151
|
Anderson CD, Urschitz J, Khemmani M, Owens JB, Moisyadi S, Shohet RV, Walton CB. Ultrasound directs a transposase system for durable hepatic gene delivery in mice. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2351-61. [PMID: 24035623 PMCID: PMC3838570 DOI: 10.1016/j.ultrasmedbio.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 05/15/2023]
Abstract
Our aim was to evaluate the delivery of transposase-based vectors by ultrasound targeted microbubble destruction (UTMD) in mice. DNA vectors were attached to cationic lipid microbubbles (1-3 μm in diameter), injected intravenously and delivered to the liver by destruction of the carrier bubbles with ultrasound in burst mode at 1.0 MHz, 20-μs pulse duration, 10-Hz pulse repetition frequency and ∼1.3-MPa acoustic peak negative pressure. We evaluated the expression and genomic integration of conventional (pcDNA3) and piggyBac transposase-based (pmGENIE) reporter vectors. In vivo, we observed UTMD-mediated liver-specific expression of pmGENIE for an average of 24 d, compared with 4 d with pcDNA3. Reporter expression was located predominately near blood vessels initially, whereas expression after 3 d was more evenly distributed through the parenchyma of the liver. We confirmed random genomic integration for pmGENIE in vitro; however, integration events for pmGENIE in vivo were targeted to specific areas of chromosome 14. Our results suggest that a combination of UTMD and non-viral DNA transposase vectors can mediate weeks of hepatic-specific gene transfer in vivo, and analyses performed by non-restrictive linear amplification-mediated (nrLAM) polymerase chain reaction, cloning and sequencing identify an unexpected tropism for integration within a specific sequence on chromosome 14 in mice. UTMD delivery of transgenes may be useful for the treatment of hepatic gene deficiency disorders.
Collapse
Affiliation(s)
- Cynthia D Anderson
- Department of Cellular and Molecular Biology; John A. Burns School of Medicine, Honolulu, HI 96813
| | - Johann Urschitz
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI 96813
| | - Mark Khemmani
- Department of Medicine, John A. Burns School of Medicine, Honolulu, HI 96813
| | - Jesse B Owens
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI 96813
| | - Stefan Moisyadi
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Honolulu, HI 96813
- Manoa Biosciences
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, Honolulu, HI 96813
| | - Chad B Walton
- Department of Medicine, John A. Burns School of Medicine, Honolulu, HI 96813
| |
Collapse
|
152
|
Elmer JJ, Christensen MD, Rege K. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. J Control Release 2013; 172:246-257. [PMID: 23994344 PMCID: PMC4258102 DOI: 10.1016/j.jconrel.2013.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/25/2022]
Abstract
Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Collapse
Affiliation(s)
- Jacob J Elmer
- Department of Chemical Engineering, Villanova University, Villanova 19085, USA.
| | | | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe 85287-6106, USA.
| |
Collapse
|
153
|
Solodushko V, Bitko V, Fouty B. Minimal piggyBac vectors for chromatin integration. Gene Ther 2013; 21:1-9. [PMID: 24131979 DOI: 10.1038/gt.2013.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/16/2013] [Accepted: 08/27/2013] [Indexed: 01/22/2023]
Abstract
We describe novel transposon piggyBac vectors engineered to deliver transgenes as efficiently as currently available piggyBac systems, but with significantly less helper DNA co-delivered into the host genome. To generate these plasmids, we identified a previously unreported aspect of transposon biology, that the full-length terminal domains required for successful plasmid-to-chromatin transgene delivery can be removed from the transgene delivery cassette to other parts of the plasmid without significantly impairing transposition efficiency. This is achieved by including in the same plasmid, an additional helper piggyBac sequence that contains both long terminal domains, but is modified to prevent its transposition into the host genome. This design decreases the size of the required terminal domains within the delivered gene cassette of the piggyBac vector from about 1500 to just 98 base pairs. By removing these sequences from the delivered gene cassette, they are no longer incorporated into the host genome which may reduce the risk of target cell transformation.
Collapse
Affiliation(s)
- V Solodushko
- 1] Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, USA [2] Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, USA
| | - V Bitko
- NanoBio Corporation, Ann Arbor, MI, USA
| | - B Fouty
- 1] Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, USA [2] Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, USA [3] Department of Internal Medicine University of South Alabama School of Medicine, Mobile, AL, USA
| |
Collapse
|
154
|
Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, Moisyadi S. Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res 2013; 41:9197-207. [PMID: 23921635 PMCID: PMC3799441 DOI: 10.1093/nar/gkt677] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Insertional therapies have shown great potential for combating genetic disease and safer methods would undoubtedly broaden the variety of possible illness that can be treated. A major challenge that remains is reducing the risk of insertional mutagenesis due to random insertion by both viral and non-viral vectors. Targetable nucleases are capable of inducing double-stranded breaks to enhance homologous recombination for the introduction of transgenes at specific sequences. However, off-target DNA cleavages at unknown sites can lead to mutations that are difficult to detect. Alternatively, the piggyBac transposase is able perform all of the steps required for integration; therefore, cells confirmed to contain a single copy of a targeted transposon, for which its location is known, are likely to be devoid of aberrant genomic modifications. We aimed to retarget transposon insertions by comparing a series of novel hyperactive piggyBac constructs tethered to a custom transcription activator like effector DNA-binding domain designed to bind the first intron of the human CCR5 gene. Multiple targeting strategies were evaluated using combinations of both plasmid-DNA and transposase-protein relocalization to the target sequence. We demonstrated user-defined directed transposition to the CCR5 genomic safe harbor and isolated single-copy clones harboring targeted integrations.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Damiano Mauro
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Mital S. Bhakta
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Moon-Soo Kim
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA, Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA and Manoa BioSciences, Honolulu, HI 96819, USA
| |
Collapse
|
155
|
Yusa K. Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protoc 2013. [PMID: 24071911 DOI: 10.1038/nprot.2013.126.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
I report here a detailed protocol for seamless genome editing using the piggyBac transposon in human pluripotent stem cells (hPSCs). Recent advances in custom endonucleases have enabled us to routinely perform genome editing in hPSCs. Conventional approaches use the Cre/loxP system that leaves behind residual sequences in the targeted genome. I used the piggyBac transposon to seamlessly remove a drug selection cassette and demonstrated safe genetic correction of a mutation causing α-1 antitrypsin deficiency in patient-derived hPSCs. An alternative approach to using the piggyBac transposon to correct mutations involves using single-stranded oligonucleotides, which is a faster process to complete. However, this experimental procedure is rather complicated and it may be hard to achieve homozygous modifications. In contrast, using the piggyBac transposon with drug selection-based enrichment of genetic modifications, as described here, is simple and can yield multiple correctly targeted clones, including homozygotes. Although two rounds of genetic manipulation are required to achieve homozygote modifications, the entire process takes ∼3 months to complete.
Collapse
Affiliation(s)
- Kosuke Yusa
- Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
156
|
Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. BMC Biotechnol 2013; 13:75. [PMID: 24070093 PMCID: PMC3849706 DOI: 10.1186/1472-6750-13-75] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022] Open
Abstract
Background Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. Results The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. Conclusion Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.
Collapse
|
157
|
Yusa K. Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat Protoc 2013; 8:2061-78. [PMID: 24071911 DOI: 10.1038/nprot.2013.126] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
I report here a detailed protocol for seamless genome editing using the piggyBac transposon in human pluripotent stem cells (hPSCs). Recent advances in custom endonucleases have enabled us to routinely perform genome editing in hPSCs. Conventional approaches use the Cre/loxP system that leaves behind residual sequences in the targeted genome. I used the piggyBac transposon to seamlessly remove a drug selection cassette and demonstrated safe genetic correction of a mutation causing α-1 antitrypsin deficiency in patient-derived hPSCs. An alternative approach to using the piggyBac transposon to correct mutations involves using single-stranded oligonucleotides, which is a faster process to complete. However, this experimental procedure is rather complicated and it may be hard to achieve homozygous modifications. In contrast, using the piggyBac transposon with drug selection-based enrichment of genetic modifications, as described here, is simple and can yield multiple correctly targeted clones, including homozygotes. Although two rounds of genetic manipulation are required to achieve homozygote modifications, the entire process takes ∼3 months to complete.
Collapse
Affiliation(s)
- Kosuke Yusa
- Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
158
|
Gil E, Bosch A, Lampe D, Lizcano JM, Perales JC, Danos O, Chillon M. Functional characterization of the human mariner transposon Hsmar2. PLoS One 2013; 8:e73227. [PMID: 24039890 PMCID: PMC3770610 DOI: 10.1371/journal.pone.0073227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/19/2013] [Indexed: 12/23/2022] Open
Abstract
DNA transposons are mobile elements with the ability to mobilize and transport genetic information between different chromosomal loci. Unfortunately, most transposons copies are currently inactivated, little is known about mariner elements in humans despite their role in the evolution of the human genome, even though the Hsmar2 transposon is associated to hotspots for homologous recombination involved in human genetic disorders as Charcot–Marie–Tooth, Prader-Willi/Angelman, and Williams syndromes. This manuscript describes the functional characterization of the human HSMAR2 transposase generated from fossil sequences and shows that the native HSMAR2 is active in human cells, but also in bacteria, with an efficiency similar to other mariner elements. We observe that the sub-cellular localization of HSMAR2 is dependent on the host cell type, and is cytotoxic when overexpressed in HeLa cells. Finally, we also demonstrate that the binding of HSMAR2 to its own ITRs is specific, and that the excision reaction leaves non-canonical footprints both in bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- Estel Gil
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpcio Bosch
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Lampe
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jose M. Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose C. Perales
- Department of Physiological Sciences II, IDIBELL, University of Barcelona, Campus de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Olivier Danos
- Institut National de la Sante et de la recherche Medicale U845, Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Miguel Chillon
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
159
|
Menke DB. Engineering subtle targeted mutations into the mouse genome. Genesis 2013; 51:605-18. [PMID: 23913666 DOI: 10.1002/dvg.22422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
Homologous recombination in embryonic stem (ES) cells offers an exquisitely precise mechanism to introduce targeted modifications to the mouse genome. This ability to produce specific alterations to the mouse genome has become an essential tool for the analysis of gene function and the development of mouse models of human disease. Of the many thousands of mouse alleles that have been generated by gene targeting, the majority are designed to completely ablate gene function, to create conditional alleles that are inactivated in the presence of Cre recombinase, or to produce reporter alleles that label-specific tissues or cell populations (Eppig et al., 2012, Nucleic Acids Res 40:D881-D886). However, there is a variety of powerful motivations for the introduction of subtle targeted mutations (STMs) such as point mutations, small deletions, or small insertions into the mouse genome. The introduction of STMs allows the ablation of specific transcript isoforms, permits the functional investigation of particular domains or amino acids within a protein, provides the ability to study the role of specific sites with in cis-regulatory elements, and can result in better mouse models of human genetic disorders. In this review, I examine the current strategies that are commonly used to introduce STMs into the mouse genome and highlight new gene targeting technologies, including TALENs and CRISPR/Cas, which are likely to influence the future of gene targeting in mice.
Collapse
Affiliation(s)
- Douglas B Menke
- Department of Genetics, University of Georgia, Athens, Georgia
| |
Collapse
|
160
|
Bire S, Casteret S, Arnaoty A, Piégu B, Lecomte T, Bigot Y. Transposase concentration controls transposition activity: myth or reality? Gene 2013; 530:165-71. [PMID: 23994686 DOI: 10.1016/j.gene.2013.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022]
Abstract
Deciphering the mechanisms underlying the regulation of DNA transposons might be central to understanding their function and dynamics in genomes. From results obtained under artificial experimental conditions, it has been proposed that some DNA transposons self-regulate their activity via overproduction inhibition (OPI), a mechanism by which transposition activity is down-regulated when the transposase is overconcentrated in cells. However, numerous studies have given contradictory results depending on the experimental conditions. Moreover, we do not know in which cellular compartment this phenomenon takes place, or whether transposases assemble to form dense foci when they are highly expressed in cells. In the present review, we focus on investigating the data available about eukaryotic transposons to explain the mechanisms underlying OPI. Data in the literature indicate that members of the IS630-Tc1-mariner, Hobo-Ac-Tam, and piggyBac superfamilies are able to use OPI to self-regulate their transposition activity in vivo in most eukaryotic cells, and that some of them are able to assemble so as to form higher order soluble oligomers. We also investigated the localization and behavior of GFP-fused transposases belonging to the mariner, Tc1-like, and piggyBac families, investigating their ability to aggregate in cells when they are overexpressed. Transposases are able to form dense foci when they are highly expressed. Moreover, the cellular compartments in which these foci are concentrated depend on the transposase, and on its expression. The data presented here suggest that sequestration in cytoplasmic or nucleoplasmic foci, or within the nucleoli, might protect the genome against the potentially genotoxic effects of the non-specific nuclease activities of eukaryotic transposases.
Collapse
Affiliation(s)
- Solenne Bire
- PRC, UMR INRA-CNRS 7247, Centre INRA Val de Loire, 37380 Nouzilly Cedex, France
| | | | | | | | | | | |
Collapse
|
161
|
Meir YJJ, Lin A, Huang MF, Lin JR, Weirauch MT, Chou HC, Lin SJA, Wu SCY. A versatile, highly efficient, and potentially safer piggyBac transposon system for mammalian genome manipulations. FASEB J 2013; 27:4429-43. [PMID: 23896728 DOI: 10.1096/fj.12-223586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The piggyBac transposon is one of the most attractive nonviral tools for mammalian genome manipulations. Given that piggybac mobilizes in a "cut-and-paste" fashion, integrant remobilization could potentially damage the host genome. Here, we report a novel piggyBac transposon system with a series of recombinant transposases. We found that the transposition activity of wild-type (PBase) and hyperactive (hyPBase) piggyBac transposases can be significantly increased by peptide fusions in a cell-type dependent fashion, with the greatest change typically seen in mouse embryonic stem (ES) cells. The two most potent recombinant transposases, TPLGMH and ThyPLGMH, give a 9- and 7-fold increase, respectively, in the number of integrants in HEK293 compared with Myc-tagged PBase (MycPBase), and both display 4-fold increase in generating induced pluripotential stem cells. Interestingly, ThyPLGMH but not TPLGMH shows improved chromosomal excision activity (2.5-fold). This unique feature of TPLGMH provides the first evidence that integration activity of a transposase can be drastically improved without increasing its remobilization activity. Transposition catalyzed by ThyPLGMH is more random and occurs further from CpG islands than that catalyzed by MycPBase or TPLGMH. Our transposon system diversifies the mammalian genetic toolbox and provides a spectrum of piggyBac transposases that is better suited to different experimental purposes.
Collapse
Affiliation(s)
- Yaa-Jyuhn James Meir
- 1S.C.-Y.W., Institute of Molecular Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan 333.
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Wu Z, Xu Z, Zou X, Zeng F, Shi J, Liu D, Urschitz J, Moisyadi S, Li Z. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 2013; 22:1107-18. [PMID: 23857557 DOI: 10.1007/s11248-013-9729-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/19/2013] [Indexed: 02/02/2023]
Abstract
The production of animals by somatic cell nuclear transfer (SCNT) is inefficient, with approximately 2% of micromanipulated oocytes going to term and resulting in live births. However, it is the most commonly used method for the generation of cloned transgenic livestock as it facilitates the attainment of transgenic animals once the nuclear donor cells are stably transfected and more importantly as alternatives methods of transgenesis in farm animals have proven even less efficient. Here we describe piggyBac-mediated transposition of a transgene into porcine primary cells and use of these genetically modified cells as nuclear donors for the generation of transgenic pigs by SCNT. Gene transfer by piggyBac transposition serves to provide an alternative approach for the transfection of nuclear donor cells used in SCNT.
Collapse
Affiliation(s)
- Zhenfang Wu
- Department of Animal Genetics, Breeding and Reproduction, South China Agricultural University, The New Building of College of Animal Science, Room 315, Guangzhou, 510642, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
PK-15 cells transfected with porcine CD163 by PiggyBac transposon system are susceptible to porcine reproductive and respiratory syndrome virus. J Virol Methods 2013; 193:383-90. [PMID: 23835031 DOI: 10.1016/j.jviromet.2013.06.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 01/12/2023]
Abstract
The PiggyBac (PB) transposon system is a non-viral DNA-transfer system in which a transposase directs integration of a PB transposon into a TTAA site in the genome. Transgenic expression of porcine CD163 is necessary and sufficient to confer non-permissive cells susceptible to infection with porcine reproductive and respiratory syndrome virus (PRRSV). Such permissive cells can be used as a tool for PRRSV cellular receptor and other studies. One of the problems in studying PRRSV is the lack of porcine cell lines. In this study, efficient transfection and expression of porcine CD163 in PK-15 cells by PB transposition was demonstrated. The stable PK-15CD163 cell line was used in PRRSV infection assays. The data indicated that the average PB transgene copy number per genome was approximately 10. In line with previous literature the integration of PB into the genome had a bias toward the TTAA chromosomal site. The PK-15CD163 cell line was susceptible to infection by different PRRSV strains and the virus grew to similar titers compared to the Marc-145 cell line. This simplification of PK-15CD163 cell line production will provide a valuable tool to facilitate PRRSV cellular receptor studies and to accelerate existing vectors for PK-15 cell-based gene transfer and expression.
Collapse
|
164
|
Abstract
The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc(+)Int(-)) transposase. Our findings also suggest the position of a target DNA-transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc(+)Int(-) transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int(-) phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc(+)Int(-) transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase-target DNA interaction.
Collapse
|
165
|
Urschitz J, Moisyadi S. Transpositional transgenesis with piggyBac.. Mob Genet Elements 2013; 3:e25167. [PMID: 23956948 PMCID: PMC3742596 DOI: 10.4161/mge.25167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 02/08/2023] Open
Abstract
Transposons are mobile genetic elements that are capable of self-directed excision and subsequent reintegration within the host genome. Transposase such as piggyBac, Sleeping Beauty and Tol2 catalyze these reactions and have shown potential as tools for the stable integration of transgenes when used in the binary plasmid mode. Recent modifications to the transposase and/or the terminal repeats of the transposon have increased their integration efficiency and/or specificity. We recently described the development of a piggyBac transposase system, the helper independent, single construct self-inactivating plasmid called GENIE. Here we describe the structure, safety and function of these transpositional vectors and their use in animal transgenesis and cell transfection.
Collapse
Affiliation(s)
- Johann Urschitz
- Department of Anatomy, Biochemistry and Physiology; John A. Burns School of Medicine; Honolulu, HI USA
| | | |
Collapse
|
166
|
Liu Y, Bartlett JA, Di ME, Bomberger JM, Chan YR, Gakhar L, Mallampalli RK, McCray PB, Di YP. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1519-31. [PMID: 23499554 DOI: 10.1016/j.ajpath.2013.01.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 12/12/2022]
Abstract
Epithelial host defense proteins comprise a critical component of the pulmonary innate immune response to infection. The short palate, lung, nasal epithelium clone (PLUNC) 1 (SPLUNC1) protein is a member of the bactericidal/permeability-increasing (BPI) fold-containing (BPIF) protein family, sharing structural similarities with BPI-like proteins. SPLUNC1 is a 25 kDa secretory protein that is expressed in nasal, oropharyngeal, and lung epithelia, and has been implicated in airway host defense against Pseudomonas aeruginosa and other organisms. SPLUNC1 is reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to assess the importance of SPLUNC1 surfactant activity in airway epithelial secretions and to explore its biological relevance in the context of a bacterial infection model. Using cultured airway epithelia, we confirmed that SPLUNC1 is critically important for maintenance of low surface tension in airway fluids. Furthermore, we demonstrated that recombinant SPLUNC1 (rSPLUNC1) significantly inhibited Klebsiella pneumoniae biofilm formation on airway epithelia. We subsequently found that Splunc1(-/-) mice were significantly more susceptible to infection with K. pneumoniae, confirming the likely in vivo relevance of this anti-biofilm effect. Our data indicate that SPLUNC1 is a crucial component of mucosal innate immune defense against pulmonary infection by a relevant airway pathogen, and provide further support for the novel hypothesis that SPLUNC1 protein prevents bacterial biofilm formation through its ability to modulate surface tension of airway fluids.
Collapse
Affiliation(s)
- Yang Liu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci U S A 2013; 110:5004-9. [PMID: 23476064 DOI: 10.1073/pnas.1218620110] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reported here is a piggyBac transposon-based expression system for the generation of doxycycline-inducible, stably transfected mammalian cell cultures for large-scale protein production. The system works with commonly used adherent and suspension-adapted mammalian cell lines and requires only a single transfection step. Moreover, the high uniform expression levels observed among clones allow for the use of stable bulk cell cultures, thereby eliminating time-consuming cloning steps. Under continuous doxycycline induction, protein expression levels have been shown to be stable for at least 2 mo in the absence of drug selection. The high efficiency of the system also allows for the generation of stable bulk cell cultures in 96-well format, a capability leading to the possibility of generating stable cell cultures for entire families of membrane or secreted proteins. Finally, we demonstrate the utility of the system through the large-scale production (140-750 mg scale) of an endoplasmic reticulum-resident fucosyltransferase and two potential anticancer protein therapeutic agents.
Collapse
|
168
|
Weiner AM, Gray LT. What role (if any) does the highly conserved CSB-PGBD3 fusion protein play in Cockayne syndrome? Mech Ageing Dev 2013; 134:225-33. [PMID: 23369858 DOI: 10.1016/j.mad.2013.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/18/2022]
Abstract
The PGBD3 piggyBac transposon inserted into CSB intron 5 early in the primate lineage. As a result of alternative splicing, the human CSB gene now encodes three proteins: CSB, a CSB-PGBD3 fusion protein that joins the N-terminal CSB domain to the C-terminal PGBD3 transposase domain, and PGBD3 transposase. The fusion protein is as highly conserved as CSB, suggesting that it is advantageous in health; however, expression of the fusion protein in CSB-null cells induces a constitutive interferon (IFN) response. The fusion protein binds in vivo to PGBD3-related MER85 elements, but is also tethered to c-Jun, TEAD1, and CTCF motifs by interactions with the cognate transcription factors. The fusion protein regulates nearby genes from the c-Jun (and to a lesser extent TEAD1 and CTCF) motifs, but not from MER85 elements. We speculate that the fusion protein interferes with CSB-dependent chromatin remodeling, generating double-stranded RNA (dsRNA) that induces an IFN response through endosomal TLR or cytoplasmic RIG-I and/or MDA5 RNA sensors. We suggest that the fusion protein was fixed in primates because an elevated IFN response may help to fight viral infection. We also speculate that an inappropriate IFN response may contribute to the clinical presentation of CS.
Collapse
Affiliation(s)
- Alan M Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA.
| | | |
Collapse
|
169
|
Bire S, Rouleux-Bonnin F. Transgene Site-Specific Integration: Problems and Solutions. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
170
|
|
171
|
Nakamura H, Funahashi J. Electroporation: past, present and future. Dev Growth Differ 2012; 55:15-9. [PMID: 23157363 DOI: 10.1111/dgd.12012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023]
Abstract
Gene transfer by electroporation has become an indispensable method for the study of developmental biology. The technique is applied not only in chick embryos but also in mice and other organisms. Here, a short history and perspectives of electroporation for gene transfer in vertebrates are described.
Collapse
Affiliation(s)
- Harukazu Nakamura
- Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
172
|
Di Matteo M, Belay E, Chuah MK, Vandendriessche T. Recent developments in transposon-mediated gene therapy. Expert Opin Biol Ther 2012; 12:841-58. [PMID: 22679910 DOI: 10.1517/14712598.2012.684875] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The continuous improvement of gene transfer technologies has broad implications for stem cell biology, gene discovery, and gene therapy. Although viral vectors are efficient gene delivery vehicles, their safety, immunogenicity and manufacturing challenges hamper clinical progress. In contrast, non-viral gene delivery systems are less immunogenic and easier to manufacture. AREAS COVERED In this review, we explore the emerging potential of transposons in gene and cell therapy. The safety, efficiency, and biology of novel hyperactive Sleeping Beauty (SB) and piggyBac (PB) transposon systems will be highlighted for ex vivo gene therapy in clinically relevant adult stem/progenitor cells, particularly hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), myoblasts, and induced pluripotent stem (iPS) cells. Moreover, efforts toward in vivo transposon-based gene therapy will be discussed. EXPERT OPINION The latest generation SB and PB transposons currently represent some of the most attractive systems for stable non-viral genetic modification of primary cells, particularly adult stem cells. This paves the way toward the use of transposons as a non-viral gene therapy approach to correct hereditary disorders including those that affect the hematopoietic system. The development of targeted integration into "safe harbor" genetic loci may further improve their safety profile.
Collapse
Affiliation(s)
- Mario Di Matteo
- Free University of Brussels, Division of Gene Therapy & Regenerative Medicine, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | |
Collapse
|
173
|
A Hyperactive Transposase Promotes Persistent Gene Transfer of a piggyBac DNA Transposon. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e50. [PMID: 23344650 PMCID: PMC3499692 DOI: 10.1038/mtna.2012.12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonviral vector systems are used increasingly in gene targeting and gene transfer applications. The piggyBac transposon represents an alternative integrating vector for in vivo gene transfer. We hypothesized that this system could achieve persistent gene transfer to the liver when administered systemically. We report that a novel hyperactive transposase generated higher transposition efficiency than a codon-optimized transposase in a human liver cell line. Hyperactive transposase-mediated reporter gene expression persisted at levels twice that of codon-optimized transposase in the livers of mice for the 6-month study. Of note, expression persisted in mice following partial hepatectomy, consistent with expression from an integrated transgene. We also used the hyperactive transposase to deliver the human α1-antitrypsin gene and achieved stable expression in serum. To determine the integration pattern of insertions, we performed large-scale mapping in human cells and recovered 60,685 unique hyperactive transposase-mediated insertions. We found that a hyperactive piggyBac transposase conferred an altered pattern of integration from that of insect piggyBac transposase, with a decreased frequency of integration near transcription start sites than previously reported. Our results support that the piggyBac transposon combined with the hyperactive transposase is an efficient integrating vector system for in vitro and in vivo applications.
Collapse
|
174
|
Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat. Genetics 2012; 192:1235-48. [PMID: 23023007 DOI: 10.1534/genetics.112.140855] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hybrid piggyBac/Sleeping Beauty transposon-based insertional mutagenesis system that can be mobilized by simple breeding was established in the rat. These transposons were engineered to include gene trap sequences and a tyrosinase (Tyr) pigmentation reporter to rescue the albinism of the genetic background used in the mutagenesis strategy. Single-copy transposon insertions were transposed into the rat genome by co-injection of plasmids carrying the transposon and RNA encoding piggyBac transposase into zygotes. The levels of transgenic Tyr expression were influenced by chromosomal context, leading to transgenic rats with different pigmentation that enabled visual genotyping. Transgenic rats designed to ubiquitously express either piggyBac or Sleeping Beauty transposase were generated by standard zygote injection also on an albino background. Bigenic rats carrying single-copy transposons at known loci and transposase transgenes exhibited coat color mosaicism, indicating somatic transposition. PiggyBac or Sleeping Beauty transposase bigenic rats bred with wild-type albino rats yielded offspring with pigmentation distinct from the initial transposon insertions as a consequence of germline transposition to new loci. The germline transposition frequency for Sleeping Beauty and piggyBac was ∼10% or about one new insertion per litter. Approximately 50% of the insertions occurred in introns. Chimeric transcripts containing endogenous and gene trap sequences were identified in Gabrb1 mutant rats. This mutagenesis system based on simple crosses and visual genotyping can be used to generate a collection of single-gene mutations in the rat.
Collapse
|
175
|
Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 2012; 30:1158-70. [PMID: 21968146 DOI: 10.1016/j.biotechadv.2011.08.022] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/13/2022]
|
176
|
Jaillet J, Genty M, Cambefort J, Rouault JD, Augé-Gouillou C. Regulation of mariner transposition: the peculiar case of Mos1. PLoS One 2012; 7:e43365. [PMID: 22905263 PMCID: PMC3419177 DOI: 10.1371/journal.pone.0043365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/20/2012] [Indexed: 01/18/2023] Open
Abstract
Background Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors. This model does not account for differences of transposition efficiency in human cells between mariners. We thus wondered whether apparent similarities in transposition cycle could hide differences in the intrinsic parameters that control mariner transposition. Principal Findings We find that Mos1 transposase concentrations in excess to the Mos1 ends prevent the paired-end complex assembly. However, we observe that Mos1 transposition is not impaired by transposase high concentration, dismissing the idea that transposase over production plays an obligatory role in the down-regulation of mariner transposition. Our main finding is that the paired-end complex is formed in a cooperative way, regardless of the transposase concentration. We also show that an element framed by two identical ITRs (Inverted Terminal Repeats) is more efficient in driving transposition than an element framed by two different ITRs (i.e. the natural Mos1 copy), the latter being more sensitive to transposase concentration variations. Finally, we show that the current Mos1 ITRs correspond to the ancestral ones. Conclusions We provide new insights on intrinsic properties supporting the self-regulation of the Mos1 element. These properties (transposase specific activity, aggregation, ITR sequences, transposase concentration/transposon copy number ratio…) could have played a role in the dynamics of host-genomes invasion by Mos1, accounting (at least in part) for the current low copy number of Mos1 within host genomes.
Collapse
Affiliation(s)
- Jérôme Jaillet
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Murielle Genty
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jeanne Cambefort
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation – CNRS UPR9034, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Corinne Augé-Gouillou
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
- * E-mail:
| |
Collapse
|
177
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
178
|
Rostovskaya M, Fu J, Obst M, Baer I, Weidlich S, Wang H, Smith AJH, Anastassiadis K, Stewart AF. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res 2012; 40:e150. [PMID: 22753106 PMCID: PMC3479164 DOI: 10.1093/nar/gks643] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transgenesis is a cornerstone of molecular biology. The ability to integrate a specifically engineered piece of DNA into the genome of a living system is fundamental to our efforts to understand life and exploit its implications for medicine, nanotechnology and bioprospecting. However, transgenesis has been hampered by position effects and multi-copy integration problems, which are mainly due to the use of small, plasmid-based transgenes. Large transgenes based on native genomic regions cloned into bacterial artificial chromosomes (BACs) circumvent these problems but are prone to fragmentation. Herein, we report that contrary to widely held notions, large BAC-sized constructs do not prohibit transposition. We also report the first reliable method for BAC transgenesis in human embryonic stem cells (hESCs). The PiggyBac or Sleeping Beauty transposon inverted repeats were integrated into BAC vectors by recombineering, followed by co-lipofection with the corresponding transposase in hESCs to generate robust fluorescent protein reporter lines for OCT4, NANOG, GATA4 and PAX6. BAC transposition delivers several advantages, including increased frequencies of single-copy, full-length integration, which will be useful in all transgenic systems but especially in difficult venues like hESCs.
Collapse
Affiliation(s)
- Maria Rostovskaya
- Stem Cell Engineering, BioInnovationsZentrum, Technische Universitaet Dresden, Dresden 01307, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Ammar I, Gogol-Döring A, Miskey C, Chen W, Cathomen T, Izsvák Z, Ivics Z. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res 2012; 40:6693-712. [PMID: 22523082 PMCID: PMC3413126 DOI: 10.1093/nar/gks317] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Sleeping Beauty (SB), piggyBac (PB) and Tol2 transposons are promising instruments for genome engineering. Integration site profiling of SB, PB and Tol2 in human cells showed that PB and Tol2 insertions were enriched in genes, whereas SB insertions were randomly distributed. We aimed to introduce a bias into the target site selection properties of the transposon systems by taking advantage of the locus-specific integration system of adeno-associated virus (AAV). The AAV Rep protein binds to Rep recognition sequences (RRSs) in the human genome, and mediates viral integration into nearby sites. A series of fusion constructs consisting of the N-terminal DNA-binding domain of Rep and the transposases or the N57 domain of SB were generated. A plasmid-based transposition assay showed that Rep/SB yielded a 15-fold enrichment of transposition at a particular site near a targeted RRS. Genome-wide insertion site analysis indicated that an approach based on interactions between the SB transposase and Rep/N57 enriched transgene insertions at RRSs. We also provide evidence of biased insertion of the PB and Tol2 transposons. This study provides a comparative insight into target site selection properties of transposons, as well as proof-of-principle for targeted chromosomal transposition by composite protein–protein and protein–DNA interactions.
Collapse
Affiliation(s)
- Ismahen Ammar
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
180
|
Chen F, LoTurco J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J Neurosci Methods 2012; 207:172-80. [PMID: 22521325 DOI: 10.1016/j.jneumeth.2012.03.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Methods that combine lineage tracing with cellular transgenesis are needed in order to determine mechanisms that specify neural cell types. Currently available methods include viral infection and Cre-mediated recombination. In utero electroporation (IUE) has been used in multiple species to deliver multiple transgenes simultaneously into neural progenitors. In standard IUE, most plasmids remain episomal, are lost during cell division, and so transgenes are not expressed in the complete neural lineage. Here we combine IUE with a binary piggyBac transposon system (PB-IUE), and show that unlike conventional IUE, a single embryonic transfection of neocortical radial glia with a piggyBac transposon system results in stable transgene expression in the neural lineage of radial glia: cortical neurons, astrocytes, oligodendrocytes, and olfactory bulb interneurons. We also developed a modular toolkit of donor and helper plasmids with different promoters that allows for shRNA, bicistronic expression, and trangenesis in subsets of progenitors. As a demonstration of the utility of the toolkit we show that transgenesis of epidermal growth factor receptor (EGFR) expands the number of astrocytes and oligodendrocyrtes generated from progenitors. The relative ease of implementation and experimental flexibility should make the piggyBac IUE method a valuable new tool for tracking and manipulating neural lineages.
Collapse
Affiliation(s)
- Fuyi Chen
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, Unit 3156, Storrs, CT 06269-3156, USA.
| | | |
Collapse
|
181
|
Jiang XY, Du XD, Tian YM, Shen RJ, Sun CF, Zou SM. Goldfish transposase Tgf2 presumably from recent horizontal transfer is active. FASEB J 2012; 26:2743-52. [PMID: 22441985 DOI: 10.1096/fj.11-199273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hobo/Activator/Tam3 (hAT) superfamily transposons occur in plants and animals and play a role in genomic evolution. Certain hAT transposons are active and have been developed as incisive genetic tools. Active vertebrate elements are rarely discovered; however, Tgf2 transposon was recently discovered in goldfish (Carassius auratus). Here, we found that the endogenous Tgf2 element can transpose in goldfish genome. Seven different goldfish mRNA transcripts, encoding three lengths of Tgf2 transposase, were identified. Tgf2 transposase mRNA was detected in goldfish embryos, mainly in epithelial cells; levels were high in ovaries and mature eggs and in all adult tissues tested. Endogenous Tgf2 transposase mRNA is active in mature eggs and can mediate high rates of transposition (>30%) when injected with donor plasmids harboring a Tgf2 cis-element. When donor plasmid was coinjected with capped Tgf2 transposase mRNA, the insertion rate reached >90% at 1 yr. Nonautonomous copies of the Tgf2 transposon with large-fragment deletions and low levels of point mutations were also detected in common goldfish. Phylogenetic analysis indicates the taxonomic distribution of Tgf2 in goldfish is not due to vertical inheritance. We propose that the goldfish Tgf2 transposon originated by recent horizontal transfer and maintains a highly native activity.
Collapse
Affiliation(s)
- Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
182
|
Abstract
The ability to chronicle transcription-factor binding events throughout the development of an organism would facilitate mapping of transcriptional networks that control cell-fate decisions. We describe a method for permanently recording protein-DNA interactions in mammalian cells. We endow transcription factors with the ability to deposit a transposon into the genome near to where they bind. The transposon becomes a "calling card" that the transcription factor leaves behind to record its visit to the genome. The locations of the calling cards can be determined by massively parallel DNA sequencing. We show that the transcription factor SP1 fused to the piggyBac transposase directs insertion of the piggyBac transposon near SP1 binding sites. The locations of transposon insertions are highly reproducible and agree with sites of SP1-binding determined by ChIP-seq. Genes bound by SP1 are more likely to be expressed in the HCT116 cell line we used, and SP1-bound CpG islands show a strong preference to be unmethylated. This method has the potential to trace transcription-factor binding throughout cellular and organismal development in a way that has heretofore not been possible.
Collapse
|
183
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
184
|
Doherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH. Hyperactive piggyBac gene transfer in human cells and in vivo. Hum Gene Ther 2011; 23:311-20. [PMID: 21992617 DOI: 10.1089/hum.2011.138] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We characterized a recently developed hyperactive piggyBac (pB) transposase enzyme [containing seven mutations (7pB)] for gene transfer in human cells in vitro and to somatic cells in mice in vivo. Despite a protein level expression similar to that of native pB, 7pB significantly increased the gene transfer efficiency of a neomycin resistance cassette transposon in both HEK293 and HeLa cultured human cells. Native pB and SB100X, the most active transposase of the Sleeping Beauty transposon system, exhibited similar transposition efficiency in cultured human cell lines. When delivered to primary human T cells ex vivo, 7pB increased gene delivery two- to threefold compared with piggyBac and SB100X. The activity of hyperactive 7pB transposase was not affected by the addition of a 24-kDa N-terminal tag, whereas SB100X manifested a 50% reduction in transposition. Hyperactive 7pB was compared with native pB and SB100X in vivo in mice using hydrodynamic tail-vein injection of a limiting dose of transposase DNA combined with luciferase reporter transposons. We followed transgene expression for up to 6 months and observed approximately 10-fold greater long-term gene expression in mice injected with a codon-optimized version of 7pB compared with mice injected with native pB or SB100X. We conclude that hyperactive piggyBac elements can increase gene transfer in human cells and in vivo and should enable improved gene delivery using the piggyBac transposon system in a variety of cell and gene-therapy applications.
Collapse
Affiliation(s)
- Joseph E Doherty
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
185
|
Amos PJ, Cagavi Bozkulak E, Qyang Y. Methods of cell purification: a critical juncture for laboratory research and translational science. Cells Tissues Organs 2011; 195:26-40. [PMID: 21996576 PMCID: PMC3257814 DOI: 10.1159/000331390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells.
Collapse
Affiliation(s)
| | | | - Yibing Qyang
- Section of Cardiology, Department of Internal Medicine, Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, Conn., USA
| |
Collapse
|
186
|
Gersbach CA, Gaj T, Gordley RM, Mercer AC, Barbas CF. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res 2011; 39:7868-78. [PMID: 21653554 PMCID: PMC3177191 DOI: 10.1093/nar/gkr421] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/13/2022] Open
Abstract
The development of new methods for gene addition to mammalian genomes is necessary to overcome the limitations of conventional genetic engineering strategies. Although a variety of DNA-modifying enzymes have been used to directly catalyze the integration of plasmid DNA into mammalian genomes, there is still an unmet need for enzymes that target a single specific chromosomal site. We recently engineered zinc-finger recombinase (ZFR) fusion proteins that integrate plasmid DNA into a synthetic target site in the human genome with exceptional specificity. In this study, we present a two-step method for utilizing these enzymes in any cell type at randomly-distributed target site locations. The piggyBac transposase was used to insert recombinase target sites throughout the genomes of human and mouse cell lines. The ZFR efficiently and specifically integrated a transfected plasmid into these genomic target sites and into multiple transposons within a single cell. Plasmid integration was dependent on recombinase activity and the presence of recombinase target sites. This work demonstrates the potential for broad applicability of the ZFR technology in genome engineering, synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Charles A. Gersbach
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Gaj
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Russell M. Gordley
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew C. Mercer
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carlos F. Barbas
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
187
|
Yang R, Jiang M, Kumar SM, Xu T, Wang F, Xiang L, Xu X. Generation of melanocytes from induced pluripotent stem cells. J Invest Dermatol 2011; 131:2458-66. [PMID: 21833016 PMCID: PMC3213325 DOI: 10.1038/jid.2011.242] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Epidermal melanocytes play an important role in protecting skin from ultraviolet (UV) rays, and are implicated in a variety of skin diseases. Here, we developed an efficient method for differentiating induced pluripotent stem cells (iPSCs) into melanocytes. We first generated iPSCs from adult mouse tail-tip fibroblasts (TTFs) using retroviral vectors or virus-free piggyBac transposon vectors carrying murine Sox2, Oct3/4, cMyc and Klf4. The TTF-derived iPSC clones exhibited similar morphology and growth properties as mouse embryonic stem (ES) cells. The iPSCs expressed ES cell markers, displayed characteristic epigenetic changes and formed teratomas with all three germ layers. The iPSCs were used to generate embryoid bodies (EBs) and were then successfully differentiated into melanocytes by treatment with growth factors. The iPSC-derived melanocytes expressed characteristic melanocyte markers and produced melanin pigment. Electron microscopy showed that the melanocytes contained mature melanosomes. We manipulated the conditions used to differentiate iPSCs to melanocytes and discovered that Wnt3a is not required for mouse melanocyte differentiation. This report shows that melanocytes can be readily generated from iPSCs, providing a powerful resource for the in vitro study of melanocyte developmental biology and diseases. By inducing iPSCs without viruses, the possibility of integration mutagenesis is alleviated, providing iPSCs are more compatible for cell replacement therapies.
Collapse
Affiliation(s)
- Ruifeng Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|
189
|
Nakazawa Y, Huye LE, Salsman VS, Leen AM, Ahmed N, Rollins L, Dotti G, Gottschalk SM, Wilson MH, Rooney CM. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol Ther 2011; 19:2133-43. [PMID: 21772253 DOI: 10.1038/mt.2011.131] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy.
Collapse
Affiliation(s)
- Yozo Nakazawa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 2011; 19:1636-44. [PMID: 21730970 DOI: 10.1038/mt.2011.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to direct gene delivery to a user-defined chromosomal location would greatly improve gene transfer applications. The piggyBac transposon system is a nonviral gene transfer system proven effective in a variety of cells and tissues, including human cells. We fused a highly site-specific synthetic zinc-finger DNA-binding domain (ZFP) to the N-terminus of the piggyBac transposase and evaluated site-directed genomic integration in human cells. Chimeric ZFP-piggyBac transposase exhibited robust gene transfer activity, targeted binding to a cognate endogenous chromosomal ZFP site in the human genome, and site-directed transposon integration into an episomal plasmid target containing a single ZFP site in human cells. We evaluated the ability of ZFP-piggyBac to direct gene integration into an engineered chromosomal ZFP target site in the human genome and consistently observed a higher degree of ZFP-piggyBac site-directed genomic integration when compared to native piggyBac. Chromatin immunoprecipitation (ChIP) experiments revealed binding of native piggyBac to our engineered TTAA-containing chromosomal target which supported integration, but not a TTAA-deficient chromosomal target which lacked integration. Our results offer insight into the requirements for using a chimeric zinc finger-piggyBac transposase to direct integration into a user-defined chromosomal location.
Collapse
|
191
|
Comparison of piggyBac transposition efficiency between linear and circular donor vectors in mammalian cells. J Biotechnol 2011; 154:205-8. [DOI: 10.1016/j.jbiotec.2011.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/06/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
|
192
|
A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials 2011; 32:6264-76. [PMID: 21636125 DOI: 10.1016/j.biomaterials.2011.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/03/2011] [Indexed: 02/02/2023]
Abstract
The piggyBac (PB) transposable element has recently accumulated enormous attention as a tool for the transgenesis in various eukaryotic organisms. Arginine-rich cell-penetrating peptides (CPPs) are protein transduction domains containing a large amount of basic amino acids that were found to be capable of delivering biologically active macromolecules into living cells. In this study, we demonstrate a strategy, which we called "transposoduction", which is a one-plasmid gene delivery system mediated by the nontoxic CPP-piggyBac transposase (CPP-PBase) fusion protein to accomplish both protein transduction and transposition. CPPs were proven to be able to synchronously deliver covalently linked PBase and noncovalently linked a cis plasmid into human cells. The expression of promoterless reporter genes coding for red (dTomato) and yellow (mOrange) fluorescent proteins (RFP and YFP) with PB elements could be detected in cells treated with the PBase-expressing plasmid after 3 days indicating transposition of coding regions to downstream of endogenous promoter sequences. An enhanced green fluorescent protein (EGFP) plasmid-based excision assay further confirmed the efficiency of the bifunctional CPP-PBase fusion protein. In conclusion, this strategy representing a combinational concept of both protein transduction and mobile transposition may provide tremendous potential for safe and efficient cell line transformation, gene therapy and functional genomics.
Collapse
|
193
|
Lipps HJ, Hammerschmidt W, Ehrhardt A. [Lifelong healing via gene transfer - reality or utopia? Stable versus transient gene transfer]. PHARMAZIE IN UNSERER ZEIT 2011; 40:240-246. [PMID: 21698613 DOI: 10.1002/pauz.201100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
194
|
Matasci M, Baldi L, Hacker DL, Wurm FM. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 2011; 108:2141-50. [DOI: 10.1002/bit.23167] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/14/2011] [Accepted: 03/30/2011] [Indexed: 12/17/2022]
|
195
|
Chen B, Hrycaj S, Schinko JB, Podlaha O, Wimmer EA, Popadić A, Monteiro A. Pogostick: a new versatile piggyBac vector for inducible gene over-expression and down-regulation in emerging model systems. PLoS One 2011; 6:e18659. [PMID: 21533190 PMCID: PMC3077399 DOI: 10.1371/journal.pone.0018659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/07/2011] [Indexed: 11/18/2022] Open
Abstract
Background Non-traditional model systems need new tools that will enable them to enter the field of functional genetics. These tools should enable the exploration of gene function, via knock-downs of endogenous genes, as well as over-expression and ectopic expression of transgenes. Methodology We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ line transformation by the piggyBac transposable element. Pogostick can be found at www.addgene.org, a non-profit plasmid repository. The vector currently uses the heat-shock promoter Hsp70 from Drosophila to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. We detail how to clone candidate genes into this vector and test its functionality in Drosophila by targeting a gene coding for the fluorescent protein DsRed. By cloning a single DsRed copy into the vector, and generating transgenic lines, we show that DsRed mRNA and protein levels are elevated following heat-shock. When cloning a second copy of DsRed in reverse orientation into a flanking site, and transforming flies constitutively expressing DsRed in the eyes, we show that endogenous mRNA and protein levels drop following heat-shock. We then test the over-expression vector, containing the complete cDNA of Ultrabithorax (Ubx) gene, in an emerging model system, Bicyclus anynana. We produce a transgenic line and show that levels of Ubx mRNA expression rise significantly following a heat-shock. Finally, we show how to obtain genomic sequence adjacent to the Pogostick insertion site and to estimate transgene copy number in genomes of transformed individuals. Significance This new vector will allow emerging model systems to enter the field of functional genetics with few hurdles.
Collapse
Affiliation(s)
- Bin Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People's Republic of China
- * E-mail: (BC); (AM)
| | - Steven Hrycaj
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Johannes B. Schinko
- Department of Developmental Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Ondrej Podlaha
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ernst A. Wimmer
- Department of Developmental Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Aleksandar Popadić
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Antónia Monteiro
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (BC); (AM)
| |
Collapse
|
196
|
Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol 2011; 11:28. [PMID: 21447194 PMCID: PMC3078864 DOI: 10.1186/1472-6750-11-28] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/30/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. RESULTS We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2. CONCLUSIONS The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting.
Collapse
|
197
|
Fonager J, Franke-Fayard BMD, Adams JH, Ramesar J, Klop O, Khan SM, Janse CJ, Waters AP. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics 2011; 12:155. [PMID: 21418605 PMCID: PMC3073922 DOI: 10.1186/1471-2164-12-155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/20/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The genome of a number of species of malaria parasites (Plasmodium spp.) has been sequenced in the hope of identifying new drug and vaccine targets. However, almost one-half of predicted Plasmodium genes are annotated as hypothetical and are difficult to analyse in bulk due to the inefficiency of current reverse genetic methodologies for Plasmodium. Recently, it has been shown that the transposase piggyBac integrates at random into the genome of the human malaria parasite P. falciparum offering the possibility to develop forward genetic screens to analyse Plasmodium gene function. This study reports the development and application of the piggyBac transposition system for the rodent malaria parasite P. berghei and the evaluation of its potential as a tool in forward genetic studies. P. berghei is the most frequently used malaria parasite model in gene function analysis since phenotype screens throughout the complete Plasmodium life cycle are possible both in vitro and in vivo. RESULTS We demonstrate that piggyBac based gene inactivation and promoter-trapping is both easier and more efficient in P. berghei than in the human malaria parasite, P. falciparum. Random piggyBac-mediated insertion into genes was achieved after parasites were transfected with the piggyBac donor plasmid either when transposase was expressed either from a helper plasmid or a stably integrated gene in the genome. Characterization of more than 120 insertion sites demonstrated that more than 70 most likely affect gene expression classifying their protein products as non-essential for asexual blood stage development. The non-essential nature of two of these genes was confirmed by targeted gene deletion one of which encodes P41, an ortholog of a human malaria vaccine candidate. Importantly for future development of whole genome phenotypic screens the remobilization of the piggyBac element in parasites that stably express transposase was demonstrated. CONCLUSION These data demonstrate that piggyBac behaved as an efficient and random transposon in P. berghei. Remobilization of piggyBac element shows that with further development the piggyBac system can be an effective tool to generate random genome-wide mutation parasite libraries, for use in large-scale phenotype screens in vitro and in vivo.
Collapse
Affiliation(s)
- Jannik Fonager
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Blandine MD Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida USA
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden. The Netherlands
| | - Andrew P Waters
- Institute of, Infection, Immunity & Inflammation, School of Medical, Veterinary & Life Sciences, & Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Scotland, UK
| |
Collapse
|
198
|
Wang N, Jiang CY, Jiang MX, Zhang CX, Cheng JA. Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells. J Zhejiang Univ Sci B 2011; 11:728-34. [PMID: 20803777 DOI: 10.1631/jzus.b1000139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The piggyBac transposon has been long used to integrate foreign DNA into insect genomes. However, undesirable transgene expression can result from random insertions into the genome. In this study, the efficiency of chimeric Gal4-piggyBac transposase in directing integration onto a DNA target plasmid was evaluated in cultured silkworm Bombyx mori Bm-12 and fruit fly Drosophila Schneider 2 (S2) cells. The Gal4-piggyBac transposase has a Gal4 DNA-binding domain (DBD), and the target plasmid has upstream activating sequences (UAS) to which the Gal4 DBD can bind with high affinity. The results indicate that, in the Bm-12 and S2 cells, transpositional activity of Gal4-piggyBac transposase was increased by 4.0 and 7.5 times, respectively, compared to controls, where Gal4-UAS interaction was absent. Moreover, the Gal4-piggyBac transposase had the ability of directing piggyBac element integration to certain sites of the target plasmid, although the target-directing specificity was not as high as expected. The chimeric piggyBac transposase has the potential for use in site-directed transgenesis and gene function research in B. mori.
Collapse
Affiliation(s)
- Na Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
199
|
Abstract
DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.
Collapse
|
200
|
Chew SK, Rad R, Futreal PA, Bradley A, Liu P. Genetic screens using the piggyBac transposon. Methods 2010; 53:366-71. [PMID: 21185377 PMCID: PMC3650578 DOI: 10.1016/j.ymeth.2010.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 11/02/2022] Open
Abstract
Transposons are an attractive system to use in genetic screens as they are molecularly tractable and the disrupted loci that give rise to the desired phenotype are easily mapped. We consider herein the characteristics of the piggyBac transposon system in complementing existing mammalian screen strategies, including the Sleeping Beauty transposon system. We also describe the design of the piggyBac resources that we have developed for both forward and reverse genetic screens, and the protocols we use in these experiments.
Collapse
Affiliation(s)
- Su Kit Chew
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | | | | | | | | |
Collapse
|