151
|
Selvi BR, Chatterjee S, Modak R, Eswaramoorthy M, Kundu TK. Histone acetylation as a therapeutic target. Subcell Biochem 2013; 61:567-596. [PMID: 23150268 DOI: 10.1007/978-94-007-4525-4_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The recent developments in the field of epigenetics have changed the way the covalent modifications were perceived from mere chemical tags to important biological recruiting platforms as well as decisive factors in the process of transcriptional regulation and gene expression. Over the years, the parallel investigations in the area of epigenetics and disease have also shown the significance of the epigenetic modifications as important regulatory nodes that exhibit dysfunction in disease states. In the present scenario where epigenetic therapy is also being considered at par with the conventional therapeutic strategies, this article reviews the role of histone acetylation as an epigenetic mark involved in different biological processes associated with normal as well as abnormal gene expression states, modulation of this acetylation by small molecules and warrants the possibility of acetylation as a therapeutic target.
Collapse
Affiliation(s)
- B Ruthrotha Selvi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, P.O., Bangalore, 560 064, India
| | | | | | | | | |
Collapse
|
152
|
Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 2012; 16:738-50. [PMID: 23217256 DOI: 10.1016/j.cmet.2012.11.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/20/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022]
Abstract
Abnormal splicing of LMNA gene or aberrant processing of prelamin A results in progeroid syndrome. Here we show that lamin A interacts with and activates SIRT1. SIRT1 exhibits reduced association with nuclear matrix (NM) and decreased deacetylase activity in the presence of progerin or prelamin A, leading to rapid depletion of adult stem cells (ASCs) in Zmpste24(-/-) mice. Resveratrol enhances the binding between SIRT1 and A-type lamins to increases its deacetylase activity. Resveratrol treatment rescues ASC decline, slows down body weight loss, improves trabecular bone structure and mineral density, and significantly extends the life span in Zmpste24(-/-) mice. Our data demonstrate lamin A as an activator of SIRT1 and provide a mechanistic explanation for the activation of SIRT1 by resveratrol. The link between conserved SIRT1 longevity pathway and progeria suggests a stem cell-based and SIRT1 pathway-dependent therapeutic strategy for progeria.
Collapse
Affiliation(s)
- Baohua Liu
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Han Y, Han D, Yan Z, Boyd-Kirkup JD, Green CD, Khaitovich P, Han JDJ. Stress-associated H3K4 methylation accumulates during postnatal development and aging of rhesus macaque brain. Aging Cell 2012; 11:1055-64. [PMID: 22978322 DOI: 10.1111/acel.12007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic modifications are critical determinants of cellular and developmental states. Epigenetic changes, such as decreased H3K27me3 histone methylation on insulin/IGF1 genes, have been previously shown to modulate lifespan through gene expression regulation. However, global epigenetic changes during aging and their biological functions, if any, remain elusive. Here, we examined the histone modification H3K4 dimethylation (H3K4me2) in the prefrontal cortex of individual rhesus macaques at different ages by chromatin immunoprecipitation, followed by deep sequencing (ChIP-seq) at the whole genome level. Through integrative analysis of the ChIP-seq profiles with gene expression data, we found that H3K4me2 increased at promoters and enhancers globally during postnatal development and aging, and those that correspond to gene expression changes in cis are enriched for stress responses, such as the DNA damage response. This suggests that metabolic and environmental stresses experienced by an organism are associated with the progressive opening of chromatin. In support of this, we also observed increased expression of two H3K4 methyltransferases, SETD7 and DPY30, in aged macaque brain.
Collapse
Affiliation(s)
| | | | - Zheng Yan
- Chinese Academy of Sciences Key laboratory for Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road; Shanghai; 200031; China
| | - Jerome D. Boyd-Kirkup
- Chinese Academy of Sciences Key laboratory for Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road; Shanghai; 200031; China
| | - Christopher D. Green
- Chinese Academy of Sciences Key laboratory for Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road; Shanghai; 200031; China
| | | | - Jing-Dong J. Han
- Chinese Academy of Sciences Key laboratory for Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road; Shanghai; 200031; China
| |
Collapse
|
154
|
Zhavoronkov A, Smit-McBride Z, Guinan KJ, Litovchenko M, Moskalev A. Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases. J Mol Med (Berl) 2012; 90:1361-89. [PMID: 23090008 PMCID: PMC3506837 DOI: 10.1007/s00109-012-0962-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/08/2012] [Accepted: 09/25/2012] [Indexed: 01/28/2023]
Abstract
Scientific understanding of the genetic components of aging has increased in recent years, with several genes being identified as playing roles in the aging process and, potentially, longevity. In particular, genes encoding components of the nuclear lamina in eukaryotes have been increasingly well characterized, owing in part to their clinical significance in age-related diseases. This review focuses on one such gene, which encodes lamin A, a key component of the nuclear lamina. Genetic variation in this gene can give rise to lethal, early-onset diseases known as laminopathies. Here, we analyze the literature and conduct computational analyses of lamin A signaling and intracellular interactions in order to examine potential mechanisms for altering or slowing down aberrant Lamin A expression and/or for restoring the ratio of normal to aberrant lamin A. The ultimate goal of such studies is to ameliorate or combat laminopathies and related diseases of aging, and we provide a discussion of current approaches in this review.
Collapse
Affiliation(s)
- Alex Zhavoronkov
- Bioinformatics and Medical Information Technology Laboratory, Center for Pediatric Hematology, Oncology and Immunology, Moscow, 119296 Russia
- The Biogerontology Research Foundation, Reading, UK
| | - Zeljka Smit-McBride
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Davis, CA 95616 USA
| | - Kieran J. Guinan
- The Biogerontology Research Foundation, Reading, UK
- BioAtlantis Ltd., Kerry Technology Park, Tralee, County Kerry Ireland
| | - Maria Litovchenko
- Bioinformatics and Medical Information Technology Laboratory, Center for Pediatric Hematology, Oncology and Immunology, Moscow, 119296 Russia
| | - Alexey Moskalev
- The Biogerontology Research Foundation, Reading, UK
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, 167982 Russia
| |
Collapse
|
155
|
Abstract
Aging is a complex trait and is influenced by multiple factors that are both intrinsic and extrinsic to the organism (Kirkwood et al. 2000; Knight 2000). Efforts to understanding the mechanisms that extend or shorten lifespan have been made since the early twentieth century. Aging is characteristically associated with a progressive decline in the overall fitness of the organism. Several studies have provided valuable information about the molecular events that accompany this process and include accumulation of nuclear and mitochondrial mutations, shortened and dysfunctional telomeres, oxidative damage of protein/DNA, senescence and apoptosis (Muller 2009). Clinical studies and work on model organisms have shown that there is an increased susceptibility to conditions such as neurological disorders, diabetes, cardiovascular diseases, degenerative syndromes and even cancers, with age (Arvanitakis et al. 2006; Lee and Kim 2006; Rodriguez and Fraga 2010).
Collapse
Affiliation(s)
- Asmitha Lazarus
- B-306, Department of Biological Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | | | | |
Collapse
|
156
|
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 2012; 491:603-7. [PMID: 23075850 PMCID: PMC3504651 DOI: 10.1038/nature11557] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 08/31/2012] [Indexed: 12/19/2022]
Abstract
Nuclear architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as aging1-4. It is then plausible that diseases whose manifestations correlate with aging might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of aging-associated disorders by focusing on a Leucine Rich Repeat Kinase 2 (LRRK2) dominant mutation (G2019S) shown to associate with familial and sporadic Parkinson’s Disease (PD), as well as impairment of adult neurogenesis in mice5. Here, we report on the generation of PD patient-derived induced pluripotent stem cells (iPSCs) and the implications of LRRK2(G2019S) in human neural stem cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in PD-iPSCs and recapitulated upon targeted knock-in of LRRK2(G2019S) in human embryonic stem cells (hESCs). Analysis of human brain tissue showed nuclear envelope impairment in clinically diagnosed Parkinson’s patients. Altogether, our results identify the nucleus as a previously unknown cellular organelle in Parkinson’s pathology and may help open new avenues for PD diagnoses as well as potential development of therapeutics targeting this fundamental cell structure.
Collapse
|
157
|
Reprogramming aging and progeria. Curr Opin Cell Biol 2012; 24:757-64. [PMID: 22959961 DOI: 10.1016/j.ceb.2012.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 02/08/2023]
Abstract
The aging rate of an organism depends on the ratio of tissue degeneration to tissue repair. As a consequence, molecular alterations that tip this balance toward degeneration cause accelerated aging. Conversely, interventions can be pursued to reduce tissue degeneration or to increase tissue repair with the aim of delaying the onset of age-associated manifestations. Recent studies on the biology of stem cells in aging have revealed the influence of systemic factors on their functionality and demonstrated the feasibility of reprogramming aged and progeroid cells. These results illustrate the reversibility of some aspects of the aging process and encourage the search for new anti-aging and anti-progeria interventions.
Collapse
|
158
|
Capanni C, Squarzoni S, Cenni V, D'Apice MR, Gambineri A, Novelli G, Wehnert M, Pasquali R, Maraldi NM, Lattanzi G. Familial partial lipodystrophy, mandibuloacral dysplasia and restrictive dermopathy feature barrier-to-autointegration factor (BAF) nuclear redistribution. Cell Cycle 2012; 11:3568-77. [PMID: 22935701 PMCID: PMC3478308 DOI: 10.4161/cc.21869] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the molecular mechanism involved in these processes is not yet understood . In this study, we show that the accumulation of wild-type prelamin A detected in restrictive dermopathy (RD), as well as the accumulation of mutated forms of prelamin A identified in familial partial lipodystrophy (FPLD) and mandibuloacral dysplasia (MADA), affect the nuclear localization of barrier-to-autointegration factor (BAF), a protein able to link lamin A precursor to chromatin remodeling functions. Our findings, in accordance with previously described results, support the hypothesis of a prelamin A involvement in BAF nuclear recruitment and suggest BAF-prelamin A complex as a protein platform usually activated in prelamin A-accumulating diseases. Finally, we demonstrate the involvement of the inner nuclear membrane protein emerin in the proper localization of BAF-prelamin A complex.
Collapse
Affiliation(s)
- Cristina Capanni
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Unit of Bologna-IOR, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Contrepois K, Thuret JY, Courbeyrette R, Fenaille F, Mann C. Deacetylation of H4-K16Ac and heterochromatin assembly in senescence. Epigenetics Chromatin 2012; 5:15. [PMID: 22932127 PMCID: PMC3487866 DOI: 10.1186/1756-8935-5-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/02/2012] [Indexed: 01/20/2023] Open
Abstract
Background Cellular senescence is a stress response of mammalian cells leading to a durable arrest of cell proliferation that has been implicated in tumor suppression, wound healing, and aging. The proliferative arrest is mediated by transcriptional repression of genes essential for cell division by the retinoblastoma protein family. This repression is accompanied by varying degrees of heterochromatin assembly, but little is known regarding the molecular mechanisms involved. Results We found that both deacetylation of H4-K16Ac and expression of HMGA1/2 can contribute to DNA compaction during senescence. SIRT2, an NAD-dependent class III histone deacetylase, contributes to H4-K16Ac deacetylation and DNA compaction in human fibroblast cell lines that assemble striking senescence-associated heterochromatin foci (SAHFs). Decreased H4-K16Ac was observed in both replicative and oncogene-induced senescence of these cells. In contrast, this mechanism was inoperative in a fibroblast cell line that did not assemble extensive heterochromatin during senescence. Treatment of senescent cells with trichostatin A, a class I/II histone deacetylase inhibitor, also induced rapid and reversible decondensation of SAHFs. Inhibition of DNA compaction did not significantly affect the stability of the senescent state. Conclusions Variable DNA compaction observed during senescence is explained in part by cell-type specific regulation of H4 deacetylation and HMGA1/2 expression. Deacetylation of H4-K16Ac during senescence may explain reported decreases in this mark during mammalian aging and in cancer cells.
Collapse
Affiliation(s)
- Kévin Contrepois
- CEA, iBiTecS, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), F-91191, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
160
|
Yao H, Rahman I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol 2012; 303:L557-66. [PMID: 22842217 DOI: 10.1152/ajplung.00175.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.
Collapse
Affiliation(s)
- Hongwei Yao
- Dept. of Environmental Medicine, Lung Biology and Disease Program, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
161
|
Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol 2012; 84:1332-9. [PMID: 22796566 DOI: 10.1016/j.bcp.2012.06.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/08/2023]
Abstract
Sirtuin1 (SIRT1), a type III protein deacetylase, is considered as a novel anti-aging protein involved in regulation of cellular senescence/aging and inflammation. SIRT1 level and activity are decreased during lung inflammaging caused by oxidative stress. The mechanism of SIRT1-mediated protection against inflammaging is associated with the regulation of inflammation, premature senescence, telomere attrition, senescence associated secretory phenotype, and DNA damage response. A variety of dietary polyphenols and pharmacological activators are shown to regulate SIRT1 so as to intervene the progression of type 2 diabetes, cancer, cardiovascular diseases, and chronic obstructive pulmonary disease associated with inflammaging. However, recent studies have shown the non-specific regulation of SIRT1 by the aforementioned pharmacological activators and polyphenols. In this perspective, we have briefly discussed the role of SIRT1 in regulation of cellular senescence and its associated secretory phenotype, DNA damage response, particularly in lung inflammaging and during the development of chronic obstructive pulmonary diseases. We have also discussed the potential directions for future translational therapeutic avenues for SIRT1 in modulating lung inflammaging associated with senescence in chronic lung diseases associated with increased oxidative stress.
Collapse
|
162
|
Butin-Israeli V, Adam SA, Goldman AE, Goldman RD. Nuclear lamin functions and disease. Trends Genet 2012; 28:464-71. [PMID: 22795640 DOI: 10.1016/j.tig.2012.06.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/25/2012] [Accepted: 06/13/2012] [Indexed: 12/26/2022]
Abstract
Recent studies have shown that premature cellular senescence and normal organ development and function depend on the type V intermediate filament proteins, the lamins, which are major structural proteins of the nucleus. This review presents an up-to-date summary of the literature describing new findings on lamin functions in various cellular processes and emphasizes the relationship between the lamins and devastating diseases ranging from premature aging to cancer. Recent insights into the structure and function of the A- and B- type lamins in normal cells and their dysfunctions in diseased cells are providing novel targets for the development of new diagnostic procedures and disease intervention. We summarize these recent findings, focusing on data from mice and humans, and highlight the expanding knowledge of these proteins in both healthy and diseased cells.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
163
|
Lanzuolo C. Epigenetic alterations in muscular disorders. Comp Funct Genomics 2012; 2012:256892. [PMID: 22761545 PMCID: PMC3385594 DOI: 10.1155/2012/256892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/11/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- CNR Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
164
|
Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y, Geiger H. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012; 10:520-30. [PMID: 22560076 PMCID: PMC3348626 DOI: 10.1016/j.stem.2012.04.007] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/29/2012] [Accepted: 04/09/2012] [Indexed: 12/14/2022]
Abstract
The decline in hematopoietic function seen during aging involves a progressive reduction in the immune response and an increased incidence of myeloid malignancy, and has been linked to aging of hematopoietic stem cells (HSCs). The molecular mechanisms underlying HSC aging remain unclear. Here we demonstrate that elevated activity of the small RhoGTPase Cdc42 in aged HSCs is causally linked to HSC aging and correlates with a loss of polarity in aged HSCs. Pharmacological inhibition of Cdc42 activity functionally rejuvenates aged HSCs, increases the percentage of polarized cells in an aged HSC population, and restores the level and spatial distribution of histone H4 lysine 16 acetylation to a status similar to that seen in young HSCs. Our data therefore suggest a mechanistic role for Cdc42 activity in HSC biology and epigenetic regulation, and identify Cdc42 activity as a pharmacological target for ameliorating stem cell aging.
Collapse
Affiliation(s)
| | - Karin Dörr
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Anja Niebel
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Deidre Daria
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm, Ulm, Germany
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Anja Hasenberg
- Universität Duisburg/Essen, University Hospital, Institute of Experimental Immunology and Imaging, Essen, Germany
| | - Matthias Gunzer
- Universität Duisburg/Essen, University Hospital, Institute of Experimental Immunology and Imaging, Essen, Germany
| | | | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
165
|
Abstract
Aging is a complex process that results in compromised biological functions of the organism and increased susceptibility to disease and death. Although the molecular basis of aging is currently being investigated in many experimental contexts, there is no consensus theory to fully explain the aging process. Epigenetic factors, including DNA methylation, histone modifications, and microRNA expression, may play central roles in controlling changes in gene expression and genomic instability during aging. In this Hot Topic review, we first examine the mechanisms by which these epigenetic factors contribute to aging in diverse eukaryotic species including experimental models of yeasts, worms, and mammals. In a second section, we will emphasize in the mammalian epigenetic alterations and how they may affect human longevity by altering stem cell function and/or somatic cell decline. The field of aging epigenetics is ripe with potential, but is still in its infancy, as new layers of complexity are emerging in the epigenetic network. As an example, we are only beginning to understand the relevance of non-coding genome to organism aging or the existence of an epigenetic memory with transgenerational inheritance. Addressing these topics will be fundamental for exploiting epigenetics phenomena as markers of aging-related diseases or as therapeutic targets.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Departament of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
166
|
Abstract
The maintenance of genomic integrity requires the precise identification and repair of DNA damage. Since DNA is packaged and condensed into higher order chromatin, the events associated with DNA damage recognition and repair are orchestrated within the layers of chromatin. Very similar to transcription, during DNA repair, chromatin remodelling events and histone modifications act in concert to 'open' and relax chromatin structure so that repair proteins can gain access to DNA damage sites. One such histone mark critical for maintaining chromatin structure is acetylated lysine 16 of histone H4 (AcH4K16), a modification that can disrupt higher order chromatin organization and convert it into a more 'relaxed' configuration. We have recently shown that impaired H4K16 acetylation delays the accumulation of repair proteins to double strand break (DSB) sites which results in defective genome maintenance and accelerated aging in a laminopathy-based premature aging mouse model. These results support the idea that epigenetic factors may directly contribute to genomic instability and aging by regulating the efficiency of DSB repair. In this article, the interplay between epigenetic misregulation, defective DNA repair and aging is discussed.
Collapse
|
167
|
Conrad T, Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 2012; 13:123-34. [PMID: 22251873 DOI: 10.1038/nrg3124] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dosage compensation is an epigenetic mechanism that normalizes gene expression from unequal copy numbers of sex chromosomes. Different organisms have evolved alternative molecular solutions to this task. In Drosophila melanogaster, transcription of the single male X chromosome is upregulated by twofold in a process orchestrated by the dosage compensation complex. Despite this conceptual simplicity, dosage compensation involves multiple coordinated steps to recognize and activate the entire X chromosome. We are only beginning to understand the intriguing interplay between multiple levels of local and long-range chromatin regulation required for the fine-tuned transcriptional activation of a heterogeneous gene population. This Review highlights the known facts and open questions of dosage compensation in D. melanogaster.
Collapse
Affiliation(s)
- Thomas Conrad
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| | | |
Collapse
|
168
|
Reddy S, Comai L. Lamin A, farnesylation and aging. Exp Cell Res 2012; 318:1-7. [PMID: 21871450 PMCID: PMC4209918 DOI: 10.1016/j.yexcr.2011.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.
Collapse
Affiliation(s)
- Sita Reddy
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
169
|
Lv WW, Wei HM, Wang DL, Ni JQ, Sun FL. Depletion of histone deacetylase 3 antagonizes PI3K-mediated overgrowth through the acetylation of histone H4 at lysine 16. J Cell Sci 2012; 125:5369-78. [DOI: 10.1242/jcs.106336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Histone acetylation is one of the best-studied gene modifications and has been shown to be involved in numerous important biological processes. Herein, we demonstrated that the depletion of histone deacetylase 3 (Hdac3) in Drosophila melanogaster resulted in a reduction in body size. Further genetic studies showed that Hdac3 counteracted the overgrowth induced by InR, PI3K or S6K over-expression, and the growth regulation by Hdac3 was mediated through the deacetylation of histone H4 at lysine 16 (H4K16). Consistently, the alterations of H4K16 acetylation (H4K16ac) induced by the over-expression or depletion of males-absent-on-the-first (MOF), a histone acetyltransferase that specifically targets H4K16, resulted in changes in body size. Furthermore, we found that H4K16ac was modulated by PI3K signaling cascades. The activation of the PI3K pathway caused a reduction in H4K16ac, whereas the inactivation of the PI3K pathway resulted in an increase in H4K16ac. The Increase in H4K16ac by the depletion of Hdac3 counteracted the PI3K-induced tissue overgrowth and PI3K-mediated alterations in the transcription profile. Overall, our studies indicated that Hdac3 served as an important regulator of the PI3K pathway and revealed a novel link between histone acetylation and growth control.
Collapse
|
170
|
Abstract
Progeroid laminopathies are characterized by the abnormal processing of lamin A, the appearance of misshapen nuclei, and the accumulation and persistence of DNA damage. In the present article, I consider the contribution of defective DNA damage pathways to the pathology of progeroid laminopathies. Defects in DNA repair pathways appear to be caused by a combination of factors. These include abnormal epigenetic modifications of chromatin that are required to recruit DNA repair pathways to sites of DNA damage, abnormal recruitment of DNA excision repair proteins to sites of DNA double-strand breaks, and unrepairable ROS (reactive oxygen species)-induced DNA damage. At least two of these defective processes offer the potential for novel therapeutic approaches.
Collapse
|