151
|
Driscoll MD, McLean KJ, Levy C, Mast N, Pikuleva IA, Lafite P, Rigby SEJ, Leys D, Munro AW. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem 2010; 285:38270-82. [PMID: 20889498 PMCID: PMC2992261 DOI: 10.1074/jbc.m110.164293] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/09/2010] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis cytochrome P450 enzyme CYP142 is encoded in a large gene cluster involved in metabolism of host cholesterol. CYP142 was expressed and purified as a soluble, low spin P450 hemoprotein. CYP142 binds tightly to cholesterol and its oxidized derivative cholest-4-en-3-one, with extensive shift of the heme iron to the high spin state. High affinity for azole antibiotics was demonstrated, highlighting their therapeutic potential. CYP142 catalyzes either 27-hydroxylation of cholesterol/cholest-4-en-3-one or generates 5-cholestenoic acid/cholest-4-en-3-one-27-oic acid from these substrates by successive sterol oxidations, with the catalytic outcome dependent on the redox partner system used. The CYP142 crystal structure was solved to 1.6 Å, revealing a similar active site organization to the cholesterol-metabolizing M. tuberculosis CYP125, but having a near-identical organization of distal pocket residues to the branched fatty acid oxidizing M. tuberculosis CYP124. The cholesterol oxidizing activity of CYP142 provides an explanation for previous findings that ΔCYP125 strains of Mycobacterium bovis and M. bovis BCG cannot grow on cholesterol, because these strains have a defective CYP142 gene. CYP142 is revealed as a cholesterol 27-oxidase with likely roles in host response modulation and cholesterol metabolism.
Collapse
Affiliation(s)
- Max D. Driscoll
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kirsty J. McLean
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin Levy
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Natalia Mast
- the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 444106, and
| | - Irina A. Pikuleva
- the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 444106, and
| | - Pierre Lafite
- the ICOA-UMR, CNRS 6005, Université d'Orléans, Rue de Chartres, 45067 Orléans, France
| | - Stephen E. J. Rigby
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David Leys
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andrew W. Munro
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
152
|
Pochapsky TC, Kazanis S, Dang M. Conformational plasticity and structure/function relationships in cytochromes P450. Antioxid Redox Signal 2010; 13:1273-96. [PMID: 20446763 PMCID: PMC2959183 DOI: 10.1089/ars.2010.3109] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytochrome P450s are a superfamily of enzymes that are found in all kingdoms of living organisms, and typically catalyze the oxidative addition of atomic oxygen to an unactivated C-C or C-H bond. Over 8000 nonredundant sequences of putative and confirmed P450 enzymes have been identified, but three-dimensional structures have been determined for only a small fraction of these. While all P450 enzymes for which structures have been determined share a common global fold, the flexibility and modularity of structure around the active site account for the ability of P450 enzymes to accommodate a vast number of structurally dissimilar substrates and support a wide range of selective oxidations. In this review, known P450 structures are compared, and some structural criteria for prediction of substrate selectivity and reaction type are suggested. The importance of dynamic processes such as redox-dependent and effector-induced conformational changes in determining catalytic competence and regio- and stereoselectivity is discussed, and noncrystallographic methods for characterizing P450 structures and dynamics, in particular, mass spectrometry and nuclear magnetic resonance spectroscopy are reviewed.
Collapse
Affiliation(s)
- Thomas C Pochapsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
153
|
Vetting MW, Hegde SS, Blanchard JS. The structure and mechanism of the Mycobacterium tuberculosis cyclodityrosine synthetase. Nat Chem Biol 2010; 6:797-9. [PMID: 20852636 PMCID: PMC2957485 DOI: 10.1038/nchembio.440] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/16/2010] [Indexed: 11/09/2022]
Abstract
The Mycobacterium tuberculosis enzyme Rv2275 catalyzes the formation of cyclo(L-Tyr-L-Tyr) using two molecules of Tyr-tRNA(Tyr) as substrates. The three-dimensional (3D) structure of Rv2275 was determined to 2.0-Å resolution, revealing that Rv2275 is structurally related to the class Ic aminoacyl-tRNA synthetase family of enzymes. Mutagenesis and radioactive labeling suggests a covalent intermediate in which L-tyrosine is transferred from Tyr-tRNA(Tyr) to an active site serine (Ser88) by transesterification with Glu233 serving as a critical base, catalyzing dipeptide bond formation.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
154
|
Cryle MJ, Bell SG, Schlichting I. Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochemistry 2010; 49:7282-96. [PMID: 20690619 DOI: 10.1021/bi100910y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 CypX (CYP134A1), isolated from Bacillus subtilis, has previously been implicated in the three-step oxidative transformation of the diketopiperazine cyclo-l-leucyl-l-leucyl into pulcherriminic acid, a precursor of the extracellular iron chelate pulcherrimin. In this study, we present the first experimental data relating to CYP134A1, where we show that CYP134A1 binds cyclo-l-leucyl-l-leucyl with an affinity of 24.5 +/- 0.5 muM. Structurally related diketopiperazines sharing similar alkyl side chains to cyclo-l-leucyl-l-leucyl also bind to CYP134A1 with comparable affinity. CYP134A1 is capable of catalyzing the in vitro oxidation of diketopiperazine substrates when supported with several alternate electron transfer partner systems. Products containing one additional oxygen atom and which are intermediate products of the expected pulcherriminic acid were identified by GCMS. The oxidation of related diketopiperazines reveals that different oxidative pathways exist for CYP134A1-catalyzed diketopiperazine oxidation. The crystal structure of CYP134A1 has been determined to 2.7 A resolution in the absence of substrate and in the presence of bound phenylimidazole ligands to 3.1 and 3.2 A resolution. The active site is dominated by hydrophobic residues and contains an unusual proline residue in place of the normally conserved alcohol residue that typically plays an important role in oxygen activation. The B-B(2) substrate recognition loop, which forms part of the active site, shows considerable flexibility and was found in both open and closed conformations in different structures. These results represent the first insights into the structural and biochemical basis underlying the multistep oxidation catalyzed by CYP134A1.
Collapse
Affiliation(s)
- Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
155
|
Aravind L, de Souza RF, Iyer LM. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis. Biol Direct 2010; 5:48. [PMID: 20678224 PMCID: PMC2922099 DOI: 10.1186/1745-6150-5-48] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/02/2010] [Indexed: 01/19/2023] Open
Abstract
Background Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS) in non-ribosomal peptide ligation. Results Here we describe novel examples of AAtRS related proteins that are likely to be involved in the synthesis of widely distributed peptide-derived metabolites. Using sensitive sequence profile methods we show that the cyclodipeptide synthases (CDPSs) are members of the HUP class of Rossmannoid domains and are likely to be highly derived versions of the class-I AAtRS catalytic domains. We also identify the first eukaryotic CDPSs in fungi and in animals; they might be involved in immune response in the latter organisms. We also identify a paralogous version of the methionyl-tRNA synthetase, which is widespread in bacteria, and present evidence using contextual information that it might function independently of protein synthesis as a peptide ligase in the formation of a peptide- derived secondary metabolite. This metabolite is likely to be heavily modified through multiple reactions catalyzed by a metal-binding cupin domain and a lysine N6 monooxygenase that are strictly associated with this paralogous methionyl-tRNA synthetase (MtRS). We further identify an analogous system wherein the MtRS has been replaced by more typical peptide ligases with the ATP-grasp or modular condensation-domains. Conclusions The prevalence of these predicted biosynthetic pathways in phylogenetically distant, pathogenic or symbiotic bacteria suggests that metabolites synthesized by them might participate in interactions with the host. More generally, these findings point to a complete spectrum of recruitment of AAtRS to various non-ribosomal biosynthetic pathways, ranging from the conventional AAtRS, through closely related paralogous AAtRS dedicated to certain pathways, to highly derived versions of the class-I AAtRS catalytic domain like the CDPSs. Both the conventional AAtRS and their closely related paralogs often provide aminoacylated tRNAs for peptide ligations by MprF/Fem/MurM-type acetyltransferase fold ligases in the synthesis of peptidoglycan, N-end rule modifications of proteins, lipid aminoacylation or biosynthesis of antibiotics, such as valinamycin. Alternatively they might supply aminoacylated tRNAs for other biosynthetic pathways like that for tetrapyrrole or directly function as peptide ligases as in the case of mycothiol and those identified here. Reviewers This article was reviewed by Andrei Osterman and Igor Zhulin.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
156
|
Driscoll MD, McLean KJ, Cheesman MR, Jowitt TA, Howard M, Carroll P, Parish T, Munro AW. Expression and characterization of Mycobacterium tuberculosis CYP144: common themes and lessons learned in the M. tuberculosis P450 enzyme family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:76-87. [PMID: 20621636 DOI: 10.1016/j.bbapap.2010.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
CYP144 from Mycobacterium tuberculosis was expressed and purified. CYP144 demonstrates heme thiolate coordination in its ferric form, but the cysteinate is protonated to thiol in both the carbon monoxide-bound and ligand-free ferrous forms (forming P420 in the former). Tight binding of various azole drugs was shown, with affinity for miconazole (K(d)=0.98 μM), clotrimazole (0.37 μM) and econazole (0.78 μM) being highest. These azoles are also the trio with the highest affinity for the essential CYP121 and for the cholesterol oxidase CYP125 (essential for host infection), and have high potency as anti-mycobacterial drugs. Construction of a Mtb gene knockout strain demonstrated that CYP144 is not essential for growth in vitro. However the deletion strain was more sensitive to azole inhibition in culture suggesting an important role for CYP144 in cell physiology and/or in mediating azole resistance. The biophysical and genetic features of CYP144 are compared to those of other characterized Mtb P450s, identifying both commonality in properties (including thiolate protonation in ferrous P450s) and intriguing differences in thermodynamic and spectroscopic features. Our developing knowledge of the Mtb P450s has revealed unusual biochemistry and gene essentiality, highlighting their potential as drug targets in this human pathogen.
Collapse
Affiliation(s)
- Max D Driscoll
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M17DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Walsh CT, Fischbach MA. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 2010; 132:2469-93. [PMID: 20121095 DOI: 10.1021/ja909118a] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this Perspective, we explore how connecting Nature's small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and non-ribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future?
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
158
|
von Kries JP, Warrier T, Podust LM. Identification of small-molecule scaffolds for p450 inhibitors. ACTA ACUST UNITED AC 2010; Chapter 17:Unit17.4. [PMID: 20131225 DOI: 10.1002/9780471729259.mc1704s16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mycobacterium tuberculosis cytochrome P450 enzymes (CYP) attract ongoing interest for their pharmacological development potential, driving direct screening efforts against potential CYP targets with the ultimate goal of developing potent CYP-specific inhibitors and/or molecular probes to address M. tuberculosis biology. The property of CYP enzymes to shift the ferric heme Fe Soret band in response to ligand binding provides the basis for an experimental platform for high-throughput screening (HTS) of compound libraries to select chemotypes with high binding affinities to the target. Promising compounds can be evaluated in in vitro assays or in vivo disease models and further characterized by x-ray crystallography, leading to optimization strategies to assist drug design. Protocols are provided for compound library screening, analysis of inhibitory potential, and co-crystallization with the target CYP, as well as expression and purification of soluble CYP enzymes.
Collapse
Affiliation(s)
- Jens P von Kries
- Screening Unit, Leibniz Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | |
Collapse
|
159
|
McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW. The Structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem 2010; 284:35524-33. [PMID: 19846552 DOI: 10.1074/jbc.m109.032706] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report characterization and the crystal structure of the Mycobacterium tuberculosis cytochrome P450 CYP125, a P450 implicated in metabolism of host cholesterol and essential for establishing infection in mice. CYP125 is purified in a high spin form and undergoes both type I and II spectral shifts with various azole drugs. The 1.4-A structure of ligand-free CYP125 reveals a "letterbox" active site cavity of dimensions appropriate for entry of a polycyclic sterol. A mixture of hexa-coordinate and penta-coordinate states could be discerned, with water binding as the 6th heme-ligand linked to conformation of the I-helix Val(267) residue. Structures in complex with androstenedione and the antitubercular drug econazole reveal that binding of hydrophobic ligands occurs within the active site cavity. Due to the funnel shape of the active site near the heme, neither approaches the heme iron. A model of the cholesterol CYP125 complex shows that the alkyl side chain extends toward the heme iron, predicting hydroxylation of cholesterol C27. The alkyl chain is in close contact to Val(267), suggesting a substrate binding-induced low- to high-spin transition coupled to reorientation of the latter residue. Reconstitution of CYP125 activity with a redox partner system revealed exclusively cholesterol 27-hydroxylation, consistent with structure and modeling. This activity may enable catabolism of host cholesterol or generation of immunomodulatory compounds that enable persistence in the host. This study reveals structural and catalytic properties of a potential M. tuberculosis drug target enzyme, and the likely mode by which the host-derived substrate is bound and hydroxylated.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2009; 106:20687-92. [PMID: 19933331 PMCID: PMC2791619 DOI: 10.1073/pnas.0907398106] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) produces a variety of methyl-branched lipids that serve important functions, including modulating the immune response during pathogenesis and contributing to a robust cell wall that is impermeable to many chemical agents. Here, we report characterization of Mtb CYP124 (Rv2266) that includes demonstration of preferential oxidation of methyl-branched lipids. Spectrophotometric titrations and analysis of reaction products indicate that CYP124 tightly binds and hydroxylates these substrates at the chemically disfavored omega-position. We also report X-ray crystal structures of the ligand-free and phytanic acid-bound protein at a resolution of 1.5 A and 2.1 A, respectively, which provide structural insights into a cytochrome P450 with predominant omega-hydroxylase activity. The structures of ligand-free and substrate-bound CYP124 reveal several differences induced by substrate binding, including reorganization of the I helix and closure of the active site by elements of the F, G, and D helices that bind the substrate and exclude solvent from the hydrophobic active site cavity. The observed regiospecific catalytic activity suggests roles of CYP124 in the physiological oxidation of relevant Mtb methyl-branched lipids. The enzymatic specificity and structures reported here provide a scaffold for the design and testing of specific inhibitors of CYP124.
Collapse
Affiliation(s)
- Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Petrea M. Kells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | | |
Collapse
|
161
|
Grobe N, Zhang B, Fisinger U, Kutchan TM, Zenk MH, Guengerich FP. Mammalian cytochrome P450 enzymes catalyze the phenol-coupling step in endogenous morphine biosynthesis. J Biol Chem 2009; 284:24425-31. [PMID: 19561069 PMCID: PMC2782035 DOI: 10.1074/jbc.m109.011320] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/27/2009] [Indexed: 11/06/2022] Open
Abstract
A cytochrome P450 (P450) enzyme in porcine liver that catalyzed the phenol-coupling reaction of the substrate (R)-reticuline to salutaridine was previously purified to homogeneity (Amann, T., Roos, P. H., Huh, H., and Zenk, M. H. (1995) Heterocycles 40, 425-440). This reaction was found to be catalyzed by human P450s 2D6 and 3A4 in the presence of (R)-reticuline and NADPH to yield not a single product, but rather (-)-isoboldine, (-)-corytuberine, (+)-pallidine, and salutaridine, the para-ortho coupled established precursor of morphine in the poppy plant and most likely also in mammals. (S)-Reticuline, a substrate of both P450 enzymes, yielded the phenol-coupled alkaloids (+)-isoboldine, (+)-corytuberine, (-)-pallidine, and sinoacutine; none of these serve as a morphine precursor. Catalytic efficiencies were similar for P450 2D6 and P450 3A4 in the presence of cytochrome b(5) with (R)-reticuline as substrate. The mechanism of phenol coupling is not yet established; however, we favor a single cycle of iron oxidation to yield salutaridine and the three other alkaloids from (R)-reticuline. The total yield of salutaridine formed can supply the 10 nm concentration of morphine found in human neuroblastoma cell cultures and in brain tissues of mice.
Collapse
Affiliation(s)
- Nadja Grobe
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Baichen Zhang
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Ursula Fisinger
- the Lehrstuhl für Pharmazeutische Biologie, Universität München, Karlstrasse 29, 80333 München, Germany, and
| | - Toni M. Kutchan
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Meinhart H. Zenk
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - F. Peter Guengerich
- the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
162
|
Ouellet H, Johnston JB, Ortiz de Montellano PR. The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys 2009; 493:82-95. [PMID: 19635450 DOI: 10.1016/j.abb.2009.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 11/25/2022]
Abstract
Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis, the causative agent, that are resistant to the major frontline antitubercular drugs increases the urgency for the development of new therapeutic agents. Sequencing of the M. tuberculosis genome revealed the existence of 20 cytochrome P450 enzymes, some of which are potential candidates for drug targeting. The recent burst of studies reporting microarray-based gene essentiality and transcriptome analyses under in vitro, ex vivo and in vivo conditions highlight the importance of selected P450 isoforms for M. tuberculosis viability and pathogenicity. Current knowledge of the structural and biochemical properties of the M. tuberculosis P450 enzymes and their putative redox partners is reviewed, with an emphasis on findings related to their physiological function(s) as well as their potential as drug targets.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA 94158-2517, USA
| | | | | |
Collapse
|
163
|
Podust LM, Ouellet H, von Kries JP, de Montellano PRO. Interaction of Mycobacterium tuberculosis CYP130 with heterocyclic arylamines. J Biol Chem 2009; 284:25211-9. [PMID: 19605350 DOI: 10.1074/jbc.m109.017632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis P450 enzymes are of interest for their pharmacological development potential, as evidenced by their susceptibility to inhibition by antifungal azole drugs that normally target sterol 14alpha-demethylase (CYP51). Although antifungal azoles show promise, direct screening of compounds against M. tuberculosis P450 enzymes may identify novel, more potent, and selective inhibitory scaffolds. Here we report that CYP130 from M. tuberculosis has a natural propensity to bind primary arylamines with particular chemical architectures. These compounds were identified via a high throughput screen of CYP130 with a library of synthetic organic molecules. As revealed by subsequent x-ray structure analysis, selected compounds bind in the active site by Fe-coordination and hydrogen bonding of the arylamine group to the carbonyl oxygen of Gly(243). As evidenced by the binding of structural analogs, the primary arylamine group is indispensable, but synergism due to hydrophobic contacts between the rest of the molecule and protein amino acid residues is responsible for a binding affinity comparable with that of the antifungal azole drugs. The topology of the CYP130 active site favors angular coordination of the arylamine group over the orthogonal coordination of azoles. Upon substitution of Gly(243) by an alanine, the binding mode of azoles and some arylamines reverted from type II to type I because of hydrophobic and steric interactions with the alanine side chain. We suggest a role for the conserved Ala(Gly)(243)-Gly(244) motif in the I-helix in modulating both the binding affinity of the axial water ligand and the ligand selectivity of cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Larissa M Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
164
|
Cyclodipeptide synthases are a family of tRNA-dependent peptide bond–forming enzymes. Nat Chem Biol 2009; 5:414-20. [DOI: 10.1038/nchembio.175] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/12/2009] [Indexed: 11/09/2022]
|