151
|
Kull FJ, Endow SA. Force generation by kinesin and myosin cytoskeletal motor proteins. J Cell Sci 2013; 126:9-19. [PMID: 23487037 DOI: 10.1242/jcs.103911] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central β-sheet - proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins - is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, explaining the essential role of switch I in hydrolysis. Comparison of the motor power strokes reveals that each stroke begins with the force-amplifying structure oriented opposite to the direction of rotation or swing. Motors undergo changes in their mechanochemical cycles in response to small-molecule inhibitors, several of which bind to kinesins by induced fit, trapping the motors in a state that resembles a force-producing conformation. An unusual motor activator specifically increases mechanical output by cardiac myosin, potentially providing valuable information about its mechanism of function. Further study is essential to understand motor mechanochemical coupling and energy transduction, and could lead to new therapies to treat human disease.
Collapse
Affiliation(s)
- F Jon Kull
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
152
|
Ulaganathan V, Talapatra SK, Rath O, Pannifer A, Hackney DD, Kozielski F. Structural insights into a unique inhibitor binding pocket in kinesin spindle protein. J Am Chem Soc 2013; 135:2263-72. [PMID: 23305346 DOI: 10.1021/ja310377d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human kinesin Eg5 is a target for drug development in cancer chemotherapy with compounds in phase II clinical trials. These agents bind to a well-characterized allosteric pocket involving the loop L5 region, a structural element in kinesin-5 family members thought to provide inhibitor specificity. Using X-ray crystallography, kinetic, and biophysical methods, we have identified and characterized a distinct allosteric pocket in Eg5 able to bind inhibitors with nanomolar K(d). This pocket is formed by key structural elements thought to be pivotal for force generation in kinesins and may represent a novel site for therapeutic intervention in this increasingly well-validated drug target.
Collapse
Affiliation(s)
- Venkatasubramanian Ulaganathan
- The Molecular Motors Laboratory, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, UK
| | | | | | | | | | | |
Collapse
|
153
|
Ding Y, Hubert CG, Herman J, Corrin P, Toledo CM, Skutt-Kakaria K, Vazquez J, Basom R, Zhang B, Risler JK, Pollard SM, Nam DH, Delrow JJ, Zhu J, Lee J, DeLuca J, Olson JM, Paddison PJ. Cancer-Specific requirement for BUB1B/BUBR1 in human brain tumor isolates and genetically transformed cells. Cancer Discov 2012; 3:198-211. [PMID: 23154965 DOI: 10.1158/2159-8290.cd-12-0353] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED To identify new candidate therapeutic targets for glioblastoma multiforme, we combined functional genetics and glioblastoma network modeling to identify kinases required for the growth of patient-derived brain tumor-initiating cells (BTIC) but that are dispensable to proliferating human neural stem cells (NSC). This approach yielded BUB1B/BUBR1, a critical mitotic spindle checkpoint player, as the top-scoring glioblastoma lethal kinase. Knockdown of BUB1B inhibited expansion of BTIC isolates, both in vitro and in vivo, without affecting proliferation of NSCs or astrocytes. Mechanistic studies revealed that BUB1B's GLE2p-binding sequence (GLEBS) domain activity is required to suppress lethal kinetochore-microtubule (KT-MT) attachment defects in glioblastoma isolates and genetically transformed cells with altered sister KT dynamics, which likely favor KT-MT instability. These results indicate that glioblastoma tumors have an added requirement for BUB1B to suppress lethal consequences of altered KT function and further suggest that sister KT measurements may predict cancer-specific sensitivity to BUB1B inhibition and perhaps other mitotic targets that affect KT-MT stability. SIGNIFICANCE Currently, no effective therapies are available for glioblastoma, the most frequent and aggressive brain tumor. Our results suggest that targeting the GLEBS domain activity of BUB1B may provide a therapeutic window for glioblastoma, as the GLEBS domain is nonessential in untransformed cells. Moreover, the results further suggest that sister KT distances at metaphase may predict sensitivity to anticancer therapeutics targeting KT function.
Collapse
Affiliation(s)
- Yu Ding
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors, the unpredictable complexities of the human body's response to these drugs still herald the biggest challenge towards clinical success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic anticancer strategies.
Collapse
|
155
|
Mayes PA, Degenhardt YY, Wood A, Toporovskya Y, Diskin SJ, Haglund E, Moy C, Wooster R, Maris JM. Mitogen-activated protein kinase (MEK/ERK) inhibition sensitizes cancer cells to centromere-associated protein E inhibition. Int J Cancer 2012; 132:E149-57. [PMID: 22948716 DOI: 10.1002/ijc.27781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/06/2012] [Indexed: 11/11/2022]
Abstract
Inhibition of centromere-associated protein-E (CENP-E) has demonstrated preclinical anti-tumor activity in a number of tumor types including neuroblastoma. A potent small molecule inhibitor of the kinesin motor activity of CENP-E has recently been developed (GSK923295). To identify an effective drug combination strategy for GSK923295 in neuroblastoma, we performed a screen of siRNAs targeting a prioritized set of genes that function in therapeutically tractable signaling pathways. We found that siRNAs targeted to extracellular signal-related kinase 1 (ERK1) significantly sensitized neuroblastoma cells to GSK923295-induced growth inhibition (p = 0.01). Inhibition of ERK1 activity using pharmacologic inhibitors of mitogen-activated ERK kinase (MEK1/2) showed significant synergistic growth inhibitory activity when combined with GSK923295 in neuroblastoma, lung, pancreatic and colon carcinoma cell lines. Synergistic growth inhibitory activity of combined MEK/ERK and CENP-E inhibition was a result of increased mitotic arrest and apoptosis. There was a significant correlation between ERK1/2 phosphorylation status in neuroblastoma cell lines and GSK923295 growth inhibitory activity (r = 0.823, p = 0.0006). Consistent with this result we found that lung cancer cell lines harboring RAS mutations, which leads to oncogenic activation of MEK/ERK signaling, were significantly more resistant than cell lines with wild-type RAS to GSK923295-induced growth inhibition (p = 0.047). Here we have identified (MEK/ERK) activity as a potential biomarker of relative GSK923295 sensitivity and have shown the synergistic effect of combinatorial MEK/ERK pathway and CENP-E inhibition across different cancer cell types including neuroblastoma.
Collapse
Affiliation(s)
- Patrick A Mayes
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Hsieh YJ, Yang MY, Leu YL, Chen C, Wan CF, Chang MY, Chang CJ. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:149. [PMID: 22963191 PMCID: PMC3557174 DOI: 10.1186/1472-6882-12-149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/31/2012] [Indexed: 01/15/2023]
Abstract
Background Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.
Collapse
|
157
|
Abstract
Kinesins are a family of molecular motors that travel unidirectionally along microtubule tracks to fulfil their many roles in intracellular transport or cell division. Over the past few years kinesins that are involved in mitosis have emerged as potential targets for cancer drug development. Several compounds that inhibit two mitotic kinesins (EG5 (also known as KIF11) and centromere-associated protein E (CENPE)) have entered Phase I and II clinical trials either as monotherapies or in combination with other drugs. Additional mitotic kinesins are currently being validated as drug targets, raising the possibility that the range of kinesin-based drug targets may expand in the future.
Collapse
Affiliation(s)
- Oliver Rath
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | | |
Collapse
|
158
|
Lock RB, Carol H, Morton CL, Keir ST, Reynolds CP, Kang MH, Maris JM, Wozniak AW, Gorlick R, Kolb EA, Houghton PJ, Smith MA. Initial testing of the CENP-E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatr Blood Cancer 2012; 58:916-23. [PMID: 21584937 PMCID: PMC3163687 DOI: 10.1002/pbc.23176] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/31/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND The centromere kinesin motor protein CENP-E plays a crucial role in mitosis, and is an appealing molecular target in cancer. GSK923295A is an allosteric inhibitor of CENP-E that is undergoing clinical evaluation. PROCEDURES GSK923295A was evaluated against the 23 cell lines in the Pediatric Preclinical Testing Program (PPTP) in vitro panel using 96 hr exposures to concentrations ranging from 1.0 nM to 10.0 µM. GSK923295A was also tested in vivo against the PPTP acute lymphoblastic leukemia (ALL) and solid tumor xenograft panels using a days 1-3 and 8-10 schedule that was repeated at day 21. The agent was administered via the intraperitoneal (i.p.) route at a daily dose of 125 mg/kg. RESULTS The median IC(50) for all PPTP cell lines was 27 nM, with the median IC(50) for the ALL panel being the lowest (18 nM) and for the neuroblastoma panel the highest (39 nM). Excessive toxicity was observed for each of the 8 xenografts of the ALL panel in NOD/SCID mice. Thirty-five solid tumor xenograft models were considered evaluable. GSK923295A induced significant differences in event-free survival distribution compared to controls in 32 of 35 evaluable solid tumor xenografts tested. Objective responses were noted in 13 of 35 solid tumor xenografts, including 9 with maintained complete responses, and 3 with complete response (CR). CONCLUSIONS GSK923295A demonstrated significant antitumor activity against solid tumor models, inducing CRs in Ewing sarcoma, rhabdoid, and rhabdomyosarcoma xenografts. These results suggest that CENP-E may be a valuable therapeutic target in pediatric cancer.
Collapse
Affiliation(s)
- Richard B. Lock
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Hernan Carol
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | | | | | | | - Min H. Kang
- Texas Tech University Health Sciences Center, Lubbock, TX
| | - John M. Maris
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
159
|
Wacker SA, Houghtaling BR, Elemento O, Kapoor TM. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat Chem Biol 2012; 8:235-7. [PMID: 22327403 PMCID: PMC3281560 DOI: 10.1038/nchembio.779] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 11/17/2011] [Indexed: 12/31/2022]
Abstract
Determining mechanisms of drug action in human cells remains a major challenge. Here we describe an approach in which multiple-drug-resistant clones are isolated and transcriptome sequencing is used to find mutations in each clone. Further analysis of mutations common to more than one clone can identify a drug's physiological target and indirect resistance mechanisms, as indicated by our proof-of-concept studies of the cytotoxic anticancer drugs BI 2536 and bortezomib.
Collapse
Affiliation(s)
- Sarah A Wacker
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York, USA
| | | | | | | |
Collapse
|
160
|
CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nat Cell Biol 2012; 14:295-303. [PMID: 22307330 DOI: 10.1038/ncb2423] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/15/2011] [Indexed: 01/10/2023]
Abstract
Loss of spindle-pole integrity during mitosis leads to multipolarity independent of centrosome amplification. Multipolar-spindle conformation favours incorrect kinetochore-microtubule attachments, compromising faithful chromosome segregation and daughter-cell viability. Spindle-pole organization influences and is influenced by kinetochore activity, but the molecular nature behind this critical force balance is unknown. CLASPs are microtubule-, kinetochore- and centrosome-associated proteins whose functional perturbation leads to three main spindle abnormalities: monopolarity, short spindles and multipolarity. The first two reflect a role at the kinetochore-microtubule interface through interaction with specific kinetochore partners, but how CLASPs prevent spindle multipolarity remains unclear. Here we found that human CLASPs ensure spindle-pole integrity after bipolarization in response to CENP-E- and Kid-mediated forces from misaligned chromosomes. This function is independent of end-on kinetochore-microtubule attachments and involves the recruitment of ninein to residual pericentriolar satellites. Distinctively, multipolarity arising through this mechanism often persists through anaphase. We propose that CLASPs and ninein confer spindle-pole resistance to traction forces exerted during chromosome congression, thereby preventing irreversible spindle multipolarity and aneuploidy.
Collapse
|
161
|
Abstract
Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells, targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis. As the efficacy of cell-cycle targeting approaches has been limited so far, further understanding of the molecular pathways modulating mitotic cell death will be required to move forward these new proposals to the clinic.
Collapse
|
162
|
Chung V, Heath EI, Schelman WR, Johnson BM, Kirby LC, Lynch KM, Botbyl JD, Lampkin TA, Holen KD. First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemother Pharmacol 2011; 69:733-41. [PMID: 22020315 DOI: 10.1007/s00280-011-1756-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE GSK923295 is an inhibitor of CENP-E, a key cellular protein important in the alignment of chromosomes during mitosis. This was a Phase I, open-label, first-time-in-human, dose-escalation study, to determine the maximum-tolerated dose (MTD), safety, and pharmacokinetics of GSK923295. PATIENTS AND METHODS Adult patients with previously treated solid tumors were enrolled in successive cohorts at GSK923295 doses ranging from 10 to 250 mg/m(2). GSK923295 was administered by a 1-h intravenous infusion, once weekly for three consecutive weeks, with treatment cycles repeated every 4 weeks. RESULTS A total of 39 patients were enrolled. The MTD for GSK923295 was determined to be 190 mg/m(2). Observed dose-limiting toxicities (all grade 3) were as follows: fatigue (n = 2, 5%), increased AST (n = 1, 2.5%), hypokalemia (n = 1, 2.5%), and hypoxia (n = 1, 2.5%). Across all doses, fatigue was the most commonly reported drug-related adverse event (n = 13; 33%). Gastrointestinal toxicities of diarrhea (n = 12, 31%), nausea (n = 8, 21%), and vomiting (n = 7, 18%) were generally mild. Frequency of neutropenia was low (13%). There were two reports of neuropathy and no reports of mucositis or alopecia. GSK923295 exhibited dose-proportional pharmacokinetics from 10 to 250 mg/m(2) and did not accumulate upon weekly administration. The mean terminal elimination half-life of GSK923295 was 9-11 h. One patient with urothelial carcinoma experienced a durable partial response at the 250 mg/m(2) dose level. CONCLUSIONS The novel CENP-E inhibitor, GSK923295, had dose-proportional pharmacokinetics and a low number of grade 3 or 4 adverse events. The observed incidence of myelosuppression and neuropathy was low. Further investigations may provide a more complete understanding of the potential for GSK923295 as an antiproliferative agent.
Collapse
Affiliation(s)
- Vincent Chung
- City of Hope Medical Center, 1500 East Duarte Road, Durate, CA, 91010, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Good JAD, Skoufias DA, Kozielski F. Elucidating the functionality of kinesins: an overview of small molecule inhibitors. Semin Cell Dev Biol 2011; 22:935-45. [PMID: 22001111 DOI: 10.1016/j.semcdb.2011.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/30/2011] [Indexed: 12/19/2022]
Abstract
Kinesin motor proteins are ubiquitously involved in multiple fundamental cellular processes, coordinating transport and mediating changes to cellular architecture. Thus, specific small molecule kinesin inhibitors can shed new light on the functions of kinesins and the dynamic roles in which they participate. Here we review the range of known inhibitors, their key characteristics, and specificity, and discuss their potential suitability for chemical genetics as starting points to further investigate complex kinesin-mediated processes.
Collapse
Affiliation(s)
- James A D Good
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.
| | | | | |
Collapse
|
164
|
Stevens D, Gassmann R, Oegema K, Desai A. Uncoordinated loss of chromatid cohesion is a common outcome of extended metaphase arrest. PLoS One 2011; 6:e22969. [PMID: 21829677 PMCID: PMC3149067 DOI: 10.1371/journal.pone.0022969] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/08/2011] [Indexed: 02/03/2023] Open
Abstract
Chromosome segregation requires coordinated separation of sister chromatids following biorientation of all chromosomes on the mitotic spindle. Chromatid separation at the metaphase-to-anaphase transition is accomplished by cleavage of the cohesin complex that holds chromatids together. Here we show using live-cell imaging that extending the metaphase bioriented state using five independent perturbations (expression of non-degradable Cyclin B, expression of a Spindly point mutant that prevents spindle checkpoint silencing, depletion of the anaphase inducer Cdc20, treatment with a proteasome inhibitor, or treatment with an inhibitor of the mitotic kinesin CENP-E) leads to eventual scattering of chromosomes on the spindle. This scattering phenotype is characterized by uncoordinated loss of cohesion between some, but not all sister chromatids and subsequent spindle defects that include centriole separation. Cells with scattered chromosomes persist long-term in a mitotic state and eventually die or exit. Partial cohesion loss-associated scattering is observed in both transformed cells and in karyotypically normal human cells, albeit at lower penetrance. Suppressing microtubule dynamics reduces scattering, suggesting that cohesion at centromeres is unable to resist dynamic microtubule-dependent pulling forces on the kinetochores. Consistent with this view, strengthening cohesion by inhibiting the two pathways responsible for its removal significantly inhibits scattering. These results establish that chromosome scattering due to uncoordinated partial loss of chromatid cohesion is a common outcome following extended arrest with bioriented chromosomes in human cells. These findings have important implications for analysis of mitotic phenotypes in human cells and for development of anti-mitotic chemotherapeutic approaches in the treatment of cancer.
Collapse
Affiliation(s)
- Deanna Stevens
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Reto Gassmann
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Karen Oegema
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Arshad Desai
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
165
|
Wacker SA, Kashyap S, Li X, Kapoor TM. Examining the mechanism of action of a kinesin inhibitor using stable isotope labeled inhibitors for cross-linking (SILIC). J Am Chem Soc 2011; 133:12386-9. [PMID: 21761885 DOI: 10.1021/ja204561q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is difficult to determine a chemical inhibitor's binding site in multiprotein mixtures, particularly when high-resolution structural studies are not straightforward. Building upon previous research involving photo-cross-linking and the use of mixtures of stable isotopes, we report a method, Stable Isotope Labeled Inhibitors for Cross-linking (SILIC), for mapping a small molecule inhibitor's binding site in its target protein. In SILIC, structure-activity relationship data is used to design inhibitor analogues that incorporate a photo-cross-linking group along with either natural or 'heavy' stable isotopes. An equimolar mixture of these inhibitor analogues is cross-linked to the target protein to yield a robust signature for identifying inhibitor-modified peptide fragments in complex mass spectrometry data. As a proof of concept, we applied this approach to an ATP-competitive inhibitor of kinesin-5, a widely conserved motor protein required for cell division and an anticancer drug target. This analysis, along with mutagenesis studies, suggests that the inhibitor binds at an allosteric site in the motor protein.
Collapse
Affiliation(s)
- Sarah A Wacker
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
166
|
A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function. Genetics 2011; 189:11-21. [PMID: 21652526 DOI: 10.1534/genetics.111.130781] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypoacetylated H4 is present at regional centromeres; however, its role in kinetochore function is poorly understood. We characterized H4 acetylation at point centromeres in Saccharomyces cerevisiae and determined the consequences of altered H4 acetylation on chromosome segregation. We observed low levels of tetra-acetylated and K16 acetylated histone H4 (H4K16Ac) at centromeres. Low levels of H4K16Ac were also observed at noncentromeric regions associated with Cse4p. Inhibition of histone deacetylases (HDAC) using nicotinamide (NAM) caused lethality in cse4 and hhf1-20 kinetochore mutants and increased centromeric H4K16Ac. Overexpression of Sas2-mediated H4K16 acetylation activity in wild-type cells led to increased rates of chromosome loss and synthetic dosage lethality in kinetochore mutants. Consistent with increased H4K16 acetylation as a cause of the phenotypes, deletion of the H4K16 deacetylase SIR2 or a sir2-H364Y catalytic mutant resulted in higher rates of chromosome loss compared to wild-type cells. Moreover, H4K16Q acetylmimic mutants displayed increased rates of chromosome loss compared to H4K16R nonacetylatable mutants and wild-type cells. Our work shows that hypoacetylated centromeric H4 is conserved across eukaryotic centromeres and hypoacetylation of H4K16 at centromeres plays an important role in accurate chromosome segregation.
Collapse
|
167
|
Motor-Dependent and -Independent Roles of CENP-E at Kinetochores: The Cautionary Tale of UA62784. ACTA ACUST UNITED AC 2011; 18:679-80. [DOI: 10.1016/j.chembiol.2011.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
168
|
Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 2011; 31:3085-93. [PMID: 21628528 DOI: 10.1128/mcb.05326-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis.
Collapse
|
169
|
Galluzzi L, Vitale I, Vacchelli E, Kroemer G. Cell death signaling and anticancer therapy. Front Oncol 2011; 1:5. [PMID: 22655227 PMCID: PMC3356092 DOI: 10.3389/fonc.2011.00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022] Open
Abstract
For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.
Collapse
|
170
|
Tcherniuk S, Deshayes S, Sarli V, Divita G, Abrieu A. UA62784 Is a Cytotoxic Inhibitor of Microtubules, not CENP-E. ACTA ACUST UNITED AC 2011; 18:631-41. [DOI: 10.1016/j.chembiol.2011.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/17/2011] [Accepted: 03/01/2011] [Indexed: 12/23/2022]
|
171
|
Pulipati NR, Jin Q, Liu X, Sun B, Pandey MK, Huber JP, Ding W, Mulder KM. Overexpression of the dynein light chain km23-1 in human ovarian carcinoma cells inhibits tumor formation in vivo and causes mitotic delay at prometaphase/metaphase. Int J Cancer 2011; 129:553-64. [PMID: 21469138 DOI: 10.1002/ijc.25954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/30/2010] [Indexed: 11/06/2022]
Abstract
km23-1 is a dynein light chain that was identified as a TGFβ receptor-interacting protein. To investigate whether km23-1 controls human ovarian carcinoma cell (HOCC) growth, we established a tet-off inducible expression system in SKOV-3 cells in which the expression of km23-1 is induced upon doxycycline removal. We found that forced expression of km23-1 inhibited both anchorage-dependent and anchorage-independent growth of SKOV-3 cells. More importantly, induction of km23-1 expression substantially reduced the tumorigenicity of SKOV-3 cells in a xenograft model in vivo. Fluorescence-activated cell sorting analysis of SKOV-3 and IGROV-1 HOCCs demonstrated that the cells were accumulating at G2/M. Phospho-MEK, phospho-ERK and cyclin B1 were elevated, as was the mitotic index, suggesting that km23-1 suppresses HOCCs growth by inducing a mitotic delay. Immunofluorescence analyses demonstrated that the cells were accumulating at prometaphase/metaphase with increases in multipolar and multinucleated cells. Further, although the mitotic spindle assembly checkpoint protein BubR1 was present at the prometaphase kinetochore in Dox+/- cells, it was inappropriately retained at the metaphase kinetochore in Dox- cells. Thus, the mechanism by which high levels of km23-1 suppress ovarian carcinoma growth in vitro and inhibit ovary tumor formation in vivo appears to involve a BubR1-related mitotic delay.
Collapse
Affiliation(s)
- Nageswara R Pulipati
- Department of Biochemistry and Molecular Biology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Badtke MM, Jambal P, Dye WW, Spillman MA, Post MD, Horwitz KB, Jacobsen BM. Unliganded progesterone receptors attenuate taxane-induced breast cancer cell death by modulating the spindle assembly checkpoint. Breast Cancer Res Treat 2011; 131:75-87. [PMID: 21340479 DOI: 10.1007/s10549-011-1399-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/04/2011] [Indexed: 01/05/2023]
Abstract
Whether the presence of steroid receptors in luminal breast cancers renders them resistant to taxanes remains uncertain. Here we assess the role of progesterone receptors (PR) on taxane-induced cell death. We previously showed that estrogen receptor (ER)-positive human breast cancer cells that inducibly express PR-A or PR-B isoforms were protected from taxane-stimulated apoptosis when compared to the identical cells lacking PR. Surprisingly, PR-dependent protection occurred in the absence of progesterone, demonstrating that the unliganded receptors were biologically active. The present studies demonstrate that unliganded PR, focused on PR-A, protect breast cancer cells from taxane-stimulated apoptosis. The studies identify genes regulated by taxanes in isogenic ER-positive cells that either lack or express PR-A. We show that unliganded PR-A alters the gene expression pattern controlled by taxanes, especially multiple genes involved in the spindle assembly checkpoint, a group of proteins that insure proper attachment of microtubules to kinetochores during mitosis. Importantly, taxanes and unliganded PR regulate many of these genes in opposite directions. As a result, mitotic slippage is exacerbated by the presence of PR, leading to an increase in the number of multinucleated cells both in vitro and in xenograft tumors. We describe a simple new assay for assessing multinucleation in paraffin sections. We speculate that rather than inducing cell death, unliganded PR exploits multinucleation to promote cell survival from taxane therapy. This can be prevented with antiprogestin.
Collapse
Affiliation(s)
- Melanie M Badtke
- Program in Reproductive Sciences, Department of Obstetrics/Gynecology, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Most of the current drugs used to treat cancer can be classified as anti-proliferative drugs. These drugs perturb the proliferative cycle of tumor cells at diverse stages of the cell cycle. Examples of such drugs are DNA-damaging agents and inhibitors of cyclin-dependent kinases that arrest cell cycle progression at different stages of interphase. Another class of anti-proliferative drugs is the so-called anti-mitotic drugs, which selectively perturb progression through mitosis. Mitosis is the shortest and final stage in the cell cycle and has evolved to accurately divide the duplicated genome over the two daughter cells. This review deals with the different strategies that are currently considered to perturb mitotic progression in the treatment of cancer.
Collapse
|
174
|
Behnke-Parks WM, Vendome J, Honig B, Maliga Z, Moores C, Rosenfeld SS. Loop L5 acts as a conformational latch in the mitotic kinesin Eg5. J Biol Chem 2011; 286:5242-53. [PMID: 21148480 PMCID: PMC3037637 DOI: 10.1074/jbc.m110.192930] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/02/2010] [Indexed: 11/06/2022] Open
Abstract
All members of the kinesin superfamily of molecular motors contain an unusual structural motif consisting of an α-helix that is interrupted by a flexible loop, referred to as L5. We have examined the function of L5 in the mitotic kinesin Eg5 by combining site-directed mutagenesis of L5 with transient state kinetics, molecular dynamics simulations, and docking using cryo electron microscopy density. We find that mutation of a proline residue located at a turn within this loop profoundly slows nucleotide-induced structural changes both at the catalytic site as well as at the microtubule binding domain and the neck linker. Molecular dynamics simulations reveal that this mutation affects the dynamics not only of L5 itself but also of the switch I structural elements that sense ATP binding to the catalytic site. Our results lead us to propose that L5 regulates the rate of conformational change in key elements of the nucleotide binding site through its interactions with α3 and in so doing controls the speed of movement and force generation in kinesin motors.
Collapse
Affiliation(s)
| | | | | | - Zoltan Maliga
- the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany, and
| | - Carolyn Moores
- the School of Crystallography, Birbeck College, University of London, London WC1E 7HX, United Kingdom
| | | |
Collapse
|
175
|
Islam K, Chin HF, Olivares AO, Saunders LP, De La Cruz EM, Kapoor TM. A myosin V inhibitor based on privileged chemical scaffolds. Angew Chem Int Ed Engl 2011; 49:8484-8. [PMID: 20878825 DOI: 10.1002/anie.201004026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kabirul Islam
- Laboratory of Chemistry and Cell Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
176
|
Tcherniuk S, Skoufias DA, Labriere C, Rath O, Gueritte F, Guillou C, Kozielski F. Relocation of Aurora B and survivin from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed Engl 2011; 49:8228-31. [PMID: 20857469 DOI: 10.1002/anie.201003254] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sergey Tcherniuk
- IBS (CEA-CNRS-UJF), 41, rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Mitosis is the key event of the cell cycle during which the sister chromatids are segregated onto two daughter cells. It is well established that abrogation of the normal mitotic progression is a highly efficient concept for anti-cancer treatment. In fact, various drugs that target microtubules and thus interfere with the function of the mitotic spindle are in clinical use for the treatment of various human malignancies for many years. However, since microtubule inhibitors not only target proliferating cells severe side effects limit their use. Therefore, the identification of novel mitotic drug targets other than microtubules have gained recently much attention. This review will summarize the latest developments on the identification and clinical evaluation of novel mitotic drug targets and will introduce novel concepts for chemotherapy that are based on recent progress in our understanding how mitotic progression is regulated and how anti-mitotic drugs induce tumor cell death.
Collapse
Affiliation(s)
- Phillip Kaestner
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Emil-Mannkopff-Strasse 2, D-35037 Marburg, Germany
| | | |
Collapse
|
178
|
Zhang W. Exploring the intermediate states of ADP-ATP exchange: a simulation study on Eg5. J Phys Chem B 2010; 115:784-95. [PMID: 21192710 DOI: 10.1021/jp107255t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While mitotic kinesins have attracted significant attention in recent years as new anticancer drug targets, the underlying mechanism of kinesin-catalyzed ATP hydrolysis is still under investigation. Crystal structures of Eg5, one of the best-studied kinesins, have been solved in both ADP-bound and ATP-bound states. However, it is still extremely challenging to experimentally obtain structural information on the functionally important intermediate states, such as the nucleotide free (apo) and the initial ATP-kinesin collision state. Systematic molecular dynamics simulations were performed in this study to mimic different nucleotide binding states and explore the critical structural and dynamic variations during ADP-ATP exchange. Clear conformational changes from "ADP-like" toward "ATP-like" were observed from the simulation results. A highly conserved residue Arg(234) was found to play a key role during the nucleotide exchange. This positively charged residue acted as the "hub" of a hydrogen-bond network that extended the effect of γ-phosphoryl group to both SW-I and SW-II regions. Comparison among the results of different nucleotide binding states indicated that the existence of γ-phosphoryl was immediately sensed at the initial ATP collision state by residue Ser(233), and this initial interaction induced the "back-door" opening and the "front-door" closing of the nucleotide binding pocket. In addition, several potential allosteric binding sites were identified through combination of correlation analysis and binding site mapping approaches based on the simulated apo ensemble, which provided additional targeting sites for novel allosteric Eg5 inhibition. These molecular simulation results provided not only a better understanding of Eg5-catalyzed ATP hydrolysis but also the structural basis for design of novel specific Eg5 inhibitors as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wei Zhang
- Southern Research Institute, Birmingham, Alabama 35205, USA.
| |
Collapse
|
179
|
Liu L, Parameswaran S, Liu J, Kim S, Wojcik EJ. Loop 5-directed compounds inhibit chimeric kinesin-5 motors: implications for conserved allosteric mechanisms. J Biol Chem 2010; 286:6201-10. [PMID: 21127071 DOI: 10.1074/jbc.m110.154989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human Eg5 (HsEg5) protein is unique in its sensitivity to allosteric agents even among phylogenetic kin. For example, S-trityl-l-cysteine (STC) and monastrol are HsEg5 inhibitors that bind to a surface pocket created by the L5 loop, but neither compound inhibits the Drosophila Kinesin-5 homologue (Klp61F). Herein we ask whether or not drug sensitivity can be designed into Klp61F. Two chimeric Klp61F motor domains were engineered, bacterially expressed, and purified to test this idea. We report that effector binding can elicit a robust allosteric response comparable with HsEg5 in both motor domain chimeras. Furthermore, isothermal titration calorimetry confirms that the Klp61F chimeras have de novo binding affinities for both STC and monastrol. These data show that the mechanism of intramolecular communication between the three ligand binding sites is conserved in the Kinesin-5 family, and reconstitution of a drug binding cassette within the L5 pocket is sufficient to restore allosteric inhibition. However, the two compounds were not equivalent in their allosteric inhibition. This surprising disparity in the response between the chimeras to monastrol and STC suggests that there is more than one allosteric communication network for these effectors.
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
180
|
Probing CENP-E function in chromosome dynamics using small molecule inhibitor syntelin. Cell Res 2010; 20:1386-9. [PMID: 21119683 DOI: 10.1038/cr.2010.167] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
181
|
Tcherniuk S, Skoufias DA, Labriere C, Rath O, Gueritte F, Guillou C, Kozielski F. Relocation of Aurora B and Survivin from Centromeres to the Central Spindle Impaired by a Kinesin-Specific MKLP-2 Inhibitor. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
182
|
Islam K, Chin HF, Olivares AO, Saunders LP, De La Cruz EM, Kapoor TM. A Myosin V Inhibitor Based on Privileged Chemical Scaffolds. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
183
|
Cao JY, Liu L, Chen SP, Zhang X, Mi YJ, Liu ZG, Li MZ, Zhang H, Qian CN, Shao JY, Fu LW, Xia YF, Zeng MS. Prognostic significance and therapeutic implications of centromere protein F expression in human nasopharyngeal carcinoma. Mol Cancer 2010; 9:237. [PMID: 20828406 PMCID: PMC2944187 DOI: 10.1186/1476-4598-9-237] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/09/2010] [Indexed: 02/04/2023] Open
Abstract
Background Our recent cDNA microarray data showed that centromere protein F (CENP-F) is significantly upregulated in primary cultured nasopharyngeal carcinoma (NPC) tumor cells compared with normal nasopharyngeal epithelial cells. The goal of this study was to further investigate the levels of CENP-F expression in NPC cell lines and tissues to clarify the clinical significance of CENP-F expression in NPC as well as the potential therapeutic implications of CENP-F expression. Methods Real-time RT-PCR and western blotting were used to examine CENP-F expression levels in normal primary nasopharyngeal epithelial cells (NPEC), immortalized nasopharyngeal epithelial cells and NPC cell lines. Levels of CENP-F mRNA were determined by real-time RT-PCR in 23 freshly frozen nasopharyngeal biopsy tissues, and CENP-F protein levels were detected by immunohistochemistry in paraffin sections of 202 archival NPC tissues. Statistical analyses were applied to test for prognostic associations. The cytotoxicities of CENP-F potential target chemicals, zoledronic acid (ZOL) and FTI-277 alone, or in combination with cisplatin, in NPC cells were determined by the MTT assay. Results The levels of CENP-F mRNA and protein were higher in NPC cell lines than in normal and immortalized NPECs. CENP-F mRNA level was upregulated in nasopharyngeal carcinoma biopsy tissues compared with noncancerous tissues. By immunohistochemical analysis, CENP-F was highly expressed in 98 (48.5%) of 202 NPC tissues. Statistical analysis showed that high expression of CENP-F was positively correlated with T classification (P < 0.001), clinical stage (P < 0.001), skull-base invasion (P < 0.001) and distant metastasis (P = 0.012) inversely correlated with the overall survival time in NPC patients. Multivariate analysis showed that CENP-F expression was an independent prognostic indicator for the survival of the patient. Moreover, we found that ZOL or FTI-277 could significantly enhance the chemotherapeutic sensitivity of NPC cell lines (HONE1 and 6-10B) with high CENP-F expression to cisplatin, although ZOL or FTI-277 alone only exhibited a minor inhibitory effect to NPC cells. Conclusion Our data suggest that CENP-F protein is a valuable marker of NPC progression, and CENP-F expression is associated with poor overall survival of patients. In addition, our data indicate a potential benefit of combining ZOL or FTI-277 with cisplatin in NPC suggesting that CENP-F expression may have therapeutic implications.
Collapse
|
184
|
Screpanti E, Santaguida S, Nguyen T, Silvestri R, Gussio R, Musacchio A, Hamel E, De Wulf P. A screen for kinetochore-microtubule interaction inhibitors identifies novel antitubulin compounds. PLoS One 2010; 5:e11603. [PMID: 20657644 PMCID: PMC2904697 DOI: 10.1371/journal.pone.0011603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/18/2010] [Indexed: 12/02/2022] Open
Abstract
Background Protein assemblies named kinetochores bind sister chromatids to the mitotic spindle and orchestrate sister chromatid segregation. Interference with kinetochore activity triggers a spindle checkpoint mediated arrest in mitosis, which frequently ends in cell death. We set out to identify small compounds that inhibit kinetochore-microtubule binding for use in kinetochore-spindle interaction studies and to develop them into novel anticancer drugs. Methodology/Principal Findings A fluorescence microscopy-based in vitro assay was developed to screen compound libraries for molecules that prevented the binding of a recombinant human Ndc80 kinetochore complex to taxol-stabilized microtubules. An active compound was identified that acted at the microtubule level. More specifically, by localizing to the colchicine-binding site in αβ-tubulin the hit compound prevented the Ndc80 complex from binding to the microtubule surface. Next, structure-activity analyses distinguished active regions in the compound and led to the identification of highly potent analogs that killed cancer cells with an efficacy equaling that of established spindle drugs. Conclusions/Significance The compound identified in our screen and its subsequently identified analogs represent new antitubulin chemotypes that can be synthetically developed into a novel class of antimitotic spindle drugs. In addition, they are stereochemically unique as their R- and S-isomers mimic binding of colchicine and podophyllotoxin, respectively, two antitubulin drugs that interact differently with the tubulin interface. Model-driven manipulation of our compounds promises to advance insight into how antitubulin drugs act upon tubulin. These advances in turn may lead to tailor-made colchicine site agents which would be valuable new assets to fight a variety of tumors, including those that have become resistant to the (antispindle) drugs used today.
Collapse
Affiliation(s)
- Emanuela Screpanti
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
| | - Stefano Santaguida
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
| | - Tam Nguyen
- Information Technology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States of America
| | - Romano Silvestri
- Department of Medicinal Chemistry and Technologies, University of Rome “La Sapienza”, Rome, Italy
| | - Rick Gussio
- Information Technology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States of America
| | - Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
| | - Ernest Hamel
- Toxicology and Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States of America
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
- * E-mail:
| |
Collapse
|
185
|
Wacker SA, Kapoor TM. Targeting a kinetochore-associated motor protein to kill cancer cells. Proc Natl Acad Sci U S A 2010; 107:5699-700. [PMID: 20308538 PMCID: PMC2851886 DOI: 10.1073/pnas.1001277107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sarah A. Wacker
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|