151
|
Sun Y, Zong L, Gao Z, Zhu S, Tong J, Cao Y. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields. Mutat Res 2017; 797-799:7-14. [PMID: 28340409 DOI: 10.1016/j.mrfmmm.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022]
Abstract
HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900MHz radiofrequency fields (RF) at 120μW/cm2 power intensity for 4h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2'-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.
Collapse
Affiliation(s)
- Yulong Sun
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Lin Zong
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Zhen Gao
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province, PR China
| | - Jian Tong
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Yi Cao
- School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China.
| |
Collapse
|
152
|
Metabolomics and mitochondrial dysfunction in Alzheimer’s disease. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
153
|
Wei W, Keogh MJ, Wilson I, Coxhead J, Ryan S, Rollinson S, Griffin H, Kurzawa-Akanbi M, Santibanez-Koref M, Talbot K, Turner MR, McKenzie CA, Troakes C, Attems J, Smith C, Al Sarraj S, Morris CM, Ansorge O, Pickering-Brown S, Ironside JW, Chinnery PF. Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains. Acta Neuropathol Commun 2017; 5:13. [PMID: 28153046 PMCID: PMC5290662 DOI: 10.1186/s40478-016-0404-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 11/10/2022] Open
Abstract
Mitochondria play a key role in common neurodegenerative diseases and contain their own genome: mtDNA. Common inherited polymorphic variants of mtDNA have been associated with several neurodegenerative diseases, and somatic deletions of mtDNA have been found in affected brain regions. However, there are conflicting reports describing the role of rare inherited variants and somatic point mutations in neurodegenerative disorders, and recent evidence also implicates mtDNA levels. To address these issues we studied 1363 post mortem human brains with a histopathological diagnosis of Parkinson's disease (PD), Alzheimer's disease (AD), Frontotemporal dementia - Amyotrophic Lateral Sclerosis (FTD-ALS), Creutzfeldt Jacob disease (CJD), and healthy controls. We obtained high-depth whole mitochondrial genome sequences using off target reads from whole exome sequencing to determine the association of mtDNA variation with the development and progression of disease, and to better understand the development of mtDNA mutations and copy number in the aging brain. With this approach, we found a surprisingly high frequency of heteroplasmic mtDNA variants in 32.3% of subjects. However, we found no evidence of an association between rare inherited variants of mtDNA or mtDNA heteroplasmy and disease. In contrast, we observed a reduction in the amount of mtDNA copy in both AD and CJD. Based on these findings, single nucleotide variants of mtDNA are unlikely to play a major role in the pathogenesis of these neurodegenerative diseases, but mtDNA levels merit further investigation.
Collapse
Affiliation(s)
- Wei Wei
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Clinical Neurosciences, University of Cambridge, University Neurology Unit, Level 5 'A' Block, Box 165 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Michael J Keogh
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Clinical Neurosciences, University of Cambridge, University Neurology Unit, Level 5 'A' Block, Box 165 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ian Wilson
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Jonathan Coxhead
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Sarah Ryan
- Institute of Brain, Behaviour and Mental Health, University of Manchester, 2.014 AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Sara Rollinson
- Institute of Brain, Behaviour and Mental Health, University of Manchester, 2.014 AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Helen Griffin
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Marzena Kurzawa-Akanbi
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Kevin Talbot
- Department of Clinical Neurosciences, John Radcliffe Hospital, Level 3, West Wing, Headley Way, Oxford, OX3 9DU, UK
| | - Martin R Turner
- Department of Clinical Neurosciences, John Radcliffe Hospital, Level 3, West Wing, Headley Way, Oxford, OX3 9DU, UK
| | - Chris-Anne McKenzie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Johannes Attems
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Colin Smith
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Safa Al Sarraj
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Christopher M Morris
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Olaf Ansorge
- Department of Neuropathology, John Radcliffe Hospital, West Wing, Level 1, Oxford, OX3 9DU, UK
| | - Stuart Pickering-Brown
- Institute of Brain, Behaviour and Mental Health, University of Manchester, 2.014 AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - James W Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK.
- Department of Clinical Neurosciences, University of Cambridge, University Neurology Unit, Level 5 'A' Block, Box 165 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
154
|
Zaia A, Maponi P, Di Stefano G, Casoli T. Biocomplexity and Fractality in the Search of Biomarkers of Aging and Pathology: Focus on Mitochondrial DNA and Alzheimer's Disease. Aging Dis 2017; 8:44-56. [PMID: 28197358 PMCID: PMC5291006 DOI: 10.14336/ad.2016.0629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) represents one major health concern for our growing elderly population. It accounts for increasing impairment of cognitive capacity followed by loss of executive function in late stage. AD pathogenesis is multifaceted and difficult to pinpoint, and understanding AD etiology will be critical to effectively diagnose and treat the disease. An interesting hypothesis concerning AD development postulates a cause-effect relationship between accumulation of mitochondrial DNA (mtDNA) mutations and neurodegenerative changes associated with this pathology. Here we propose a computerized method for an easy and fast mtDNA mutations-based characterization of AD. The method has been built taking into account the complexity of living being and fractal properties of many anatomic and physiologic structures, including mtDNA. Dealing with mtDNA mutations as gaps in the nucleotide sequence, fractal lacunarity appears a suitable tool to differentiate between aging and AD. Therefore, Chaos Game Representation method has been used to display DNA fractal properties after adapting the algorithm to visualize also heteroplasmic mutations. Parameter β from our fractal lacunarity method, based on hyperbola model function, has been measured to quantitatively characterize AD on the basis of mtDNA mutations. Results from this pilot study to develop the method show that fractal lacunarity parameter β of mtDNA is statistically different in AD patients when compared to age-matched controls. Fractal lacunarity analysis represents a useful tool to analyze mtDNA mutations. Lacunarity parameter β is able to characterize individual mutation profile of mitochondrial genome and appears a promising index to discriminate between AD and aging.
Collapse
Affiliation(s)
- Annamaria Zaia
- 1Laboratory of Bioinformatics, Bioengineering and Domotics, Italian National Research Center on Aging - INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Pierluigi Maponi
- 2School of Science and Technology, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino (MC), Italy
| | - Giuseppina Di Stefano
- 3Research, Innovation and Technology Transfer Office, Italian National Research Center on Aging - INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Tiziana Casoli
- 4Scientific and Technological Area, Italian National Research Center on Aging - INRCA, via Birarelli 8, 60121 Ancona, Italy
| |
Collapse
|
155
|
Mitochondria, Cybrids, Aging, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:259-302. [PMID: 28253988 DOI: 10.1016/bs.pmbts.2016.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial and bioenergetic function change with advancing age and may drive aging phenotypes. Mitochondrial and bioenergetic changes are also documented in various age-related neurodegenerative diseases, including Alzheimer's disease (AD). In some instances AD mitochondrial and bioenergetic changes are reminiscent of those observed with advancing age but are greater in magnitude. Mitochondrial and bioenergetic dysfunction could, therefore, link neurodegeneration to brain aging. Interestingly, mitochondrial defects in AD patients are not brain-limited, and mitochondrial function can be linked to classic AD histologic changes including amyloid precursor protein processing to beta amyloid. Also, transferring mitochondria from AD subjects to cell lines depleted of endogenous mitochondrial DNA (mtDNA) creates cytoplasmic hybrid (cybrid) cell lines that recapitulate specific biochemical, molecular, and histologic AD features. Such findings have led to the formulation of a "mitochondrial cascade hypothesis" that places mitochondrial dysfunction at the apex of the AD pathology pyramid. Data pertinent to this premise are reviewed.
Collapse
|
156
|
Association of mitochondrial DNA haplogroups with elite athletic status in Iranian population. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
157
|
Bonet-Costa V, Pomatto LCD, Davies KJA. The Proteasome and Oxidative Stress in Alzheimer's Disease. Antioxid Redox Signal 2016; 25:886-901. [PMID: 27392670 PMCID: PMC5124752 DOI: 10.1089/ars.2016.6802] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Alzheimer's disease is a neurodegenerative disorder that is projected to exceed more than 100 million cases worldwide by 2050. Aging is considered the primary risk factor for some 90% of Alzheimer's cases but a significant 10% of patients suffer from aggressive, early-onset forms of the disease. There is currently no effective Alzheimer's treatment and this, coupled with a growing aging population, highlights the necessity to understand the mechanism(s) of disease initiation and propagation. A major hallmark of Alzheimer's disease pathology is the accumulation of amyloid-β (Aβ) aggregates (an early marker of Alzheimer's disease), and neurofibrillary tangles, comprising the hyper-phosphorylated microtubule-associated protein Tau. Recent Advances: Protein oxidation is frequently invoked as a potential factor in the progression of Alzheimer's disease; however, whether it is a cause or a consequence of the pathology is still being debated. The Proteasome complex is a major regulator of intracellular protein quality control and an essential proteolytic enzyme for the processing of both Aβ and Tau. Recent studies have indicated that both protein oxidation and excessive phosphorylation may limit Proteasomal processing of Aβ and Tau in Alzheimer's disease. CRITICAL ISSUES Thus, the Proteasome may be a key factor in understanding the development of Alzheimer's disease pathology; however, its significance is still very much under investigation. FUTURE DIRECTIONS Discovering how the proteasome is affected, regulated, or dysregulated in Alzheimer's disease could be a valuable tool in the efforts to understand and, ultimately, eradicate the disease. Antioxid. Redox Signal. 25, 886-901.
Collapse
Affiliation(s)
- Vicent Bonet-Costa
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| | - Laura Corrales-Diaz Pomatto
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| |
Collapse
|
158
|
Wang H, Dharmalingam P, Vasquez V, Mitra J, Boldogh I, Rao KS, Kent TA, Mitra S, Hegde ML. Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target? Mech Ageing Dev 2016; 161:163-176. [PMID: 27663141 DOI: 10.1016/j.mad.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated aging and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
159
|
Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease. Brain Pathol 2016; 26:648-63. [PMID: 27328058 PMCID: PMC8029062 DOI: 10.1111/bpa.12403] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease.
Collapse
Affiliation(s)
- T C Bernardo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - I Marques-Aleixo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Beleza
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - P J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Coimbra, Portugal
| | - A Ascensão
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
160
|
Hung KM, Calkins MJ. Mitochondrial homeostatic disruptions are sensitive indicators of stress in neurons with defective mitochondrial DNA transactions. Mitochondrion 2016; 31:9-19. [PMID: 27581214 DOI: 10.1016/j.mito.2016.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
Neurodegeneration and mitochondrial dysfunction are closely linked across many clinical conditions. In genetic diseases that result from defects in mitochondrial DNA (mtDNA) synthesis or maintenance, neurodegeneration is a frequent and major component of the disease pathology. In sporadic neurodegenerative diseases such as Alzheimer's and Parkinson's disease, mtDNA defects have been observed clinically. Mitochondrial stress related to mtDNA dysregulation can produce neuronal dysfunction and death via impaired electron transport chain activity, which results in deficient ATP production and related increases in mitochondrial reactive oxygen species (ROS) production. However, mtDNA dysregulation in post-mitotic neurons may also produce disturbances in mitochondrial homeostasis that are known to impair neuronal function as well. In this study, we used sub-toxic doses of ethidium bromide (EtBr) to induce mtDNA-associated mitochondrial stress in primary cortical neurons and measured several aspects of mitochondrial homeostasis, mitochondrial function and cell death. We found that low-dose EtBr severely depletes mtDNA synthesis and mitochondrial mRNA levels. Furthermore, homeostatic processes are especially disrupted in toxin treated neurons while mitochondrial function is relatively preserved. Mitochondria become fragmented and motility is abolished, while respiration and mitochondrial polarization are partially maintained. Moreover at these doses, cells do not exhibit increased ROS production, clear neurite retraction or loss of viability. These results indicate that mitochondrial homeostasis is a sensitive marker of mtDNA associated stress compared to mitochondria-functional outputs or endpoints related to cellular toxicity. These homeostatic disruptions are expected to contribute to neuronal dysfunction and potentially drive neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Kui-Ming Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
161
|
Podolskiy DI, Lobanov AV, Kryukov GV, Gladyshev VN. Analysis of cancer genomes reveals basic features of human aging and its role in cancer development. Nat Commun 2016; 7:12157. [PMID: 27515585 PMCID: PMC4990632 DOI: 10.1038/ncomms12157] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations have long been implicated in aging and disease, but their impact on fitness and function is difficult to assess. Here by analysing human cancer genomes we identify mutational patterns associated with aging. Our analyses suggest that age-associated mutation load and burden double approximately every 8 years, similar to the all-cause mortality doubling time. This analysis further reveals variance in the rate of aging among different human tissues, for example, slightly accelerated aging of the reproductive system. Age-adjusted mutation load and burden correlate with the corresponding cancer incidence and precede it on average by 15 years, pointing to pre-clinical cancer development times. Behaviour of mutation load also exhibits gender differences and late-life reversals, explaining some gender-specific and late-life patterns in cancer incidence rates. Overall, this study characterizes some features of human aging and offers a mechanism for age being a risk factor for the onset of cancer. Somatic mutations are associated with disease, including cancer. Here, the authors analyse cancer genomic data and show that somatic mutations increase with age and that cancer incidence lags 15 years behind this increase, later in life, mutation and cancer incidence are reduced.
Collapse
Affiliation(s)
- Dmitriy I Podolskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexei V Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
162
|
Gao W, Wang X, Wang X, Cai Y, Luan Q. Association of cognitive function with tooth loss and mitochondrial variation in adult subjects: a community-based study in Beijing, China. Oral Dis 2016; 22:697-702. [PMID: 27353124 DOI: 10.1111/odi.12529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Cognitive impairment is a common neurological problem in elderly people. In this study, we investigated whether tooth loss, periodontal parameters, and gene variations in the mitochondrial DNA displacement loop region are potential influencing factors on cognitive function. DESIGN We employed a linear regression model to estimate cross-sectional association between number of teeth lost, periodontal parameters and Mini-mental State Examination score, adjusting for demographic factors, socioeconomic factors, general health status, smoking, drinking, and life habits. PARTICIPANTS A total of 905 Han Chinese people, ≥50 years of age, with complete data, were enrolled. Blood samples of 567 of the subjects were analyzed for correlation between mitochondrial DNA variants and Mini-mental State Examination score. RESULTS The number of teeth lost (β = -0.042, 95% CI: -0.061, -0.024, P < 0.001), two single nucleotide polymorphism (SNP) points: A189G (β = -1.540, 95% CI: -2.818, -0.263, P = 0.018) and A16164G (β = -1.053, 95% CI: -2.054, -0.052, P = 0.039) in the mitochondrial DNA displacement loop region, and haplogroup Y (β = -2.152, 95% CI: -4.062, -0.242, P = 0.027) were found to be negatively associated with Mini-mental State Examination scores in the fully adjusted model. No correlation was found between periodontal parameters and Mini-mental State Examination scores. CONCLUSION Number of teeth lost, mitochondrial SNPs, and haplogroup Y were correlated with cognitive function in this study population.
Collapse
Affiliation(s)
- W Gao
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Wang
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Wang
- Department of Genetics, Beijing Hypertension League Institute, Beijing, China
| | - Y Cai
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Q Luan
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
163
|
Hoekstra JG, Hipp MJ, Montine TJ, Kennedy SR. Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann Neurol 2016; 80:301-6. [PMID: 27315116 DOI: 10.1002/ana.24709] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are commonly associated with early stage Alzheimer disease (AD). The accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been hypothesized to be a driver of these phenotypes, but the detection of increased mutation loads has been difficult due to a lack of sensitive methods. We used an ultrasensitive next generation sequencing technique to measure the mutation load of the entire mitochondrial genome. Here, we report a significant increase in the mtDNA mutation frequency in the hippocampus of early stage AD, with the cause of these mutations being consistent with replication errors and not oxidative damage. Ann Neurol 2016;80:301-306.
Collapse
Affiliation(s)
- Jake G Hoekstra
- Department of Pathology, University of Washington, Seattle, WA
| | - Michael J Hipp
- Department of Pathology, University of Washington, Seattle, WA
| | | | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
164
|
Mitophagy plays a central role in mitochondrial ageing. Mamm Genome 2016; 27:381-95. [PMID: 27352213 PMCID: PMC4935730 DOI: 10.1007/s00335-016-9651-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing.
Collapse
|
165
|
Blanch M, Mosquera JL, Ansoleaga B, Ferrer I, Barrachina M. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:385-97. [PMID: 26776077 DOI: 10.1016/j.ajpath.2015.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states.
Collapse
Affiliation(s)
- Marta Blanch
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Belén Ansoleaga
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Madrid, Spain; Departament of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Marta Barrachina
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Madrid, Spain.
| |
Collapse
|
166
|
Chen Y, Liu C, Parker WD, Chen H, Beach TG, Liu X, Serrano GE, Lu Y, Huang J, Yang K, Wang C. Mitochondrial DNA Rearrangement Spectrum in Brain Tissue of Alzheimer's Disease: Analysis of 13 Cases. PLoS One 2016; 11:e0154582. [PMID: 27299301 PMCID: PMC4907522 DOI: 10.1371/journal.pone.0154582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Mitochondrial dysfunction may play a central role in the pathologic process of Alzheimer’s disease (AD), but there is still a scarcity of data that directly links the pathology of AD with the alteration of mitochondrial DNA. This study aimed to provide a comprehensive assessment of mtDNA rearrangement events in AD brain tissue. Patients and Methods Postmortem frozen human brain cerebral cortex samples were obtained from the Banner Sun Health Research Institute Brain and Body Donation Program, Sun City, AZ. Mitochondria were isolated and direct sequence by using MiSeq®, and analyzed by relative software. Results Three types of mitochondrial DNA (mtDNA) rearrangements have been seen in post mortem human brain tissue from patients with AD and age matched control. These observed rearrangements include a deletion, F-type rearrangement, and R-type rearrangement. We detected a high level of mtDNA rearrangement in brain tissue from cognitively normal subjects, as well as the patients with Alzheimer's disease (AD). The rate of rearrangements was calculated by dividing the number of positive rearrangements by the coverage depth. The rearrangement rate was significantly higher in AD brain tissue than in control brain tissue (17.9%versus 6.7%; p = 0.0052). Of specific types of rearrangement, deletions were markedly increased in AD (9.2% versus 2.3%; p = 0.0005). Conclusions Our data showed that failure of mitochondrial DNA in AD brain might be important etiology of AD pathology.
Collapse
Affiliation(s)
- Yucai Chen
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Pediatric Department, University of Illinois at Chicago, Peoria, United States of America
- * E-mail: ;
| | - Changsheng Liu
- SoftGenetics LLC, State College, United States of America
| | - William Davis Parker
- Pediatric Department, University of Illinois at Chicago, Peoria, United States of America
| | - Hongyi Chen
- Pediatric Department, University of Illinois at Chicago, Peoria, United States of America
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, United States of America
| | - Xinhua Liu
- SoftGenetics LLC, State College, United States of America
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, United States of America
| | - Yanfen Lu
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Huang
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kunfang Yang
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunmei Wang
- Neurology Department, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
167
|
Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1960-91. [PMID: 27126807 PMCID: PMC6398603 DOI: 10.1161/res.0000000000000104] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.
Collapse
|
168
|
Kurakin A, Bredesen DE. Dynamic self-guiding analysis of Alzheimer's disease. Oncotarget 2016; 6:14092-122. [PMID: 26041885 PMCID: PMC4546454 DOI: 10.18632/oncotarget.4221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Dale E Bredesen
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
169
|
Duncan OF, Bateman JM. Mitochondrial retrograde signaling in the Drosophila nervous system and beyond. Fly (Austin) 2016; 10:19-24. [PMID: 27064199 DOI: 10.1080/19336934.2016.1174353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial dysfunction has been suggested to contribute to neurodegenerative diseases, including Alzheimer and Parkinson disease. Cells respond to changes in the functional state of mitochondria via retrograde signaling pathways from the mitochondria to the nucleus, but little is known about retrograde signaling in the nervous system. We have recently shown that inhibition of retrograde signaling reduces the impact of neuronal mitochondrial dysfunction. We performed a study designed to characterize the mitochondrial retrograde signaling pathway in the Drosophila nervous system. Using several different models we found that neuronal specific mitochondrial dysfunction results in defects in synapse development and neuronal function. Moreover, we identified the Drosophila hypoxia inducible factor α (HIFα) ortholog Sima as a key neuronal transcriptional regulator. Knock-down of sima restores function in several Drosophila models of mitochondrial dysfunction, including models of human disease. Here we discuss these findings and speculate on the potential benefits of inhibition of retrograde signaling. We also describe how our results relate to other studies of mitochondrial retrograde signaling and the potential therapeutic applications of these discoveries.
Collapse
Affiliation(s)
- Olivia F Duncan
- a Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus , London , UK
| | - Joseph M Bateman
- a Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus , London , UK
| |
Collapse
|
170
|
Palomera-Avalos V, Griñán-Ferré C, Puigoriol-Ilamola D, Camins A, Sanfeliu C, Canudas AM, Pallàs M. Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway. Mol Neurobiol 2016; 54:1661-1676. [PMID: 26873850 DOI: 10.1007/s12035-016-9770-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
Abstract
Metabolic stress induced by high-fat (HF) diet leads to cognitive dysfunction and aging, but the physiological mechanisms are not fully understood. Senescence-accelerated prone mouse (SAMP8) models were conducted under metabolic stress conditions by feeding HF for 15 weeks, and the preventive effect of resveratrol was studied. This dietary strategy demonstrates cognitive impairment in SAMP8-HF and significant preventive effect by resveratrol-treated animals. Hippocampal changes in the proteins involved in mitochondrial dynamics optic atrophy-1 protein (OPA1) and mitofusin 2 (MFN2) comprised a differential feature found in SAMP8-HF that was prevented by resveratrol. Electronic microscopy showed a larger mitochondria in SAMP8-HF + resveratrol (SAMP8-HF + RV) than in SAMP8-HF, indicating increases in fusion processes in resveratrol-treated mice. According to the mitochondrial morphology, significant increases in the I-NDUFB8, II-SDNB, III-UQCRC2, and V-ATPase complexes, in addition to that of voltage-dependent anion channel 1 (VDAC1)/porin, were found in resveratrol-treated animals with regard to SAMP8-HF, reaching control-animal levels. Moreover, tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) were increased after HF, and resveratrol prevents its increase. Moreover, we found that the HF diet affected the Wnt pathway, as demonstrated by β-catenin inactivation and modification in the expression of several components of this pathway. Resveratrol induced strong activation of β-catenin. The metabolic stress rendered in the cognitive and cellular pathways altered in SAMP8 focus on different targets in order to act on preventing cognitive impairment in neurodegeneration, and resveratrol can offer therapeutic possibilities for preventive strategies in aging or neurodegenerative conditions.
Collapse
Affiliation(s)
- V Palomera-Avalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, Avda. Joan XXIII s/n, 08028, Barcelona, Spain
| | - C Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, Avda. Joan XXIII s/n, 08028, Barcelona, Spain
| | - D Puigoriol-Ilamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, Avda. Joan XXIII s/n, 08028, Barcelona, Spain
| | - A Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, Avda. Joan XXIII s/n, 08028, Barcelona, Spain
| | - C Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, and IDIBAPS, 08036, Barcelona, Spain
| | - A M Canudas
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, Avda. Joan XXIII s/n, 08028, Barcelona, Spain
| | - M Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, Avda. Joan XXIII s/n, 08028, Barcelona, Spain. .,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Avda. Joan XXIII s/n, 08028, Barcelona, Spain.
| |
Collapse
|
171
|
Gatt AP, Duncan OF, Attems J, Francis PT, Ballard CG, Bateman JM. Dementia in Parkinson's disease is associated with enhanced mitochondrial complex I deficiency. Mov Disord 2016; 31:352-9. [PMID: 26853899 DOI: 10.1002/mds.26513] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Dementia is a common feature of Parkinson's disease (PD), but the neuropathological changes associated with the development of Parkinson's disease dementia (PDD) are only partially understood. Mitochondrial dysfunction is a hallmark of PD but has not been studied in PDD. METHODS Molecular and biochemical approaches were used to study mitochondrial activity and quantity in postmortem prefrontal cortex tissue. Tissues from pathologically confirmed PD and PDD patients and from age-matched controls were used to analyze the activity of mitochondrial enzyme complex nicotinamide adenine dinucleotide:ubiquinone oxidoreductase, or complex I (the first enzyme in the mitochondrial respiratory chain), mitochondrial DNA levels, and the expression of mitochondrial proteins. RESULTS Complex I activity was significantly decreased (27% reduction; analysis of variance with Tukey's post hoc test; P < 0.05) in PDD patients, and mitochondrial DNA levels were also significantly decreased (18% reduction; Kruskal-Wallis analysis of variance with Dunn's multiple comparison test; P < 0.05) in PDD patients compared with controls, but neither was significantly reduced in PD patients. Overall, mitochondrial biogenesis was unaffected in PD or PDD, because the expression of mitochondrial proteins in patients was similar to that in controls. CONCLUSIONS Patients with PDD have a deficiency in mitochondrial complex I activity and reduced mitochondrial DNA levels in the prefrontal cortex without a change in mitochondrial protein quantity. Therefore, mitochondrial complex I deficiency and reduced mitochondrial DNA in the prefrontal cortex may be a hallmark of dementia in patients with PD.
Collapse
Affiliation(s)
- Ariana P Gatt
- Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus, London, United Kingdom
| | - Olivia F Duncan
- Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus, London, United Kingdom
| | - Johannes Attems
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Paul T Francis
- Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus, London, United Kingdom
| | - Clive G Ballard
- Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus, London, United Kingdom
| | - Joseph M Bateman
- Wolfson Center for Age-Related Diseases, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
172
|
Muir R, Diot A, Poulton J. Mitochondrial content is central to nuclear gene expression: Profound implications for human health. Bioessays 2016; 38:150-6. [PMID: 26725055 PMCID: PMC4819685 DOI: 10.1002/bies.201500105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We review a recent paper in Genome Research by Guantes et al. showing that nuclear gene expression is influenced by the bioenergetic status of the mitochondria. The amount of energy that mitochondria make available for gene expression varies considerably. It depends on: the energetic demands of the tissue; the mitochondrial DNA (mtDNA) mutant load; the number of mitochondria; stressors present in the cell. Hence, when failing mitochondria place the cell in energy crisis there are major effects on gene expression affecting the risk of degenerative diseases, cancer and ageing. In 2015 the UK parliament approved a change in the regulation of IVF techniques, allowing "Mitochondrial replacement therapy" to become a reproductive choice for women at risk of transmitting mitochondrial disease to their children. This is the first time that this technique will be available. Therefore understanding the interaction between mitochondria and the nucleus has never been more important.
Collapse
Affiliation(s)
- Rebecca Muir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alan Diot
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
173
|
Kandimalla R, Reddy PH. Multiple faces of dynamin-related protein 1 and its role in Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1862:814-828. [PMID: 26708942 DOI: 10.1016/j.bbadis.2015.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023]
Abstract
Mitochondria play a large role in neuronal function by constantly providing energy, particularly at synapses. Recent studies suggest that amyloid beta (Aβ) and phosphorylated tau interact with the mitochondrial fission protein, dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria and leading to abnormal mitochondrial dynamics and synaptic degeneration in Alzheimer's disease (AD) neurons. Recent research also revealed Aβ-induced and phosphorylated tau-induced changes in mitochondria, particularly affecting mitochondrial shape, size, distribution and axonal transport in AD neurons. These changes affect mitochondrial health and, in turn, could affect synaptic function and neuronal damage and ultimately leading to memory loss and cognitive impairment in patients with AD. This article highlights recent findings in the role of Drp1 in AD pathogenesis. This article also highlights Drp1 and its relationships to glycogen synthase kinase 3, cyclin-dependent kinase 5, p53, and microRNAs in AD pathogenesis.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neurology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
174
|
Cadonic C, Sabbir MG, Albensi BC. Mechanisms of Mitochondrial Dysfunction in Alzheimer's Disease. Mol Neurobiol 2015; 53:6078-6090. [PMID: 26537901 DOI: 10.1007/s12035-015-9515-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023]
Abstract
Mitochondria are the primary source for energy generation in the cell, which manifests itself in the form of the adenosine triphosphate (ATP). Nicotinamide dinucleotide (NADH) molecules are the first to enter the so-called electron transport chain or ETC of the mitochondria. The ETC represents a chain of reducing agents organized into four major protein-metal complexes (I-IV) that utilize the flow of electrons to drive the production of ATP. An additional integral protein that is related to oxidative phosphorylation is ATP synthase, referred to as complex V. Complex V carries out ATP synthesis as a result of the electron flow through the ETC. The coupling of electron flow from NADH to molecular oxygen to the production of ATP represents a process known as oxidative phosphorylation. In this review, we describe mainly the bioenergetic properties of mitochondria, such as those found in the ETC that may be altered in Alzheimer's disease (AD). Increasing evidence points to several mitochondrial functions that are affected in AD. Furthermore, it is becoming apparent that mitochondria are a potential target for treatment in early-stage AD. With growing interest in the mitochondria as a target for AD, it has been hypothesized that deficit in this organelle may be at the heart of the progression of AD itself. The role of mitochondria in AD may be significant and is emerging as a main area of AD research.
Collapse
Affiliation(s)
- Chris Cadonic
- St. Boniface Hospital Research, Winnipeg, MB, R2H 2A6, Canada. .,Graduate Program in Biomedical Engineering, Faculties of Health Sciences, Engineering, and Science, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| | | | - Benedict C Albensi
- St. Boniface Hospital Research, Winnipeg, MB, R2H 2A6, Canada. .,Graduate Program in Biomedical Engineering, Faculties of Health Sciences, Engineering, and Science, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada. .,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada.
| |
Collapse
|
175
|
Lane RK, Hilsabeck T, Rea SL. The role of mitochondrial dysfunction in age-related diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:1387-400. [PMID: 26050974 PMCID: PMC10481969 DOI: 10.1016/j.bbabio.2015.05.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
The aging process is accompanied by the onset of disease and a general decline in wellness. Insights into the aging process have revealed a number of cellular hallmarks of aging, among these epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, and stem cell exhaustion. Mitochondrial dysfunction increasingly appears to be a common factor connecting several of these hallmarks, driving the aging process and afflicting tissues throughout the body. Recent research has uncovered a much more complex involvement of mitochondria in the cell than has previously been appreciated and revealed novel ways in which mitochondrial defects feed into disease pathology. In this review we evaluate ways in which problems in mitochondria contribute to disease beyond the well-known mechanisms of oxidative stress and bioenergetic deficits, and we predict the direction that mitochondrial disease research will take in years to come.
Collapse
Affiliation(s)
- Rebecca K Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Tyler Hilsabeck
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; The University of Texas, San Antonio, TX 78249, USA
| | - Shane L Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
176
|
Casoli T, Spazzafumo L, Di Stefano G, Conti F. Role of diffuse low-level heteroplasmy of mitochondrial DNA in Alzheimer's disease neurodegeneration. Front Aging Neurosci 2015; 7:142. [PMID: 26257647 PMCID: PMC4511837 DOI: 10.3389/fnagi.2015.00142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly. The vast majority of cases are not linked to a known genetic defect and the molecular mechanisms underlying AD pathogenesis are still elusive. Evidence suggests that mitochondrial dysfunction is a prominent feature of the disease, and that mitochondrial DNA (mtDNA) alterations may represent a possible starting point of the pathophysiological cascade. Although specific mtDNA alterations have been reported in AD patients both in brain and peripheral tissues, such as D-loop mutations, 4977-bp deletion and poly-C tract D310 cytosine insertion, a generalized subtle allelic shift has also been demonstrated. This shift is significant for a few nucleotide positions (nps), but it is also detectable for most nps, although at a lower level. As single allelic substitutions can unlikely be determinant, it is proposed that the combination of all of them could lead to a less efficient oxidative phosphorylation, thus influencing AD development and course.
Collapse
Affiliation(s)
- Tiziana Casoli
- Center for Neurobiology of Aging, INRCA IRCCS Ancona, Italy
| | | | | | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA IRCCS Ancona, Italy ; Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|
177
|
Wang J, Zhao X, Qi J, Yang C, Cheng H, Ren Y, Huang L. Eight proteins play critical roles in RCC with bone metastasis via mitochondrial dysfunction. Clin Exp Metastasis 2015; 32:605-22. [PMID: 26115722 PMCID: PMC4503866 DOI: 10.1007/s10585-015-9731-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 06/17/2015] [Indexed: 11/25/2022]
Abstract
Most kidney cancers are renal cell carcinomas (RCC). RCC lacks early warning signs and 70 % of patients with RCC develop metastases. Among them, 50 % of patients having skeletal metastases developed a dismal survival of less than 10 % at 5 years. Therefore, exploring the key driving proteins and pathways involved in RCC bone metastasis could benefit patients’ therapy and prolong their survival. We examined the difference between the OS-RC-2 cells and the OS-RC-2-BM5 cells (subpopulation from OS-RC-2) of RCC with proteomics. Then we employed Western-blot, immunohistochemistry and the clinical database (oncomine) to screen and verify the key proteins and then we analyzed the functions and the related pathways of selected key proteins with system biology approaches. Our proteomic data revealed 26 significant changed spots (fold change <0.5 and >1.9, P < 0.05) between two cells. The Western blotting results validated for these identified spots were consistent with the proteomics’. From the public clinical database, 23 out of 26 proteins were connected with RCC metastases and 9 out of 23 with survival time directly (P < 0.05). Finally, only 8 out of 9 proteins had significantly positive results in tissues of RCC patients with bone metastasis compared with primary tumor (P < 0.05). System biology analyzing results showed these eight proteins mainly distributed in oxidative phosphorylation which indicates that mitochondria dysfunction played the critical role to regulate cells metastasis. Our article used a variety of experimental techniques to find eight proteins which abnormally regulated mitochondrial function to achieve a successful induction for RCC metastasis to bone.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/secondary
- Cell Adhesion
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Electrophoresis, Gel, Two-Dimensional
- Female
- Humans
- Immunoenzyme Techniques
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mitochondria/metabolism
- Mitochondria/pathology
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tomography, X-Ray Computed
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jiang Wang
- />Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Ave 1095#, Wuhan, 430030 China
| | - Xiaolin Zhao
- />Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Ave 1095#, Wuhan, 430030 China
| | - Jun Qi
- />Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Ave 1095#, Wuhan, 430030 China
| | - Caihong Yang
- />Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Ave 1095#, Wuhan, 430030 China
| | - Hao Cheng
- />Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Ave 1095#, Wuhan, 430030 China
| | - Ye Ren
- />Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Ave 1095#, Wuhan, 430030 China
| | - Lei Huang
- />Department of Information Science, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871 China
| |
Collapse
|
178
|
Payne BAI, Chinnery PF. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1347-53. [PMID: 26050973 PMCID: PMC4580208 DOI: 10.1016/j.bbabio.2015.05.022] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
The free radical theory of aging is almost 60 years old. As mitochondria are the principle source of intracellular reactive oxygen species (ROS), this hypothesis suggested a central role for the mitochondrion in normal mammalian aging. In recent years, however, much work has questioned the importance of mitochondrial ROS in driving aging. Conversely new evidence points to other facets of mitochondrial dysfunction which may nevertheless suggest the mitochondrion retains a critical role at the center of a complex web of processes leading to cellular and organismal aging.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|
179
|
Mitochondrial DNA mutations in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1401-11. [PMID: 26014345 DOI: 10.1016/j.bbabio.2015.05.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is observed in both the aging brain, and as a core feature of several neurodegenerative diseases. A central mechanism mediating this dysfunction is acquired molecular damage to mitochondrial DNA (mtDNA). In addition, inherited stable mtDNA variation (mitochondrial haplogroups), and inherited low level variants (heteroplasmy) have also been associated with the development of neurodegenerative disease and premature neural aging respectively. Herein we review the evidence for both inherited and acquired mtDNA mutations contributing to neural aging and neurodegenerative disease. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
|
180
|
Prigione A, Ruiz-Pérez MV, Bukowiecki R, Adjaye J. Metabolic restructuring and cell fate conversion. Cell Mol Life Sci 2015; 72:1759-77. [PMID: 25586562 PMCID: PMC11113500 DOI: 10.1007/s00018-015-1834-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
Accumulating evidence implicates mitochondrial and metabolic pathways in the establishment of pluripotency, as well as in the control of proliferation and differentiation programs. From classic studies in mouse embryos to the latest findings in adult stem cells, human embryonic and induced pluripotent stem cells, an increasing number of evidence suggests that mitochondrial and metabolic-related processes might intertwine with signaling networks and epigenetic rewiring, thereby modulating cell fate decisions. This review summarizes the progresses in this exciting field of research. Dissecting these complex mitochondrial and metabolic mechanisms may lead to a more comprehensive understanding of stemness biology and to potential improvements in stem cell applications for biomedicine, cell therapy, and disease modeling.
Collapse
Affiliation(s)
- Alessandro Prigione
- Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Str. 10, 13125, Berlin, Germany,
| | | | | | | |
Collapse
|
181
|
Alam MT, Manjeri GR, Rodenburg RJ, Smeitink JAM, Notebaart RA, Huynen M, Willems PHGM, Koopman WJH. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:526-33. [PMID: 25687896 DOI: 10.1016/j.bbabio.2015.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Mitochondrial ATP production is mediated by the oxidative phosphorylation (OXPHOS) system, which consists of four multi-subunit complexes (CI-CIV) and the FoF1-ATP synthase (CV). Mitochondrial disorders including Leigh Syndrome often involve CI dysfunction, the pathophysiological consequences of which still remain incompletely understood. Here we combined experimental and computational strategies to gain mechanistic insight into the energy metabolism of isolated skeletal muscle mitochondria from 5-week-old wild-type (WT) and CI-deficient NDUFS4-/- (KO) mice. Enzyme activity measurements in KO mitochondria revealed a reduction of 79% in maximal CI activity (Vmax), which was paralleled by 45-72% increase in Vmax of CII, CIII, CIV and citrate synthase. Mathematical modeling of mitochondrial metabolism predicted that these Vmax changes do not affect the maximal rates of pyruvate (PYR) oxidation and ATP production in KO mitochondria. This prediction was empirically confirmed by flux measurements. In silico analysis further predicted that CI deficiency altered the concentration of intermediate metabolites, modestly increased mitochondrial NADH/NAD+ ratio and stimulated the lower half of the TCA cycle, including CII. Several of the predicted changes were previously observed in experimental models of CI-deficiency. Interestingly, model predictions further suggested that CI deficiency only has major metabolic consequences when its activity decreases below 90% of normal levels, compatible with a biochemical threshold effect. Taken together, our results suggest that mouse skeletal muscle mitochondria possess a substantial CI overcapacity, which minimizes the effects of CI dysfunction on mitochondrial metabolism in this otherwise early fatal mouse model.
Collapse
Affiliation(s)
- Mohammad T Alam
- Department of Biochemistry, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Ganesh R Manjeri
- Department of Biochemistry, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Richard J Rodenburg
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Pediatrics, NCMD, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Jan A M Smeitink
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Pediatrics, NCMD, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Richard A Notebaart
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Centre for Molecular and Biomolecular Informatics, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Martijn Huynen
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Centre for Molecular and Biomolecular Informatics, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Peter H G M Willems
- Department of Biochemistry, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Werner J H Koopman
- Department of Biochemistry, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
182
|
Friedland K, Harteneck C. Hyperforin: To Be or Not to Be an Activator of TRPC(6). Rev Physiol Biochem Pharmacol 2015; 169:1-24. [DOI: 10.1007/112_2015_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
183
|
Naue J, Hörer S, Sänger T, Strobl C, Hatzer-Grubwieser P, Parson W, Lutz-Bonengel S. Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. Mitochondrion 2014; 20:82-94. [PMID: 25526677 DOI: 10.1016/j.mito.2014.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Mitochondrial point heteroplasmy is a common event observed not only in patients with mitochondrial diseases but also in healthy individuals. We here report a comprehensive investigation of heteroplasmy occurrence in human including the whole mitochondrial control region from nine different tissue types of 100 individuals. Sanger sequencing was used as a standard method and results were supported by cloning, minisequencing, and massively parallel sequencing. Only 12% of all individuals showed no heteroplasmy, whereas 88% showed at least one heteroplasmic position within the investigated tissues. In 66% of individuals up to 8 positions were affected. The highest relative number of heteroplasmies was detected in muscle and liver (79%, 69%), followed by brain, hair, and heart (36.7%-30.2%). Lower percentages were observed in bone, blood, lung, and buccal cells (19.8%-16.2%). Accumulation of position-specific heteroplasmies was found in muscle (positions 64, 72, 73, 189, and 408), liver (position 72) and brain (partial deletion at position 71). Deeper analysis of these specific positions in muscle revealed a non-random appearance and position-specific dependency on age. MtDNA heteroplasmy frequency and its potential functional importance have been underestimated in the past and its occurrence is ubiquitous and dependent at least on age, tissue, and position-specific mutation rates.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
| | - Steffen Hörer
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| | - Timo Sänger
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| | - Christina Strobl
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria.
| | - Petra Hatzer-Grubwieser
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria.
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA.
| | - Sabine Lutz-Bonengel
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| |
Collapse
|
184
|
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2014; 8:2003-14. [PMID: 25206509 PMCID: PMC4145906 DOI: 10.3969/j.issn.1673-5374.2013.21.009] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Li Sun
- Life Science Research Center, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Xueping Chen
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba R3E 0J9, Canada
| | - Danshen Zhang
- Hebei University of Science and Technology, Shijiazhuang 050018, Hebei Province, China
| |
Collapse
|
185
|
Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1219-31. [PMID: 24071439 PMCID: PMC3962811 DOI: 10.1016/j.bbadis.2013.09.010] [Citation(s) in RCA: 534] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 01/01/2023]
Abstract
Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains that gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts that biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Departments of Neurology and Molecular and Integrative Physiology, and the University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Jeffrey M Burns
- Departments of Neurology and Molecular and Integrative Physiology, and the University of Kansas Alzheimer's Disease Center, University of Kansas School of Medicine, Kansas City, KS, USA
| | | |
Collapse
|
186
|
Ma J, Jiang T, Tan L, Yu JT. TYROBP in Alzheimer’s Disease. Mol Neurobiol 2014; 51:820-6. [DOI: 10.1007/s12035-014-8811-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
|
187
|
Payne BAI, Gardner K, Chinnery PF. Mitochondrial DNA mutations in ageing and disease: implications for HIV? Antivir Ther 2014; 20:109-20. [PMID: 25032944 DOI: 10.3851/imp2824] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations cause neurological and multisystem disease. Somatic (acquired) mtDNA mutations are also associated with degenerative diseases and with normal human ageing. It is well established that certain nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drugs cause inhibition of the mtDNA polymerase, pol γ, leading to a reduction in mtDNA content (depletion). Given this effect of NRTI therapy on mtDNA replication, it is plausible that NRTI treatment may also lead to increased mtDNA mutations. Here we review recent evidence for an effect of HIV infection or NRTI therapy on mtDNA mutations, as well as discussing the methodological challenges in addressing this question. Finally, we discuss the possible implications for HIV-infected persons, with particular reference to ageing.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| | | | | |
Collapse
|
188
|
Chen L, Duvvuri B, Grigull J, Jamnik R, Wither JE, Wu GE. Experimental evidence that mutated-self peptides derived from mitochondrial DNA somatic mutations have the potential to trigger autoimmunity. Hum Immunol 2014; 75:873-9. [PMID: 24979674 DOI: 10.1016/j.humimm.2014.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 12/20/2022]
Abstract
Autoimmune disease is a critical health concern, whose etiology remains enigmatic. We hypothesized that immune responses to somatically mutated self proteins could have a role in the development of autoimmune disease. IFN-γ secretion by T cells stimulated with mitochondrial peptides encoded by published mitochondrial DNA was monitored to test the hypothesis. Human peripheral blood mononuclear cells (PBMCs) of healthy controls and autoimmune patients were assessed for their responses to the self peptides and mutated-self peptides differing from self by one amino acid. None of the self peptides but some of the mutated-self peptides elicited an immune response in healthy controls. In some autoimmune patients, PBMCs responded not only to some of the mutated-self peptides, but also to some of the self peptides, suggesting that there is a breach of self-tolerance in these patients. Although PBMCs from healthy controls failed to respond to self peptides when stimulated with self, the mutated-self peptide could elicit a response to the self peptide upon re-stimulation in vitro, suggesting that priming with mutated-self peptides elicits a cross-reactive response with self. The data raise the possibility that DNA somatic mutations are one of the events that trigger and/or sustain T cell responses in autoimmune diseases.
Collapse
Affiliation(s)
- Lina Chen
- Department of Kinesiology and Health Science, York University, Canada.
| | - Bhargavi Duvvuri
- Department of Kinesiology and Health Science, York University, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Canada
| | - Roni Jamnik
- Department of Kinesiology and Health Science, York University, Canada
| | - Joan E Wither
- University Health Network and University of Toronto, Canada
| | - Gillian E Wu
- Department of Kinesiology and Health Science, York University, Canada
| |
Collapse
|
189
|
Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM. Biochem Biophys Res Commun 2014; 450:166-71. [PMID: 24875355 DOI: 10.1016/j.bbrc.2014.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 11/23/2022]
Abstract
The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.
Collapse
|
190
|
Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet 2014; 10:e1004369. [PMID: 24852434 PMCID: PMC4031051 DOI: 10.1371/journal.pgen.1004369] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the “missing heritability” of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases. There is a growing body of evidence indicating that mitochondrial dysfunction, a result of genetic variation in the mitochondrial genome, is a critical component in the aetiology of a number of complex traits. Here, we take advantage of recent technical and methodological advances to examine the role of common mitochondrial DNA variants in several complex diseases. By examining over 50,000 individuals, from 11 different diseases we show that mitochondrial DNA variants can both increase or decrease an individual's risk of disease, replicating and expanding upon several previously reported studies. Moreover, by analysing several large disease groups in tandem, we are able to show a commonality of association, with the same mitochondrial DNA variants associated with several distinct disease phenotypes. These shared genetic associations implicate a shared underlying functional effect, likely changing cellular energy, which manifests as distinct phenotypes. Our study confirms the important role that mitochondrial DNA variation plays on complex traits and additionally supports the utility of a GWAS-based approach for analysing mitochondrial genetics.
Collapse
|
191
|
Chen L, Na R, Ran Q. Enhanced defense against mitochondrial hydrogen peroxide attenuates age-associated cognition decline. Neurobiol Aging 2014; 35:2552-2561. [PMID: 24906890 DOI: 10.1016/j.neurobiolaging.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/09/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022]
Abstract
Increased mitochondrial hydrogen peroxide (H2O2) is associated with Alzheimer's disease and brain aging. Peroxiredoxin 3 (Prdx3) is the key mitochondrial antioxidant defense enzyme in detoxifying H2O2. To investigate the importance of mitochondrial H2O2 in age-associated cognitive decline, we compared cognition between aged (17-19 months) APP transgenic mice and APP/Prdx3 double transgenic mice (dTG) and between old (24 months) wild-type mice and Prdx3 transgenic mice (TG). Compared with aged APP mice, aged dTG mice showed improved cognition that was correlated with reduced brain amyloid beta levels and decreased amyloid beta production. Old TG mice also showed significantly increased cognitive ability compared with old wild-type mice. Both aged dTG mice and old TG mice had reduced mitochondrial oxidative stress and increased mitochondrial function. Moreover, CREB signaling, a signaling pathway important for cognition was enhanced in both aged dTG mice and old TG mice. Thus, our results indicate that mitochondrial H2O2 is a key culprit of age-associated cognitive impairment, and that a reduction of mitochondrial H2O2 could improve cognition by maintaining mitochondrial health and enhancing CREB signaling.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ren Na
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Qitao Ran
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Geriatrics Research Education and Clinical Center, Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
192
|
Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. LONGEVITY & HEALTHSPAN 2014; 3:6. [PMID: 24860647 DOI: 10.1201/b21905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 05/26/2023]
Abstract
The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Hazel H Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Peter S Rabinovitch
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| |
Collapse
|
193
|
Mitochondrial oxidative stress in aging and healthspan. LONGEVITY & HEALTHSPAN 2014; 3:6. [PMID: 24860647 PMCID: PMC4013820 DOI: 10.1186/2046-2395-3-6] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
Abstract
The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
Collapse
|
194
|
Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer's disease a systemic disease? Biochim Biophys Acta Mol Basis Dis 2014; 1842:1340-9. [PMID: 24747741 DOI: 10.1016/j.bbadis.2014.04.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Although Alzheimer's disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease-modifying therapies.
Collapse
Affiliation(s)
- Jill K Morris
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Robyn A Honea
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Eric D Vidoni
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Russell H Swerdlow
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Jeffrey M Burns
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| |
Collapse
|
195
|
Bonda DJ, Wang X, Lee HG, Smith MA, Perry G, Zhu X. Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neurosci Bull 2014; 30:243-52. [PMID: 24733654 DOI: 10.1007/s12264-013-1424-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/17/2014] [Indexed: 11/24/2022] Open
Abstract
Considerable debate and controversy surround the cause(s) of Alzheimer's disease (AD). To date, several theories have gained notoriety, however none is universally accepted. In this review, we provide evidence for the oxidative stress-induced AD cascade that posits aged mitochondria as the critical origin of neurodegeneration in AD.
Collapse
Affiliation(s)
- David J Bonda
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
196
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
197
|
Analyses of the mitochondrial mutations in the Chinese patients with sporadic Creutzfeldt-Jakob disease. Eur J Hum Genet 2014; 23:86-91. [PMID: 24667788 DOI: 10.1038/ejhg.2014.52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/27/2023] Open
Abstract
Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause a variety of chronic diseases in central nervous system (CNS). However, the role of mtDNA mutations in sporadic Creutzfeldt-Jakob disease (sCJD) has still been unknown. In this study, we comparatively analyzed complete mtDNA sequences of 31 Chinese sCJD patients and 32 controls. Using MITOMASTER and PhyloTree, we characterized 520 variants in sCJD patients and 507 variants in control by haplogroup and allele frequencies. We classified the mtDNAs into 40 sub-haplogroups of 5 haplogroups, most of them being Asian-specific haplogroups. Haplogroup U, an European-specific haplogroups mtDNA, was found only in sCJD. The analysis to control region (CR) revealed a 31% increase in the frequency of mtDNA CR mutations in sCJD versus controls. In functional elements of the mtDNA CR, six CR mutations were in conserved sequence blocks I (CSBI) in sCJD, while only one in control (P<0.05). More mutants in transfer ribonucleic acid-Leu (tRNA-Leu) were detected in sCJD. The frequencies of two synonymous amino-acid changes, m.11467A>G, p.(=) in NADH dehydrogenase subunit 4 (ND4) and m.12372G>A, p.(=) in NADH dehydrogenase subunit 5 (ND5), in sCJD patients were higher than that of controls. Our study, for the first time, screened the variations of mtDNA of Chinese sCJD patients and identified some potential disease-related mutations for further investigations.
Collapse
|
198
|
Casoli T, Di Stefano G, Spazzafumo L, Balietti M, Giorgetti B, Giuli C, Postacchini D, Fattoretti P, Conti F. Contribution of non-reference alleles in mtDNA of Alzheimer's disease patients. Ann Clin Transl Neurol 2014; 1:284-9. [PMID: 25590040 PMCID: PMC4292745 DOI: 10.1002/acn3.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/20/2013] [Accepted: 01/20/2014] [Indexed: 12/01/2022] Open
Abstract
Many observations suggest that mutations of mitochondrial DNA (mtDNA) could be responsible for the neurodegenerative changes of Alzheimer's disease (AD). Here we examined the signal intensity of the four alleles of each mtDNA nucleotide position (np) in whole blood of AD patients and age-matched controls using MitoChip v2.0 array. Our analysis identified 270 significantly different nps which, with one exception, showed an increased contribution of non-reference alleles in AD patients. Principal component analysis (PCA) and cluster analysis showed that five of these nps could discriminate AD from control subjects with 80% of cases correctly classified. Our data support the hypothesis of mtDNA alterations as an important factor in the etiology of AD.
Collapse
Affiliation(s)
- Tiziana Casoli
- Center for Neurobiology of Aging, INRCA IRCCS Ancona, 60121, Italy
| | | | | | - Marta Balietti
- Cellular Bioenergetics Laboratory, Center for Neurobiology of Aging, INRCA IRCCS Ancona, 60121, Italy
| | | | - Cinzia Giuli
- Unit of Geriatrics, INRCA IRCCS Hospital Fermo, 63023, Italy
| | | | - Patrizia Fattoretti
- Cellular Bioenergetics Laboratory, Center for Neurobiology of Aging, INRCA IRCCS Ancona, 60121, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA IRCCS Ancona, 60121, Italy ; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, 60126, Italy
| |
Collapse
|
199
|
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337:193-206. [PMID: 24702846 DOI: 10.1016/j.crvi.2013.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Collapse
|
200
|
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease. Curr Genomics 2014; 14:543-59. [PMID: 24532986 PMCID: PMC3924249 DOI: 10.2174/1389202914666131210211033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD)
pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we
review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular
mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3,
POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation
factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked
to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between
mitochondrial and nuclear genetic variants and related proteins are discussed.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| |
Collapse
|