antiplatelet activity was revealed to be mediated by the suppression of thromboxane A(2) receptor, cytosolic calcium mobilization, and cyclooxygenase (COX)-1 activity. Taken together, we demonstrate that fenofibrate can significantly inhibit artery thrombus formation in vivo, which may be due to antiplatelet activity via the inhibition of thromboxane A(2) receptor, cytosolic calcium mobilization and COX-1 activity, and the beneficial effect of fenofibrate on cardiovascular system may be also due to its modulation of platelet activation.
Collapse
Affiliation(s)
- Jung-Jin Lee
- College of Pharmacy, Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Harper AGS, Mason MJ, Sage SO. A key role for dense granule secretion in potentiation of the Ca2+ signal arising from store-operated calcium entry in human platelets. Cell Calcium 2009; 45:413-20. [PMID: 19285721 DOI: 10.1016/j.ceca.2009.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 01/26/2009] [Accepted: 02/11/2009] [Indexed: 11/20/2022]
Abstract
Recent work has demonstrated a role for Na(+)/Ca(2+) exchange in potentiation of the Ca(2+) entry elicited through the human platelet store-operated channel by controlling a Mn(2+)-impermeable Ca(2+) entry pathway. Here we demonstrate that this involves control over the secretion of dense granules by a Na(+)/Ca(2+) exchanger (NCX) and so autocrine signalling between platelets. NCX inhibition reduced dense granule secretion. The reduction in SOCE elicited by NCX inhibition could be reversed by the addition of uninhibited donor cells, their releasate alone, or exogenous ADP and 5-HT. The use of specific receptor antagonists indicated that ATP, ADP and 5-HT all played a role in NCX-dependent autocrine signalling between platelets following thapsigargin stimulation, by activating Mn(2+)-impermeable Ca(2+) entry pathways. These data provide further insight into the mechanisms underlying the known interrelationship between platelet Ca(2+) signalling and dense granule secretion, and suggest an important role for the NCX in potentiation of platelet activation via dense granule secretion and so autocrine signalling. Our results caution the interpretation of platelet Ca(2+) signalling studies involving pharmacological or other manipulations that do not assess possible effects on NCX activity and dense granule secretion.
Collapse
Affiliation(s)
- Alan G S Harper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | |
Collapse
|
185
|
Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 2009; 94:700-11. [PMID: 19286885 DOI: 10.3324/haematol.2008.003178] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hemostasis and pathological thrombus formation are dynamic processes that require a co-ordinated series of events involving platelet membrane receptors, bidirectional intracellular signals, and release of platelet proteins and inflammatory substances. This review aims to summarize current knowledge in the key steps in the dynamics of thrombus formation, with special emphasis on the crucial participation of platelet receptors and signaling in this process. Initial tethering and firm adhesion of platelets to the exposed subendothelium is mediated by glycoprotein (GP) Ib/IX/V complex and collagen receptors, GP VI and alpha(2)beta(1) integrin, in the platelet surface, and by VWF and fibrillar collagen in the vascular site. Interactions between these elements are largely influenced by flow and trigger signaling events that reinforce adhesion and promote platelet activation. Thereafter, soluble agonists, ADP, thrombin, TxA(2), produced/released at the site of vascular injury act in autocrine and paracrine mode to amplify platelet activation and to recruit circulating platelets to the developing thrombus. Specific interactions of these agonists with their G-protein coupled receptors generate inside-out signaling leading to conformational activation of integrins, in particular alpha(IIb)beta(3), increasing their ligand affinity. Binding of alpha(IIb)beta(3) to its ligands, mainly fibrinogen, supports processes such as clot retraction and platelet aggregation. Stabilization of thrombi is supported by the late wave of signaling events promoted by close contact between aggregated platelets. The best known contact-dependent signaling is outside-in signaling through alphaIb beta(3), but new ones are being clarified such as those mediated by interaction of Eph receptors with ephrins, or by Sema 4D and Gas-6 binding to their receptors. Finally, newly identified mechanisms appear to control thrombus growth, including back-shifting of activated integrins and actuation of compensatory molecules such as ESAM or PECAM-1. The expanding knowledge of thrombotic disease is expected to translate into the development of new drugs to help management and prevention of thrombosis.
Collapse
Affiliation(s)
- José Rivera
- Centro Regional de Hemodonación, Universidad de Murcia, C/ Ronda de Garay s/n., Murcia, Spain
| | | | | | | |
Collapse
|
186
|
Equol is more active than soy isoflavone itself to compete for binding to thromboxane A2 receptor in human platelets. Thromb Res 2009; 123:740-4. [DOI: 10.1016/j.thromres.2008.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 07/23/2008] [Accepted: 07/31/2008] [Indexed: 11/20/2022]
|
187
|
Liu FC, Liao CH, Chang YW, Liou JT, Day YJ. A new insight of anti-platelet effects of sirtinol in platelets aggregation via cyclic AMP phosphodiesterase. Biochem Pharmacol 2009; 77:1364-73. [PMID: 19426675 DOI: 10.1016/j.bcp.2009.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 12/21/2022]
Abstract
Sirtinol, a cell permeable six-membered lactone ring, is derived from naphthol and potent inhibitor of SIR2 and its naphtholic may have the inhibitory effects on platelets aggregation. In this study, platelet function was examined by collagen/epinephrine (CEPI) and collagen/ADP-induced closure times using the PFA-100 system reveal that CEPI-CT and CADP-CT were prolonged by sirtinol. The platelets aggregation regulated by physiological agonists such as: thrombin, collagen and AA and U46619 were significantly inhibited by sirtinol. Increases cAMP level was observed when sirtinol treated with Prostaglandin E1 in washed platelets. Moreover, sirtinol attenuated intracellular Ca(2+) release and thromboxane B2 formation stimulated by thrombin, collagen, AA and U46619 in human washed platelets. This study indicated that sirtinol could inhibit the platelet aggregation induced by physiological agonists, AA and U46619. The mechanism of action may include an increase of cAMP level with enhanced VASP-Ser157 phosphorylation via inhibition of cAMP phosphodiesterase activity and subsequent inhibition of intracellular Ca(2+) mobilization, thromboxane A2 formation, and ATP release during the platelet aggregation.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Taiwan, ROC
| | | | | | | | | |
Collapse
|
188
|
Abstract
Protein kinase C (PKC) isoforms have been implicated in several platelet functional responses, but the contribution of individual isoforms has not been thoroughly evaluated. Novel PKC isoform PKC-theta is activated by glycoprotein VI (GPVI) and protease-activated receptor (PAR) agonists, but not by adenosine diphosphate. In human platelets, PKC-theta-selective antagonistic (RACK; receptor for activated C kinase) peptide significantly inhibited GPVI and PAR-induced aggregation, dense and alpha-granule secretion at low agonist concentrations. Consistently, in murine platelets lacking PKC-theta, platelet aggregation and secretion were also impaired. PKC-mediated phosphorylation of tSNARE protein syntaxin-4 was strongly reduced in human platelets pretreated with PKC-theta RACK peptide, which may contribute to the lower levels of granule secretion when PKC-theta function is lost. Furthermore, the level of JON/A binding to activated alpha(IIb)beta(3) receptor was also significantly decreased in PKC-theta(-/-) mice compared with wild-type littermates. PKC-theta(-/-) murine platelets showed significantly lower agonist-induced thromboxane A(2) (TXA(2)) release through reduced extracellular signal-regulated kinase phosphorylation. Finally, PKC-theta(-/-) mice displayed unstable thrombus formation and prolonged arterial occlusion in the FeCl(3) in vivo thrombosis model compared with wild-type mice. In conclusion, PKC-theta isoform plays a significant role in platelet functional responses downstream of PAR and GPVI receptors.
Collapse
|
189
|
Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 2008; 112:3555-62. [DOI: 10.1182/blood-2008-04-144758] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In ischemic stroke, treatment options are limited. Therapeutic thrombolysis is restricted to the first few hours after stroke, and the utility of current platelet aggregation inhibitors, including GPIIb/IIIa receptor antagonists, and anticoagulants is counterbalanced by the risk of intracerebral bleeding complications. Numerous attempts to establish neuroprotection in ischemic stroke have been unfruitful. Thus, there is strong demand for novel treatment strategies. Major advances have been made in understanding the molecular functions of platelet receptors such as glycoprotein Ib (GPIb) and GPVI and their downstream signaling pathways that allow interference with their function. Inhibition of these receptors in the mouse stroke model of transient middle cerebral artery occlusion prevented infarctions without increasing the risk of intracerebral bleeding. Similarly, it is now clear that the intrinsic coagulation factor XII (FXII) and FXI play a functional role in thrombus formation and stabilization during stroke: their deficiency or blockade protects from cerebral ischemia without overtly affecting hemostasis. Based on the accumulating evidence that thrombus formation and hemostasis are not inevitably linked, new concepts for prevention and treatment of ischemic stroke may eventually emerge without the hazard of severe bleeding complications. This review discusses recent advances related to antithrombotic strategies in experimental stroke research.
Collapse
|
190
|
Krötz F, Sohn HY, Klauss V. Antiplatelet drugs in cardiological practice: established strategies and new developments. Vasc Health Risk Manag 2008; 4:637-45. [PMID: 18827913 PMCID: PMC2515423 DOI: 10.2147/vhrm.s2691] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common pathophysiological course in vascular diseases is an overwhelming activation and aggregation of blood platelets, which results in atherothrombosis. By causing the last decisive step of cerebral, coronary, or peripheral arterial ischemia thrombotic complications of atherosclerotic disease represent a major player in death cause statistics of most western countries. The development of novel therapies against platelet-dependent thrombosis and the concurrent improvement of existing therapeutic strategies thus is a paramount focus of pharmaceutical research. Currently, efficiency, dosing and indications of established antiplatelet substances are being re-evaluated, whilst new, so far unrecognized molecular targets for inhibition of platelet activity come up front. This not only allows for interesting new therapeutical options, but also widens our insight into the role platelets play in atherosclerosis in general. This article summarizes the relevant pathophysiology of platelet activation, presents current concepts in antiplatelet drug therapy, and highlights the role of platelets in vascular diseases apart from atherothrombosis.
Collapse
Affiliation(s)
- Florian Krötz
- Cardiology, Medical Policlinic, Ludwig-Maximilians-Universität, Ziemssenstr 1, 80336 München, Germany.
| | | | | |
Collapse
|
191
|
Yang L, Qian Z, Yang Y, Sheng L, Ji H, Zhou C, Kazi HA. Involvement of Ca2+ in the inhibition by crocetin of platelet activity and thrombosis formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9429-9433. [PMID: 18817408 DOI: 10.1021/jf802027a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Crocetin, a unique carotenoid with potent antioxidative and anti-inflammatory activities, is a major ingredient of saffron used as an important spice and food colorant in various parts of the world. In the present study, the effects of crocetin on platelet activity and thrombosis formation were systematically investigated. Crocetin showed a dose-dependent inhibition of platelet aggregation induced by ADP, collagen, but not by arachidonic acid (AA). Crocetin significantly attenuated dense granule release, while neither platelets adhesion to collagen nor cyclic AMP level was altered by crocetin. Pretreatment with crocetin was confirmed to partially inhibit Ca (2+) mobilization via reducing both intracellular Ca (2+) release and extracellular Ca (2+) influx. Besides that, crocetin prolonged the occlusive time in electrical stimulation-induced carotid arterial thrombosis. These findings suggest that the favorable impacts of crocetin on platelet activity and thrombosis formation may be related to the inhibition of Ca (2+) elevation in stimulated platelets.
Collapse
Affiliation(s)
- Lina Yang
- Department of pharmacology, China Pharmaceutical University, 24 Tongjia xiang, Nanjing 210009, PR China
| | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
The antiphospholipid syndrome is a non-inflammatory autoimmune disease characterised by the presence of antiphospholipid antibodies in the plasma of patients with venous or arterial thrombosis or recurrent complications of pregnancy. The strong relation between the presence of antibodies against anionic phospholipids and thrombo-embolic complications is well established, but how the presence of antiphospholipid antibodies results in the observed clinical manifestations remains a mystery. Experimental observations suggest that an altered regulation of platelet function can cause the thrombotic complications observed in the antiphospholipid syndrome. In this review, we will discuss the evidence that the platelet is an important player in the pathogenesis of the antiphospholipid syndrome.
Collapse
Affiliation(s)
- RT Urbanus
- Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, the Netherlands
| | - RHWM Derksen
- Department of Rheumatology and Clinical Immunology, University Medical Center, Utrecht, the Netherlands
| | - PG de Groot
- Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
193
|
Platelet function in intravascular device implant-induced intimal injury. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2008; 9:78-87. [PMID: 18486081 DOI: 10.1016/j.carrev.2007.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
Platelets are involved in the rapid response to intimal injury in which the underlying thrombogenic subendothelial matrix is exposed, leading to platelet adhesion, secretion, aggregation, and initiation of arterial thrombus formation. The platelet activation pathway involves a multistep process of distinct receptors, adhesive ligands, release of mediators, receptor-ligand interactions, and recruitment of more platelets to the site of injury. The balance between blood fluidity and intimal injury-induced arterial thrombosis is maintained by an intact endothelium that controls vessel tone, synthesizes inhibitors and activators of platelet function, and thereby allows the free flow of blood cell elements. An intravascular device implant causes intimal injury, which is accompanied by decreased antithrombotic potential of the endothelial cells and increased release of prothrombotic substances. A trigger for the formation of intimal injury-induced thrombus formation may be due to endothelial dysfunction and/or the loss of endothelial cell barrier between the subendothelial matrix and flowing blood, which allows initiation of platelet activation. A thorough understanding of the platelet regulatory mechanisms is necessary to develop effective antiplatelet therapy to prevent the complications of thrombosis following revascularization procedures using percutaneous coronary intervention. This review summarizes the temporal events following intravascular device implants, including endothelial cell injury, platelet activation, receptor-mediated signaling events, platelet-rich thrombus formation, and the redundant platelet pathways, all of which may be potential therapeutic targets.
Collapse
|
194
|
Tolhurst G, Carter RN, Amisten S, Holdich JP, Erlinge D, Mahaut-Smith MP. Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes. Platelets 2008; 19:308-13. [PMID: 18569867 DOI: 10.1080/09537100801935710] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Store-operated Ca2+ influx represents a major route by which cytosolic Ca2+ can be elevated during platelet activation, yet its molecular identity in this cell type remains highly controversial. Using quantitative RT-PCR analysis of candidate receptor-operated cation entry pathways in human platelets, we show a >30-fold higher expression of message for the recently discovered Orai1 store-operated Ca2+ channel, and also the store Ca2+ sensor STIM1, when compared to the non-selective cation channels TRPC1, TRPC6 and TRPM2. Orai1 and STIM1 gene transcripts were also detected at higher levels than TRPC1, TRPC6 and TRPM2 in primary murine megakaryocytes and human megakaryocytic cell lines. In direct electrophysiological recordings from murine megakaryocytes, Ca2+ ionophore-induced store depletion stimulated CRAC currents, which are known to require Orai1, and these overlapped with TRPC6-like currents following P2Y receptor activation. Together with recent transgenic studies, these data provide evidence for STIM1:Orai1 as a primary pathway for agonist-evoked Ca2+ influx in the platelet and megakaryocyte.
Collapse
Affiliation(s)
- Gwen Tolhurst
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB23EG, UK
| | | | | | | | | | | |
Collapse
|
195
|
Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 2008; 112:2780-6. [PMID: 18641368 DOI: 10.1182/blood-2008-02-142125] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins have recently been demonstrated in macrophages and neutrophils to be required for cell surface integrins to transmit activation signals into the cell. To identify ITAM-bearing proteins that mediate signaling via the platelet-specific integrin alphaIIbbeta3, fibrinogen binding was induced by (1) allowing platelets to spread directly on immobilized fibrinogen, or (2) activating the PAR1 thrombin receptor on platelets in suspension. Both initiated strong, ligand binding-dependent tyrosine phosphorylation of the ITAM-bearing platelet Fc receptor, FcgammaRIIa, as well as downstream phosphorylation of the protein tyrosine kinase Syk and activation of phospholipase Cgamma2 (PLCgamma2). Addition of Fab fragments of an FcgammaRIIa-specific monoclonal antibody strongly inhibited platelet spreading on immobilized fibrinogen, as well as downstream tyrosine phosphorylation of FcgammaRIIa, Syk, and PLCgamma2, and platelets from a patient whose platelets express reduced levels of FcgammaRIIa exhibited markedly reduced spreading on immobilized fibrinogen. Finally, fibrinogen binding-induced FcgammaRIIa phosphorylation did not occur in human platelets expressing a truncated beta3 cytoplasmic domain. Taken together, these data suggest that ligand binding to platelet alphaIIbbeta3 induces integrin cytoplasmic domain-dependent phosphorylation of FcgammaRIIa, which then enlists selected components of the immunoreceptor signaling cascade to transmit amplification signals into the cell.
Collapse
|
196
|
Barrett NE, Holbrook L, Jones S, Kaiser WJ, Moraes LA, Rana R, Sage T, Stanley RG, Tucker KL, Wright B, Gibbins JM. Future innovations in anti-platelet therapies. Br J Pharmacol 2008; 154:918-39. [PMID: 18587441 PMCID: PMC2451055 DOI: 10.1038/bjp.2008.151] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 12/15/2022] Open
Abstract
Platelets have long been recognized to be of central importance in haemostasis, but their participation in pathological conditions such as thrombosis, atherosclerosis and inflammation is now also well established. The platelet has therefore become a key target in therapies to combat cardiovascular disease. Anti-platelet therapies are used widely, but current approaches lack efficacy in a proportion of patients, and are associated with side effects including problem bleeding. In the last decade, substantial progress has been made in understanding the regulation of platelet function, including the characterization of new ligands, platelet-specific receptors and cell signalling pathways. It is anticipated this progress will impact positively on the future innovations towards more effective and safer anti-platelet agents. In this review, the mechanisms of platelet regulation and current anti-platelet therapies are introduced, and strong, and some more speculative, potential candidate target molecules for future anti-platelet drug development are discussed.
Collapse
Affiliation(s)
- N E Barrett
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - L Holbrook
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - S Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - W J Kaiser
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - L A Moraes
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - R Rana
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - T Sage
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - R G Stanley
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - K L Tucker
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - B Wright
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| | - J M Gibbins
- School of Biological Sciences, University of Reading, Whiteknights, Reading Berkshire, UK
| |
Collapse
|
197
|
Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renné T, Stoll G, Nieswandt B. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. ACTA ACUST UNITED AC 2008; 205:1583-91. [PMID: 18559454 PMCID: PMC2442636 DOI: 10.1084/jem.20080302] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites of vascular injury but also contributes to arterial thrombosis, leading to myocardial infarction and stroke. Agonist-induced elevation of [Ca2+]i is a central step in platelet activation, but the underlying mechanisms are not fully understood. A major pathway for Ca2+ entry in nonexcitable cells involves receptor-mediated release of intracellular Ca2+ stores, followed by activation of store-operated calcium (SOC) channels in the plasma membrane. Stromal interaction molecule 1 (STIM1) has been identified as the Ca2+ sensor in the endoplasmic reticulum (ER) that activates Ca2+ release–activated channels in T cells, but its role in mammalian physiology is unknown. Platelets express high levels of STIM1, but its exact function has been elusive, because these cells lack a normal ER and Ca2+ is stored in a tubular system referred to as the sarcoplasmatic reticulum. We report that mice lacking STIM1 display early postnatal lethality and growth retardation. STIM1-deficient platelets have a marked defect in agonist-induced Ca2+ responses, and impaired activation and thrombus formation under flow in vitro. Importantly, mice with STIM1-deficient platelets are significantly protected from arterial thrombosis and ischemic brain infarction but have only a mild bleeding time prolongation. These results establish STIM1 as an important mediator in the pathogenesis of ischemic cardio- and cerebrovascular events.
Collapse
Affiliation(s)
- David Varga-Szabo
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Ferreira MAD, do Nascimento NRF, de Sousa CM, Pessoa ODL, de Lemos TLG, Ventura JS, Schattner M, Chudzinski-Tavassi AM. Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Ibalpha glycoprotein. Br J Pharmacol 2008; 154:1216-24. [PMID: 18516074 DOI: 10.1038/bjp.2008.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Oncocalyxone A (OncoA) has a concentration-dependent anti-platelet activity. The present study aimed to further understand the mechanisms related to this effect. EXPERIMENTAL APPROACH Human platelet aggregation was measured by means of a turbidimetric method. OncoA (32-256 microM) was tested against several platelet-aggregating agents, such as adenosine diphosphate (ADP), collagen, arachidonic acid (AA), ristocetin and thrombin. KEY RESULTS OncoA completely inhibited platelet aggregation with a calculated mean inhibitory concentration (IC50-microM) of 122 for ADP, 161 for collagen, 159 for AA, 169 for ristocetin and 85 for thrombin. The anti-aggregatory activity of OncoA was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). OncoA, at a concentration that caused no significant anti-aggregatory activity, potentiated sodium nitroprusside (SNP) anti-aggregatory activity (18.8+/-2.9%-SNP vs 85.0+/-8.2%-SNP+OncoA). The levels of nitric oxide (NO) or cAMP were not altered by OncoA while cGMP levels were increased more than 10-fold by OncoA in resting or ADP-activated platelets. Flow cytometry revealed that OncoA does not interact with receptors for fibrinogen, collagen or P-selectin. Nevertheless, OncoA decreased the binding of antibodies to GP Ibalpha, a glycoprotein that is related both to von Willebrand factor and to thrombin-induced platelet aggregation. CONCLUSION AND IMPLICATIONS OncoA showed anti-aggregatory activity in platelets that was associated with increased cGMP levels, not dependent on NO and with blocking GP Ibalpha glycoprotein. This new mechanism has the prospect of leading to new anti-thrombotic drugs.
Collapse
Affiliation(s)
- M A D Ferreira
- College of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 2008; 112:2327-35. [PMID: 18509085 DOI: 10.1182/blood-2007-12-127183] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leukocyte-derived microparticles (MPs) are markers of cardiovascular diseases and contribute to pathogenesis by their interaction with various cell types. The presence and activation state of a multifunctional leukocyte receptor, integrin alpha(M)beta(2) (CD11b/18), on MPs derived from human neutrophils (PMNs) were examined. alpha(M)beta(2) expression was significantly enhanced on MPs derived from stimulated compared with resting PMNs. Furthermore, alpha(M)beta(2) on MPs from stimulated but not resting PMNs was in an activated conformation because it was capable of binding activation-specific monoclonal antibodies (CBRM1/5 and mAb24) and soluble fibrinogen. MPs expressing active alpha(M)beta(2) interacted with and were potent activators of resting platelets as assessed by induction of P-selectin expression and activation of alpha(IIb)beta(3). With the use of function-blocking antibodies and MPs obtained from alpha(M)(-/-)-deficient mice, we found that engagement of GPIbalpha on platelets by alpha(M)beta(2) on MPs plays a pivotal role in MP binding. Platelet activation by MPs occurs by a pathway dependent on Akt phosphorylation. PSGL-1/P-selectin interaction also is involved in the conjugation of MPs to platelets, and the combination of blocking reagents to both alpha(M)beta(2)/GPIbalpha and to PSGL-1/P-selectin completely abrogates MP-induced platelet activation. Thus, cooperation of these 2 receptor/counterreceptor systems regulates the prothrombotic properties of PMN-derived MPs.
Collapse
|
200
|
Rauchfuss S, Geiger J, Walter U, Renne T, Gambaryan S. Insulin inhibition of platelet-endothelial interaction is mediated by insulin effects on endothelial cells without direct effects on platelets. J Thromb Haemost 2008; 6:856-64. [PMID: 18284601 DOI: 10.1111/j.1538-7836.2008.02925.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Platelet hyperreactivity contributes to adverse vascular events in diabetes mellitus. It is unclear whether platelet hyperreactivity is due to impaired insulin effects directly on platelets and /or originates from endothelial cells. Here, acute effects of insulin on platelet activation and platelet-endothelial cell interactions were analyzed. METHODS AND RESULTS Washed human platelets were treated with insulin alone or in combinations with thrombin, collagen and ADP. Insulin signaling was analyzed by intracellular phosphorylation markers of platelet activation (ERK, p38 MAPK, PKB) or inhibition (VASP), platelet aggregation, intracellular Ca(2+) levels, and platelet adhesion to collagen coated surfaces and endothelial cells under flow. Insulin up to 100 nm for 5 min did not change phosphorylation status of VASP, p38, ERK or PKB in platelets. Integrin alpha(IIb)beta(3) activation, P-selectin expression, aggregation, and platelet adhesion to collagen coated surfaces and endothelial cells under flow were not altered by insulin. An insulin receptor was detected on endothelial cells but not on human platelets. Insulin treatment decreased platelet adhesion to endothelial cells through insulin stimulation of endothelial NO production and NOS inhibition interfered with this process. CONCLUSIONS Insulin exerts no direct acute effects on platelet function but inhibits platelet-endothelial interaction by insulin stimulation of endothelial NO production.
Collapse
Affiliation(s)
- S Rauchfuss
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|