151
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
152
|
Yao B, Wang Q, Liu CF, Bhattaram P, Li W, Mead TJ, Crish JF, Lefebvre V. The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers. Nucleic Acids Res 2015; 43:5394-408. [PMID: 25940622 PMCID: PMC4477657 DOI: 10.1093/nar/gkv426] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/17/2015] [Indexed: 01/18/2023] Open
Abstract
Two decades after the discovery that heterozygous mutations within and around SOX9 cause campomelic dysplasia, a generalized skeleton malformation syndrome, it is well established that SOX9 is a master transcription factor in chondrocytes. In contrast, the mechanisms whereby translocations in the –350/–50-kb region 5′ of SOX9 cause severe disease and whereby SOX9 expression is specified in chondrocytes remain scarcely known. We here screen this upstream region and uncover multiple enhancers that activate Sox9-promoter transgenes in the SOX9 expression domain. Three of them are primarily active in chondrocytes. E250 (located at –250 kb) confines its activity to condensed prechondrocytes, E195 mainly targets proliferating chondrocytes, and E84 is potent in all differentiated chondrocytes. E84 and E195 synergize with E70, previously shown to be active in most Sox9-expressing somatic tissues, including cartilage. While SOX9 protein powerfully activates E70, it does not control E250. It requires its SOX5/SOX6 chondrogenic partners to robustly activate E195 and additional factors to activate E84. Altogether, these results indicate that SOX9 expression in chondrocytes relies on widely spread transcriptional modules whose synergistic and overlapping activities are driven by SOX9, SOX5/SOX6 and other factors. They help elucidate mechanisms underlying campomelic dysplasia and will likely help uncover other disease mechanisms.
Collapse
Affiliation(s)
- Baojin Yao
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Qiuqing Wang
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Chia-Feng Liu
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Pallavi Bhattaram
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Wei Li
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Timothy J Mead
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - James F Crish
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| |
Collapse
|
153
|
Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Matsuguchi T. AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation. Bone 2015; 74:125-33. [PMID: 25497570 DOI: 10.1016/j.bone.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022]
Abstract
Chondrocytes are derived from mesenchymal stem cells, and play an important role in cartilage formation. Sex determining region Y box (Sox) family transcription factors are essential for chondrogenic differentiation, whereas the intracellular signal pathways of Sox activation have not been clearly elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis. It is known that the catalytic alpha subunit of AMPK is activated by upstream AMPK kinases (AMPKKs) including liver kinase B1 (LKB1). We have previously reported that AMPK is a negative regulator of osteoblastic differentiation. Here, we have explored the role of AMPK in chondrogenic differentiation using in vitro culture models. The phosphorylation level of the catalytic AMPK alpha subunit significantly decreased during chondrogenic differentiation of primary chondrocyte precursors as well as ATDC-5, a well-characterized chondrogenic cell line. Treatment with metformin, an activator of AMPK, significantly reduced cartilage matrix formation and inhibited gene expression of sox6, sox9, col2a1 and aggrecan core protein (acp). Thus, chondrocyte differentiation is functionally associated with decreased AMPK activity.
Collapse
Affiliation(s)
- Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
154
|
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. [PMID: 25715393 DOI: 10.1242/dev.105536] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
Collapse
Affiliation(s)
- Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
155
|
TGF-β signal transduction pathways and osteoarthritis. Rheumatol Int 2015; 35:1283-92. [DOI: 10.1007/s00296-015-3251-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022]
|
156
|
Zhang TG, Li XD, Yu GY, Xie P, Wang YG, Liu ZY, Hong Q, Liu DZ, Du SX. All-trans-retinoic acid inhibits chondrogenesis of rat embryo hindlimb bud mesenchymal cells by downregulating p53 expression. Mol Med Rep 2015; 12:210-8. [PMID: 25738595 PMCID: PMC4438916 DOI: 10.3892/mmr.2015.3423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 01/22/2015] [Indexed: 02/05/2023] Open
Abstract
Despite the well-established role of all-trans-retinoic acid (ATRA) in congenital clubfoot (CCF)-like deformities in in vivo models, the essential cellular and molecular targets and the signaling mechanisms for ATRA-induced CCF-like deformities remain to be elucidated. Recent studies have demonstrated that p53 and p21, expressed in the hindlimb bud mesenchyme, regulate cellular proliferation and differentiation, contributing to a significant proportion of embryonic CCF-like abnormalities. The objective of the present study was to investigate the mechanisms for ATRA-induced CCF, by assessing ATRA-regulated chondrogenesis in rat embryo hindlimb bud mesenchymal cells (rEHBMCs) in vitro. The experimental study was based on varying concentrations of ATRA exposure on embryonic day 12.5 rEHBMCs in vitro. The present study demonstrated that ATRA inhibited the proliferation of cells by stimulating apoptotic cell death of rEHBMCs. It was also observed that ATRA induced a dose-dependent reduction of cartilage nodules compared with the control group. Reverse transcription-polymerase chain reaction and western blotting assays revealed that the mRNA and protein expression of cartilage-specific molecules, including aggrecan, Sox9 and collagen, type II, α 1 (Col2a1), were downregulated by ATRA in a dose-dependent manner; the mRNA levels of p53 and p21 were dose-dependently upregulated from 16 to 20 h of incubation with ATRA, but dose-dependently downregulated from 24 to 48 h. Of note, p53 and p21 were regulated at the translational level in parallel with the transcription with rEHBMCs treated with ATRA. Furthermore, the immunofluorescent microscopy assays indicated that proteins of p53 and p21 were predominantly expressed in the cartilage nodules. The present study demonstrated that ATRA decreases the chondrogenesis of rEHBMCs by inhibiting cartilage-specific molecules, including aggrecan, Sox9 and Col2al, via regulating the expression of p53 and p21.
Collapse
Affiliation(s)
- Tao-Gen Zhang
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Xue-Dong Li
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Guo-Yong Yu
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Peng Xie
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yun-Guo Wang
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhao-Yong Liu
- Department of Orthopedics, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Quan Hong
- Department of Orthopedics, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - De-Zhong Liu
- Department of Orthopedics, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shi-Xin Du
- Department of Orthopedics, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
157
|
Park BY. Sox9 regulates development of neural crest and otic placode in a time- and dose-dependent fashion. J Biomed Res 2015. [DOI: 10.12729/jbr.2015.16.1.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
158
|
Rapid screening of gene function by systemic delivery of morpholino oligonucleotides to live mouse embryos. PLoS One 2015; 10:e0114932. [PMID: 25629157 PMCID: PMC4309589 DOI: 10.1371/journal.pone.0114932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Traditional gene targeting methods in mice are complex and time consuming, especially when conditional deletion methods are required. Here, we describe a novel technique for assessing gene function by injection of modified antisense morpholino oligonucleotides (MOs) into the heart of mid-gestation mouse embryos. After allowing MOs to circulate through the embryonic vasculature, target tissues were explanted, cultured and analysed for expression of key markers. We established proof-of-principle by partially phenocopying known gene knockout phenotypes in the fetal gonads (Stra8, Sox9) and pancreas (Sox9). We also generated a novel double knockdown of Gli1 and Gli2, revealing defects in Leydig cell differentiation in the fetal testis. Finally, we gained insight into the roles of Adamts19 and Ctrb1, genes of unknown function in sex determination and gonadal development. These studies reveal the utility of this method as a means of first-pass analysis of gene function during organogenesis before committing to detailed genetic analysis.
Collapse
|
159
|
Merkes C, Turkalo TK, Wilder N, Park H, Wenger LW, Lewin SJ, Azuma M. Ewing sarcoma ewsa protein regulates chondrogenesis of Meckel's cartilage through modulation of Sox9 in zebrafish. PLoS One 2015; 10:e0116627. [PMID: 25617839 PMCID: PMC4305327 DOI: 10.1371/journal.pone.0116627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Ewing sarcoma is the second most common skeletal (bone and cartilage) cancer in adolescents, and it is characterized by the expression of the aberrant chimeric fusion gene EWS/FLI1. Wild-type EWS has been proposed to play a role in mitosis, splicing and transcription. We have previously shown that EWS/FLI1 interacts with EWS, and it inhibits EWS activity in a dominant manner. Ewing sarcoma is a cancer that specifically develops in skeletal tissues, and although the above data suggests the significance of EWS, its role in chondrogenesis/skeletogenesis is not understood. To elucidate the function of EWS in skeletal development, we generated and analyzed a maternal zygotic (MZ) ewsa/ewsa line because the ewsa/wt and ewsa/ewsa zebrafish appeared to be normal and fertile. Compared with wt/wt, the Meckel's cartilage of MZ ewsa/ewsa mutants had a higher number of craniofacial prehypertrophic chondrocytes that failed to mature into hypertrophic chondrocytes at 4 days post-fertilization (dpf). Ewsa interacted with Sox9, which is the master transcription factor for chondrogenesis. Sox9 target genes were either upregulated (ctgfa, ctgfb, col2a1a, and col2a1b) or downregulated (sox5, nog1, nog2, and bmp4) in MZ ewsa/ewsa embryos compared with the wt/wt zebrafish embryos. Among these Sox9 target genes, the chromatin immunoprecipitation (ChIP) experiment demonstrated that Ewsa directly binds to ctgfa and ctgfb loci. Consistently, immunohistochemistry showed that the Ctgf protein is upregulated in the Meckel's cartilage of MZ ewsa/ewsa mutants. Together, we propose that Ewsa promotes the differentiation from prehypertrophic chondrocytes to hypertrophic chondrocytes of Meckel's cartilage through inhibiting Sox9 binding site of the ctgf gene promoter. Because Ewing sarcoma specifically develops in skeletal tissue that is originating from chondrocytes, this new role of EWS may provide a potential molecular basis of its pathogenesis.
Collapse
Affiliation(s)
- Chris Merkes
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Timothy K. Turkalo
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Nicole Wilder
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Hyewon Park
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Luke W. Wenger
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Seth J. Lewin
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
| | - Mizuki Azuma
- Molecular Biosciences, University of Kansas, 7031 Haworth, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States of America
- * E-mail:
| |
Collapse
|
160
|
Yamamizu K, Schlessinger D, Ko MSH. SOX9 accelerates ESC differentiation to three germ layer lineages by repressing SOX2 expression through P21 (WAF1/CIP1). Development 2015; 141:4254-66. [PMID: 25371362 DOI: 10.1242/dev.115436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Upon removal of culture conditions that maintain an undifferentiated state, mouse embryonic stem cells (ESCs) differentiate into various cell types. Differentiation can be facilitated by forced expression of certain transcription factors (TFs), each of which can generally specify a particular developmental lineage. We previously established 137 mouse ESC lines, each of which carried a doxycycline-controllable TF. Among them, Sox9 has unique capacity: its forced expression accelerates differentiation of mouse ESCs into cells of all three germ layers. With the additional use of specific culture conditions, overexpression of Sox9 facilitated the generation of endothelial cells, hepatocytes and neurons from ESCs. Furthermore, Sox9 action increases formation of p21 (WAF1/CIP1), which then binds to the SRR2 enhancer of pluripotency marker Sox2 and inhibits its expression. Knockdown of p21 abolishes inhibition of Sox2 and Sox9-accelerated differentiation, and reduction of Sox2 2 days after the beginning of ESC differentiation can comparably accelerate mouse ESC formation of cells of three germ layers. These data implicate the involvement of the p21-Sox2 pathway in the mechanism of accelerated ESC differentiation by Sox9 overexpression. The molecular cascade could be among the first steps to program ESC differentiation.
Collapse
Affiliation(s)
- Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Minoru S H Ko
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
161
|
The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells. BMC DEVELOPMENTAL BIOLOGY 2014; 14:47. [PMID: 25527186 PMCID: PMC4297388 DOI: 10.1186/s12861-014-0047-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Identification and characterization of molecular controls that regulate mammary stem and progenitor cell homeostasis are critical to our understanding of normal mammary gland development and its pathology. RESULTS We demonstrate that conditional knockout of Sox9 in the mouse mammary gland results in impaired postnatal development. In short-term lineage tracing in the postnatal mouse mammary gland using Sox9-CreER driven reporters, Sox9 marked primarily the luminal progenitors and bipotent stem/progenitor cells within the basal mammary epithelial compartment. In contrast, long-term lineage tracing studies demonstrate that Sox9+ precursors gave rise to both luminal and myoepithelial cell lineages. Finally, fate mapping of Sox9 deleted cells demonstrates that Sox9 is essential for luminal, but not myoepithelial, lineage commitment and proliferation. CONCLUSIONS These studies identify Sox9 as a key regulator of mammary gland development and stem/progenitor maintenance.
Collapse
|
162
|
Hdud IM, Loughna PT. Influence of 1α, 25-dihydroxyvitamin D3 [1, 25(OH)2D3] on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2014; 56:33. [PMID: 26290720 PMCID: PMC4540304 DOI: 10.1186/s40781-014-0033-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sox 9 is a major marker of chondrocyte differentiation. When chondrocytes are cultured in vitro they progressively de-differentiate and this is associated with a decline in Sox 9 expression. The active form of vitamin D, 1, 25 (OH)2D3 has been shown to be protective of cartilage in both humans and animals. In this study equine articular chondrocytes were grown in culture and the effects of 1, 25 (OH)2D3 upon Sox 9 expression examined. The expression of the transient receptor potential vanilloid (TRPV) ion channels 5 and 6 in equine chondrocytes in vitro, we have previously shown, is inversely correlated with de-differentiation. The expression of these channels in response to 1, 25 (OH)2D3 administration was therefore also examined. RESULTS The active form of vitamin D (1, 25 (OH)2D3) when administered to cultured equine chondrocytes at two different concentrations significantly increased the expression of Sox 9 at both. In contrast 1, 25 (OH)2D3 had no significant effect upon the expression of either TRPV 5 or 6 at either the protein or the mRNA level. CONCLUSIONS The increased expression of Sox 9, in equine articular chondrocytes in vitro, in response to the active form of vitamin D suggests that this compound could be utilized to inhibit the progressive de-differentiation that is normally observed in these cells. It is also supportive of previous studies indicating that 1α, 25-dihydroxyvitamin D3 can have a protective effect upon cartilage in animals in vivo. The previously observed correlation between the degree of differentiation and the expression levels of TRPV 5/6 had suggested that these ion channels may have a direct involvement in, or be modulated by, the differentiation process in vitro. The data in the present study do not support this.
Collapse
Affiliation(s)
- Ismail M Hdud
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK ; School of Veterinary Medicine and Science, Tripoli University, Tripoli, Libya
| | - Paul T Loughna
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK ; Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Leicestershire, UK
| |
Collapse
|
163
|
Chatterjee S, Sivakamasundari V, Yap SP, Kraus P, Kumar V, Xing X, Lim SL, Sng J, Prabhakar S, Lufkin T. In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column. BMC Genomics 2014; 15:1072. [PMID: 25480362 PMCID: PMC4302147 DOI: 10.1186/1471-2164-15-1072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/27/2014] [Indexed: 12/30/2022] Open
Abstract
Background Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Results Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. Conclusions The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1072) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA.
| |
Collapse
|
164
|
Lai LP, Lotinun S, Bouxsein ML, Baron R, McMahon AP. Stk11 (Lkb1) deletion in the osteoblast lineage leads to high bone turnover, increased trabecular bone density and cortical porosity. Bone 2014; 69:98-108. [PMID: 25240456 PMCID: PMC4373701 DOI: 10.1016/j.bone.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 11/22/2022]
Abstract
The mTOR pathway couples energy homeostasis to growth, division and survival of the cell. Stk11/Lkb1 is a critical serine-threonine protein kinase in the inhibition of mTOR pathway action. In the mammalian skeleton, Stk11 regulates the transition between immature and hypertrophic chondrocytes. Here, we have focused on the action of Stk11in the osteoblast lineage through osteoblast specific-removal of Stk11 activity. In the mouse model system, specification and primary organization of the neonatal boney skeleton is independent of Stk11. However, histological, molecular and micro-CT analysis revealed a marked perturbation of normal bone development evident in the immediate post-natal period. Cortical bone was unusually porous displaying a high rate of turnover with new trabeculae forming in the endosteal space. Trabecular bone also showed enhanced turnover and marked increase in the density of trabeculae and number of osteoclasts. Though mutants showed an expansion of bone volume and trabecular number, their bone matrix comprised large amounts of osteoid and irregularly deposited woven bone highlighted by diffuse fluorochrome labeling. Additionally, we observed an increase in fibroblast-like cells associated with trabecular bone in Stk11 mutants. Stk11 down-regulates mTORC1 activity through control of upstream modulators of the AMP kinase family: an increase in the levels of the phosphorylated ribosomal protein S6, a target of mTORC1-mediated kinase activity, on osteoblast removal of Stk11 suggests deregulated mTORC1 activity contributes to the osteoblast phenotype. These data demonstrate Stk11 activity within osteoblasts is critical for the development of normally structured bone regulating directly the number and coordinated actions of osteoblasts, and indirectly osteoclast number.
Collapse
Affiliation(s)
- Lick Pui Lai
- Department of Stem Cell Biology and Regenerative Medicine and Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine and Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
165
|
Zhou ZQ, Ota S, Deng C, Akiyama H, Hurlin PJ. Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes. Hum Mol Genet 2014; 24:1764-73. [PMID: 25432534 DOI: 10.1093/hmg/ddu594] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) plays a critical role in the control of endochondral ossification, and bone growth and mutations that cause hyperactivation of FGFR3 are responsible for a collection of developmental disorders that feature poor endochondral bone growth. FGFR3 is expressed in proliferating chondrocytes of the cartilaginous growth plate but also in chondrocytes that have exited the cell cycle and entered the prehypertrophic phase of chondrocyte differentiation. Achondroplasia disorders feature defects in chondrocyte proliferation and differentiation, and the defects in differentiation have generally been considered to be a secondary manifestation of altered proliferation. By initiating a mutant activated knockin allele of FGFR3 (FGFR3K650E) that causes Thanatophoric Dysplasia Type II (TDII) specifically in prehypertrophic chondrocytes, we show that mutant FGFR3 induces a differentiation block at this stage independent of any changes in proliferation. The differentiation block coincided with persistent expression of SOX9, the master regulator of chondrogenesis, and reducing SOX9 dosage allowed chondrocyte differentiation to proceed and significantly improved endochondral bone growth in TDII. These findings suggest that a proliferation-independent and SOX9-dependent differentiation block is a key driving mechanism responsible for poor endochondral bone growth in achondroplasia disorders caused by mutations in FGFR3.
Collapse
Affiliation(s)
- Zi-Qiang Zhou
- Shriners Hospitals for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sara Ota
- Shriners Hospitals for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Chuxia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University, Gifu 501-1194, Japan
| | - Peter J Hurlin
- Shriners Hospitals for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA, Department of Cell and Developmental Biology and Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
166
|
Bigaeva E, Paradis FH, Moquin A, Hales BF, Maysinger D. Assessment of the developmental toxicity of nanoparticles in anex vivo3D model, the murine limb bud culture system. Nanotoxicology 2014; 9:780-91. [DOI: 10.3109/17435390.2014.976850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
167
|
Le Pabic P, Ng C, Schilling TF. Fat-Dachsous signaling coordinates cartilage differentiation and polarity during craniofacial development. PLoS Genet 2014; 10:e1004726. [PMID: 25340762 PMCID: PMC4207671 DOI: 10.1371/journal.pgen.1004726] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a−/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts. Little is known about the mechanisms of cell-cell communication necessary to assemble skeletal elements of appropriate size and shape. In this study, we investigate the roles of genetic factors belonging to a developmental pathway that affects skeletal progenitor behavior: the atypical cadherins Fat3 and Dachsous2 (Dchs2), and REREa/Atr2a. We show that cartilage precursors fail to rearrange into linear stacks and at the same time misregulate expression of sox9a, a key regulator of cartilage differentiation, in zebrafish embryos deficient in Fat3 or its partner Dchs2. Similar cartilage defects are observed in rerea−/− mutants, and Fat3 interacts physically and genetically with REREa. Our results suggest that Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control skeletal differentiation through Sox9. By transplanting cartilage precursors between wild-type and Fat3, Dchs2 or REREa deficient embryos we demonstrate that all three factors exert long-range influences on neighboring cells, most likely mediated by another polarizing signal. We propose a model in which this coordinates the polarity and differentiation of chondrocytes to shape skeletal primordia, and that defects in these processes underlie human skeletal malformations.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Carrie Ng
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
168
|
Tam WL, O DF, Hiramatsu K, Tsumaki N, Luyten FP, Roberts SJ. Sox9 reprogrammed dermal fibroblasts undergo hypertrophic differentiation in vitro and trigger endochondral ossification in vivo. Cell Reprogram 2014; 16:29-39. [PMID: 24459991 DOI: 10.1089/cell.2013.0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strategies for bone regeneration are undergoing a paradigm shift, moving away from the replication of end-stage bone tissue and instead aiming to recapture the initial events of fracture repair. Although this is known to resemble endochondral bone formation, chondrogenic cell types with favorable proliferative and hypertrophic differentiation properties are lacking. Recent advances in cellular reprogramming have allowed the creation of alternative cell populations with specific properties through the forced expression of transcription factors. Herein, we investigated the in vitro hypertrophic differentiation and in vivo tissue formation capacity of induced chondrogenic cells (iChon cells) obtained through direct reprogramming. In vitro hypertrophic differentiation was detected in iChon cells that contained a doxycycline-inducible expression system for Klf4, cMyc, and Sox9. Furthermore, endochondral bone formation was detected after implantation in nude mice. The bone tissue was derived entirely from host origin, whereas cartilage tissue contained cells from both host and donor. The results obtained highlight the promise of cellular reprogramming for the creation of functional skeletal cells that can be used for novel bone healing strategies.
Collapse
Affiliation(s)
- Wai Long Tam
- 1 Laboratory for Developmental and Stem Cell Biology (DSB) , Skeletal Biology and Engineering Research Center (SBE), KU Leuven, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
169
|
SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS One 2014; 9:e107577. [PMID: 25229425 PMCID: PMC4168005 DOI: 10.1371/journal.pone.0107577] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/03/2014] [Indexed: 12/28/2022] Open
Abstract
The transcription factor SOX9 plays an essential role in determining the fate of several cell types and is a master factor in regulation of chondrocyte development. Our aim was to determine which genes in the genome of chondrocytes are either directly or indirectly controlled by SOX9. We used RNA-Seq to identify genes whose expression levels were affected by SOX9 and used SOX9 ChIP-Seq to identify those genes that harbor SOX9-interaction sites. For RNA-Seq, the RNA expression profile of primary Sox9flox/flox mouse chondrocytes infected with Ad-CMV-Cre was compared with that of the same cells infected with a control adenovirus. Analysis of RNA-Seq data indicated that, when the levels of Sox9 mRNA were decreased more than 8-fold by infection with Ad-CMV-Cre, 196 genes showed a decrease in expression of at least 4-fold. These included many cartilage extracellular matrix (ECM) genes and a number of genes for ECM modification enzymes (transferases), membrane receptors, transporters, and others. In ChIP-Seq, 75% of the SOX9-interaction sites had a canonical inverted repeat motif within 100 bp of the top of the peak. SOX9-interaction sites were found in 55% of the genes whose expression was decreased more than 8-fold in SOX9-depleted cells and in somewhat fewer of the genes whose expression was reduced more than 4-fold, suggesting that these are direct targets of SOX9. The combination of RNA-Seq and ChIP-Seq has provided a fuller understanding of the SOX9-controlled genetic program of chondrocytes.
Collapse
|
170
|
Boucherat O, Nadeau V, Bérubé-Simard FA, Charron J, Jeannotte L. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development 2014; 141:3197-211. [DOI: 10.1242/dev.110254] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase genes, Mek1 and Mek2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In order to define the function of the ERK/MAPK pathway in the lung development in mice, we performed tissue-specific deletions of Mek1 function on a Mek2 null background. Inactivation of both Mek genes in mesenchyme resulted in several phenotypes, including giant omphalocele, kyphosis, pulmonary hypoplasia, defective tracheal cartilage and death at birth. The absence of tracheal cartilage rings establishes the crucial role of intracellular signaling molecules in tracheal chondrogenesis and provides a putative mouse model for tracheomalacia. In vitro, the loss of Mek function in lung mesenchyme did not interfere with lung growth and branching, suggesting that both the reduced intrathoracic space due to the dysmorphic rib cage and the omphalocele impaired lung development in vivo. Conversely, Mek mutation in the respiratory epithelium caused lung agenesis, a phenotype resulting from the direct impact of the ERK/MAPK pathway on cell proliferation and survival. No tracheal epithelial cell differentiation occurred and no SOX2-positive progenitor cells were detected in mutants, implying a role for the ERK/MAPK pathway in trachea progenitor cell maintenance and differentiation. Moreover, these anomalies were phenocopied when the Erk1 and Erk2 genes were mutated in airway epithelium. Thus, the ERK/MAPK pathway is required for the integration of mesenchymal and epithelial signals essential for the development of the entire respiratory tract.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Valérie Nadeau
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Félix-Antoine Bérubé-Simard
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
171
|
Inoue T, Hashimoto R, Matsumoto A, Jahan E, Rafiq AM, Udagawa J, Hatta T, Otani H. In vivo analysis of Arg-Gly-Asp sequence/integrin α5β1-mediated signal involvement in embryonic enchondral ossification by exo utero development system. J Bone Miner Res 2014; 29:1554-63. [PMID: 24375788 DOI: 10.1002/jbmr.2166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/11/2013] [Indexed: 01/01/2023]
Abstract
Enchondral ossification is a fundamental mechanism for longitudinal bone growth during vertebrate development. In vitro studies suggested that functional blockade with RGD peptides or with an antibody that interferes with integrin α5β1-ligand interactions inhibited pre-hypertrophic chondrocyte differentiation. The purpose of this study is to elucidate in vivo the roles of the integrin α5β1-mediated signal through the Arg-Gly-Asp (RGD) sequence in the cell-extracellular matrix (ECM) interaction in embryonic enchondral ossification by an exo utero development system. We injected Arg-Gly-Asp-Ser (RGDS) peptides and anti-integrin α5β1 antibody (α5β1 ab) in the upper limbs of mouse embryos at embryonic day (E) 15.5 (RGDS-injected limbs, α5β1 ab-injected limbs), and compared the effects on enchondral ossification with those found in the control limbs (Arg-Gly-Glu-Ser peptide-, mouse IgG-, or vehicle-injected, and no surgery) at E16.5. In the RGDS-injected limbs, the humeri were shorter and there were fewer BrdU-positive cells than in the control limbs. The ratios of cartilage length and area to those of the humerus were higher in the RGDS-injected limbs. The ratios of type X collagen to type 2 collagen mRNA and protein (Coll X/Coll 2) were significantly lower in the RGDS-injected limbs. In those limbs, TUNEL-positive cells were hardly observed, and the ratios of fractin to the Coll X/Coll 2 ratio were lower than in the control limbs. Furthermore, the α5β1 ab-injected limbs showed results similar to those of RGDS-injected limbs. The present in vivo study by exo utero development system showed that RGDS and α5β1 ab injection decreased chondrocyte proliferation, differentiation, and apoptosis in enchondral ossification, and suggested that the integrin α5β1-mediated ECM signal through the RGD sequence is involved in embryonic enchondral ossification.
Collapse
Affiliation(s)
- Takayuki Inoue
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Shimane, Japan
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Gámez B, Rodriguez-Carballo E, Ventura F. MicroRNAs and post-transcriptional regulation of skeletal development. J Mol Endocrinol 2014; 52:R179-97. [PMID: 24523514 DOI: 10.1530/jme-13-0294] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) have become integral nodes of post-transcriptional control of genes that confer cellular identity and regulate differentiation. Cell-specific signaling and transcriptional regulation in skeletal biology are extremely dynamic processes that are highly reliant on dose-dependent responses. As such, skeletal cell-determining genes are ideal targets for quantitative regulation by miRNAs. So far, large amounts of evidence have revealed a characteristic temporal miRNA signature in skeletal cell differentiation and confirmed the essential roles that numerous miRNAs play in bone development and homeostasis. In addition, microarray expression data have provided evidence for their role in several skeletal pathologies. Mouse models in which their expression is altered have provided evidence of causal links between miRNAs and bone abnormalities. Thus, a detailed understanding of the function of miRNAs and their tight relationship with bone diseases would constitute a powerful tool for early diagnosis and future therapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, C/Feixa Llarga s/n, E-08907 L'Hospitalet de Llobregat, Spain
| | | | | |
Collapse
|
173
|
Serão NVL, Matika O, Kemp RA, Harding JCS, Bishop SC, Plastow GS, Dekkers JCM. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J Anim Sci 2014; 92:2905-21. [PMID: 24879764 DOI: 10.2527/jas.2014-7821] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease impacting pig production in North America, Europe, and Asia, causing reproductive losses such as increased rates of stillbirth and mummified piglets. The objective of this study was to explore the genetic basis of host response to the PRRS virus (PRRSV) in a commercial multiplier sow herd before and after a PRRS outbreak, using antibody response and reproductive traits. Reproductive data comprising number born alive (NBA), number alive at 24 h (NA24), number stillborn (NSB), number born mummified (NBM), proportion born dead (PBD), number born dead (NBD), number weaned (NW), and number of mortalities through weaning (MW) of 5,227 litters from 1,967 purebred Landrace sows were used along with a pedigree comprising 2,995 pigs. The PRRS outbreak date was estimated from rolling averages of farrowing traits and was used to split the data into a pre-PRRS phase and a PRRS phase. All 641 sows in the herd during the outbreak were blood sampled 46 d after the estimated outbreak date and were tested for anti-PRRSV IgG using ELISA (sample-to-positive [S/P] ratio). Genetic parameters of traits were estimated separately for the pre-PRRS and PRRS phase data sets. Sows were genotyped using the PorcineSNP60 BeadChip, and genome-wide association studies (GWAS) were performed using method Bayes B. Heritability estimates for reproductive traits ranged from 0.01 (NBM) to 0.12 (NSB) and from 0.01 (MW) to 0.12 (NBD) for the pre-PRRS and PRRS phases, respectively. S/P ratio had heritability (0.45) and strong genetic correlations with most traits, ranging from -0.72 (NBM) to 0.73 (NBA). In the pre-PRRS phase, regions associated with NSB and PBD explained 1.6% and 3% of the genetic variance, respectively. In the PRRS phase, regions associated with NBD, NSB, and S/P ratio explained 0.8%, 11%, and 50.6% of the genetic variance, respectively. For S/P ratio, 2 regions on SSC 7 (SSC7) separated by 100 Mb explained 40% of the genetic variation, including a region encompassing the major histocompatibility complex, which explained 25% of the genetic variance. These results indicate a significant genomic component associated with PRRSV antibody response and NSB in this data set. Also, the high heritability and genetic correlation estimates for S/P ratio during the PRRS phase suggest that S/P ratio could be used as an indicator of the impact of PRRS on reproductive traits.
Collapse
Affiliation(s)
- N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - R A Kemp
- Genesus, Oakville, MB R0H 0Y0, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A1, Canada
| | - S C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - J C M Dekkers
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
174
|
Ahmed N, Iu J, Brown CE, Taylor DW, Kandel RA. Serum- and growth-factor-free three-dimensional culture system supports cartilage tissue formation by promoting collagen synthesis via Sox9-Col2a1 interaction. Tissue Eng Part A 2014; 20:2224-33. [PMID: 24606204 DOI: 10.1089/ten.tea.2013.0559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE One of the factors preventing clinical application of regenerative medicine to degenerative cartilage diseases is a suitable source of cells. Chondrocytes, the only cell type of cartilage, grown in vitro under culture conditions to expand cell numbers lose their phenotype along with the ability to generate hyaline cartilaginous tissue. In this study we determine that a serum- and growth-factor-free three-dimensional (3D) culture system restores the ability of the passaged chondrocytes to form cartilage tissue in vitro, a process that involves sox9. METHODS Bovine articular chondrocytes were passaged twice to allow for cell number expansion (P2) and cultured at high density on 3D collagen-type-II-coated membranes in high glucose content media supplemented with insulin and dexamethasone (SF3D). The cells were characterized after monolayer expansion and following 3D culture by flow cytometry, gene expression, and histology. The early changes in signaling transduction pathways during redifferentiation were characterized. RESULTS The P2 cells showed a progenitor-like antigen profile of 99% CD44(+) and 40% CD105(+) and a gene expression profile suggestive of interzone cells. P2 in SF3D expressed chondrogenic genes and accumulated extracellular matrix. Downregulating insulin receptor (IR) with HNMPA-(AM3) or the PI-3/AKT kinase pathway (activated by insulin treatment) with Wortmannin inhibited collagen synthesis. HNMPA-(AM3) reduced expression of Col2, Col11, and IR genes as well as Sox6 and -9. Co-immunoprecipitation and chromatin immunoprecipitation analyses of HNMPA-(AM3)-treated cells showed binding of the coactivators Sox6 and Med12 with Sox9 but reduced Sox9-Col2a1 binding. CONCLUSIONS We describe a novel culture method that allows for increase in the number of chondrocytes and promotes hyaline-like cartilage tissue formation in part by insulin-mediated Sox9-Col2a1 binding. The suitability of the tissue generated via this approach for use in joint repair needs to be examined in vivo.
Collapse
Affiliation(s)
- Nazish Ahmed
- 1 CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, University of Toronto , Toronto, Canada
| | | | | | | | | |
Collapse
|
175
|
Expression profiling and functional implications of a set of zinc finger proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in primary osteoarthritic articular chondrocytes. Mediators Inflamm 2014; 2014:318793. [PMID: 24976683 PMCID: PMC4058293 DOI: 10.1155/2014/318793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/27/2023] Open
Abstract
Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA). To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B) in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.
Collapse
|
176
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
177
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
178
|
Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A 2014; 111:E1990-8. [PMID: 24778262 DOI: 10.1073/pnas.1323112111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca(2+) transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca(2+) channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca(2+) channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2(-/-)) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca(2+) channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca(2+) influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2(-/-) tracheas. Mechanistically, Ca(2+) influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca(2+) influx via the Cav3.2 T-type Ca(2+) channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis.
Collapse
|
179
|
Hu J, Lu J, Lian G, Ferland RJ, Dettenhofer M, Sheen VL. Formin 1 and filamin B physically interact to coordinate chondrocyte proliferation and differentiation in the growth plate. Hum Mol Genet 2014; 23:4663-73. [PMID: 24760772 DOI: 10.1093/hmg/ddu186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Filamin B (FlnB) is an actin-binding protein thought to transduce signals from various membrane receptors and intracellular proteins onto the actin cytoskeleton. Formin1 (Fmn1) is an actin-nucleating protein, implicated in actin assembly and intracellular signaling. Human mutations in FLNB cause several skeletal disorders associated with dwarfism and early bone fusion. Mouse mutations in Fmn1 cause aberrant fusion of carpal digits. We report here that FlnB and Fmn1 physically interact, are co-expressed in chondrocytes in the growth plate and share overlapping expression in the cell cytoplasm and nucleus. Loss of FlnB leads to a dramatic decrease in Fmn1 expression at the hypertrophic-to-ossification border. Loss of Fmn1-FlnB in mice leads to a more severe reduction in body size, weight and growth plate length, than observed in mice following knockout of either gene alone. Shortening of the long bone is associated with a decrease in chondrocyte proliferation and an overall delay in ossification in the double-knockout mice. In contrast to FlnB null, Fmn1 loss results in a decrease in the width of the prehypertrophic zone. Loss of both proteins, however, causes an overall decrease in the width of the proliferation zone and an increase in the differentiated hypertrophic zone. The current findings suggest that Fmn1 and FlnB have shared and independent functions. FlnB loss promotes prehypertrophic differentiation whereas Fmn1 leads to a delay. Both proteins, however, regulate chondrocyte proliferation, and FlnB may regulate Fmn1 function at the hypertrophic-to-ossification border, thereby explaining the overall delay in ossification.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Russell J Ferland
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Markus Dettenhofer
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
180
|
Li Z, Wu G, Sher RB, Khavandgar Z, Hermansson M, Cox GA, Doschak MR, Murshed M, Beier F, Vance DE. Choline kinase beta is required for normal endochondral bone formation. Biochim Biophys Acta Gen Subj 2014; 1840:2112-22. [PMID: 24637075 DOI: 10.1016/j.bbagen.2014.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb(-/-) mice display neonatal forelimb bone deformations. METHODS To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb(-/-) mice. RESULTS The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb(-/-) mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb(-/-) mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb(-/-) mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb(-/-) mice contained fewer osteoclasts along the cartilage/bone interface. CONCLUSIONS Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice. GENERAL SIGNIFICANCE Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.
Collapse
Affiliation(s)
- Zhuo Li
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | - Gengshu Wu
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | | | | | - Martin Hermansson
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | | | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2 Canada.
| |
Collapse
|
181
|
Hu J, Lu J, Lian G, Zhang J, Hecht JL, Sheen VL. Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. PLoS One 2014; 9:e89352. [PMID: 24551245 PMCID: PMC3925234 DOI: 10.1371/journal.pone.0089352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/19/2014] [Indexed: 11/18/2022] Open
Abstract
Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB) gene develop spondylocarpotarsal syndrome (SCT), a disorder characterized by dwarfism (delayed bone formation) and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation). To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes. Within the shortened growth plate of postnatal FlnB(-/-) mice long bone, we observed a similarly progressive decline in the number of rapidly proliferating chondrocytes and premature differentiation characterized by an enlarged prehypertrophic zone, a widened Col2a1(+)/Col10a1(+) overlapping region, but relatively reduced hypertrophic zone length. The reduced chondrocyte proliferation and premature differentiation were, in part, attributable to enhanced G2/M phase progression, where fewer FlnB deficient ATDC5 chondrocytes resided in the G2/M phase of the cell cycle. FlnB loss reduced Cdk1 phosphorylation (an inhibitor of G2/M phase progression) and Cdk1 inhibition in chondrocytes mimicked the null FlnB, premature differentiation phenotype, through a β1-integrin receptor- Pi3k/Akt (a key regulator of chondrocyte differentiation) mediated pathway. In this context, the early prehypertrophic differentiation provides an explanation for the premature differentiation seen in this disorder, whereas the progressive decline in proliferating chondrocytes would ultimately lead to reduced chondrocyte production and shortened bone length. These findings begin to define a role for filamin proteins in directing both cell proliferation and differentiation through indirect regulation of cell cycle associated proteins.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jingping Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Volney L. Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
182
|
Wang YG, Li XD, Liu ZY, Zhang TG, Chen B, Hou GQ, Hong Q, Xie P, Du SX. All-trans-retinoid acid (ATRA) may have inhibited chondrogenesis of primary hind limb bud mesenchymal cells by downregulating Pitx1 expression. Toxicol Lett 2014; 224:282-9. [PMID: 23810783 DOI: 10.1016/j.toxlet.2013.06.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Despite frequently well-established role of all-trans-retinoid acid (ATRA) in congenital limb deformities, its mechanism of action, thus far, is still ambiguous. Pitx1, which is expressed in the hindlimb bud mesenchyme, or its pathways may be etiologically responsible for the increased incidence of clubfoot. Here, we sought to investigate the mechanisms whereby Pitx1 regulated chondrogenesis of hindlimb bud mesenchymal cells in vitro. E12.5 embryonic rat hind limb bud mesenchymal cells were treated with ATRA at appropriate concentrations. Cell Counting Kit-8 (CCK-8) assay was performed to evaluate cell proliferation. Hematoxylin-safranin-O-fast-green staining assays were used to observe cartilage nodules, and Pitx1 expression was examined by immunofluorescent microscopy. Real-time quantitative PCR and immunoblotting assays were applied to determine the mRNA expressions of Pitx1, Sox9 and type II collagen (Col2al), respectively. The results showed that ATRA inhibited the proliferation of hind limb bud cells dose-dependently. ATRA also induced a dose-dependent reduction in the number of cartilage nodules and the area of cartilage nodules compared with controls. Our real-time quantitative RT-PCR assays revealed that the mRNA expression of Pitx1, Sox9 and Col2al were significantly downregulated by ATRA. Furthermore, our immunofluorescent microscopy and Western blotting assays indicated that Pitx1 was mainly expressed in the cartilage nodules and the levels of Pitx1, Sox9 and Col2al were also downregulated by ATRA dose-dependently. The results indicated that ATRA may decrease chondrogenesis of hind limb bud mesenchymal cells by inhibiting cartilage-specific molecules, such as Sox9 and Col2al, via downregulating Pitx1 expression.
Collapse
Affiliation(s)
- Yun-guo Wang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Sylva M, Moorman AFM, van den Hoff MJB. Follistatin-like 1 in vertebrate development. ACTA ACUST UNITED AC 2014; 99:61-9. [PMID: 23723173 DOI: 10.1002/bdrc.21030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/08/2013] [Indexed: 11/11/2022]
Abstract
Follistatin-like 1 (Fstl1) is a member of the secreted protein acidic rich in cysteins (SPARC) family and has been implicated in many different signaling pathways, including bone morphogenetic protein (BMP) signaling. In many different developmental processes like, dorso-ventral axis establishment, skeletal, lung and ureter development, loss of function experiments have unveiled an important role for Fstl1. Fstl1 largely functions through inhibiting interactions with the BMP signaling pathway, although, in various disease models, different signaling pathways, like activation of pAKT, pAMPK, Na/K-ATPase, or innate immune responses, are linked to Fstl1. How Fstl1 inhibits BMP signaling remains unclear, although it is known that Fstl1 does not function through a scavenging mechanism, like the other known extracellular BMP inhibitors such as noggin. It has been proposed that Fstl1 interferes with BMP receptor complex formation and as such inhibits propagation of the BMP signal into the cell. Future challenges will encompass the identification of the factors that determine the mechanisms that underlie the fact that Fstl1 acts by interfering with BMP signaling during development, but through other signaling pathways during disease.
Collapse
Affiliation(s)
- M Sylva
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Meibergdreef 15 1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|
184
|
|
185
|
MORI Y, MORI D, CHUNG UI, TANAKA S, HEIERHORST J, BUCHOU T, BAUDIER J, KAWAGUCHI H, SAITO T. S100A1 and S100B are dispensable for endochondral ossification during skeletal development. Biomed Res 2014; 35:243-50. [DOI: 10.2220/biomedres.35.243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
186
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
187
|
Schmid R, Bosserhoff AK. Redundancy in regulation of chondrogenesis in MIA/CD-RAP-deficient mice. Mech Dev 2013; 131:24-34. [PMID: 24269712 DOI: 10.1016/j.mod.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/26/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
Recent in vitro analysis of MIA/CD-RAP-deficient (MIA(-/-)) mesenchymal stem cells revealed altered chondrogenic differentiation, characterised by enhanced proliferation and delayed differentiation. However, adult MIA(-/-) mice develop normally and show only ultrastructural defects of the cartilage but no major abnormalities. We therefore focused, in this study, on chondrogenesis in vivo in MIA(-/-) mouse embryos to reveal potential molecular changes during embryogenesis and possible redundant mechanisms, which explain the almost normal phenotype despite MIA/CD-RAP loss. In situ hybridisation analysis revealed larger expression areas of Col2a1 and Sox9 positive, proliferating chondrocytes at day 15.5 and 16.5 of embryogenesis in MIA(-/-) mice. The initially diminished zone of Col10a1-expressing hypertrophic chondrocytes at day 15.5 was compensated at day 16.5 in MIA(-/-) embryos. Supported by in vitro studies using mesenchymal stem cells, we discovered that chondrogenesis in MIA(-/-) mice is modified by enhanced Sox9, Sox6 and AP-2α expression. Finally, we identified reduced AP1 and CRE activity, analysed by reporter gene- and electrophoretic mobility shift assays, important for redundancy mechanism which rescued delayed hypertrophic differentiation and allows normal development of MIA(-/-) mice. In summary, as observed in other knockout models of molecules important for cartilage development and differentiation, viability and functional integrity is reached by remarkable molecular redundancy in MIA/CD-RAP knockout mice.
Collapse
Affiliation(s)
- Rainer Schmid
- University of Regensburg Medical School, Institute of Pathology, D-93053 Regensburg, Germany
| | - Anja-Katrin Bosserhoff
- University of Regensburg Medical School, Institute of Pathology, D-93053 Regensburg, Germany.
| |
Collapse
|
188
|
Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:769-78. [PMID: 24252615 DOI: 10.1016/j.bbadis.2013.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
The skeleton affords a framework and structural support for vertebrates, while also facilitating movement, protecting vital organs, and providing a reservoir of minerals and cells for immune system and vascular homeostasis. The mechanical and biological functions of the skeleton are inextricably linked to the size and shape of individual bones, the diversity of which is dependent in part upon differential growth and proliferation. Perturbation of bone development, growth and proliferation, can result in congenital skeletal anomalies, which affect approximately 1 in 3000 live births [1]. Ribosome biogenesis is integral to all cell growth and proliferation through its roles in translating mRNAs and building proteins. Disruption of any steps in the process of ribosome biogenesis can lead to congenital disorders termed ribosomopathies. In this review, we discuss the role of ribosome biogenesis in skeletal development and in the pathogenesis of congenital skeletal anomalies. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
189
|
Belo J, Krishnamurthy M, Oakie A, Wang R. The Role of SOX9 Transcription Factor in Pancreatic and Duodenal Development. Stem Cells Dev 2013; 22:2935-43. [DOI: 10.1089/scd.2013.0106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jamie Belo
- Children's Health Research Institute, Western University, London, Canada
| | | | - Amanda Oakie
- Children's Health Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - Rennian Wang
- Children's Health Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| |
Collapse
|
190
|
Hattori T, Kishino T, Stephen S, Eberspaecher H, Maki S, Takigawa M, de Crombrugghe B, Yasuda H. E6-AP/UBE3A protein acts as a ubiquitin ligase toward SOX9 protein. J Biol Chem 2013; 288:35138-48. [PMID: 24155239 DOI: 10.1074/jbc.m113.486795] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SOX9 is a transcription factor that acts as a key regulator at various stages of cartilage differentiation. There is ample evidence that intracellular SOX9 protein levels are tightly regulated both by sumoylation and by degradation through the ubiquitin-proteasome pathway. Using a proteomics approach, here we report the identification of a SOX9-binding protein, E6-AP/UBE3A, that may act as a ubiquitin ligase toward Sox9. E6-AP bound SOX9 through the region consisting mostly of its high mobility group domain in vitro. In nuclear lysates, FLAG-tagged E6-AP coprecipitated with Sox9 and its high mobility group domain. This finding was estimated using nuclear lysates from a chondrocytic cell line that endogenously expresses E6-AP and SOX9. Accordingly, ectopically expressed E6-AP and SOX9 colocalized in the nucleus. We show that E6-AP ubiquitinates SOX9 in vitro and in vivo and that SOX9 levels are enhanced after addition of the proteasome inhibitor bortezomib. Similar, siRNA knockdown of E6-AP and the E2 ligase Ubc9 increased cellular SOX9 amounts, supporting the notion that SOX9 may be ubiquitinated in hypertrophic chondrocytes by E6-AP and degraded by proteasomes. This is in accordance with the distribution of SOX9 levels, which are high in proliferating and prehypertrophic chondrocytes but low in hypertrophic chondrocytes, whereas E6-AP levels are high in hypertrophic chondrocytes and low in prehypertrophic chondrocytes. Furthermore, E6-AP-deficient mice showed SOX9 accumulation in chondrocytes and the brain. These findings support the concept that E6-AP regulates SOX9 levels in developing cartilage by acting as a ubiquitin ligase.
Collapse
Affiliation(s)
- Takako Hattori
- From the Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku Okayama 700-8525, Japan
| | | | | | | | | | | | | | | |
Collapse
|
191
|
SOX9: a useful marker for pancreatic ductal lineage of pancreatic neoplasms. Hum Pathol 2013; 45:456-63. [PMID: 24418153 DOI: 10.1016/j.humpath.2013.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/19/2013] [Accepted: 10/02/2013] [Indexed: 11/23/2022]
Abstract
Previous studies showed that SOX9 plays a critical role in pancreatic ductal development. The aim of this study was to evaluate SOX9 as a marker for pancreatic ductal lineage. SOX9 expression was evaluated by immunohistochemistry in 146 benign pancreas (BP), 136 pancreatic ductal adenocarcinomas, 47 pancreatic intraepithelial neoplasia (PanIN), 21 intraductal papillary mucinous neoplasms (IPMNs), 14 mucinous cystic neoplasms, 10 serous cystadenomas, 39 pancreatic neuroendocrine tumors, 9 acinar cell carcinomas, and 23 solid pseudopapillary neoplasms. Nuclear expression of SOX9 was detected in the centroacinar cells and ductal cells, but not in acinar or endocrine cells in 100% BP. Focal or diffuse SOX9 expression was detected in 100% PanINs, 100% IPMNs, 100% mucinous cystic neoplasms, 100% serous cystadenomas, 89.0% pancreatic ductal adenocarcinomas, 2.6% pancreatic neuroendocrine tumors, 11.1% acinar cell carcinomas, and 0% solid pseudopapillary neoplasms. SOX9 expression was lower in PanIN2 and PanIN3 than in PanIN1 lesions (P < .01). Compared with BP, IPMN had lower SOX9 expression (P < .05). No correlation between SOX9 expression and other clinicopathologic parameters was identified. Our study showed that SOX9 is expressed in centroacinar and ductal epithelial cells of BP and is a useful marker for pancreatic ductal lineage of pancreatic neoplasms.
Collapse
|
192
|
Wigner NA, Soung DY, Einhorn TA, Drissi H, Gerstenfeld LC. Functional role of Runx3 in the regulation of aggrecan expression during cartilage development. J Cell Physiol 2013; 228:2232-42. [PMID: 23625810 DOI: 10.1002/jcp.24396] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/17/2013] [Indexed: 11/10/2022]
Abstract
Runx2 and Runx3 are known to be expressed in the growth plate during endochondral bone formation. Here we addressed the functional role of Runx3 as distinct from Runx2 by using two models of postnatal bone repair: fracture healing that proceeds by an endochondral process and marrow ablation that proceeds by only an intramembranous process. Both Runx2 and Runx3 mRNAs were differentially up regulated during fracture healing. In contrast, only Runx2 showed increased expression after marrow ablation. During fracture healing, Runx3 was expressed earlier than Runx2, was concurrent with the period of chondrogenesis, and coincident with maximal aggrecan expression a protein associated with proliferating and permanent cartilage. Immunohistological analysis showed Runx3 protein was also expressed by chondrocytes in vivo. In contrast, Runx2 was expressed later during chondrocyte hypertrophy, and primary bone formation. The functional activities of Runx3 during chondrocyte differentiation were assessed by examining its regulatory actions on aggrecan gene expression. Aggrecan mRNA levels and aggrecan promoter activity were enhanced in response to the over-expression of either Runx2 and Runx3 in ATDC5 chondrogenic cell line, while sh-RNA knocked down of each Runx protein showed that only Runx3 knock down specifically suppressed aggrecan mRNA expression and promoter activity. ChIP assay demonstrated that Runx3 interactions were selective to sites within the aggrecan promoter and were only observed during early periods of chondrogenesis before hypertrophy. Our studies suggest that Runx3 positively regulates aggrecan expression and suggest that its function is more limited to cartilage development than to bone. In aggregate these data further suggest that the various members of the Runx transcription factors are involved in the coordination of chondrocyte development, maturation, and hypertrophy during endochondral bone formation.
Collapse
Affiliation(s)
- Nathan A Wigner
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
193
|
Wiszniak S, Kabbara S, Lumb R, Scherer M, Secker G, Harvey N, Kumar S, Schwarz Q. The ubiquitin ligase Nedd4 regulates craniofacial development by promoting cranial neural crest cell survival and stem-cell like properties. Dev Biol 2013; 383:186-200. [PMID: 24080509 DOI: 10.1016/j.ydbio.2013.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022]
Abstract
The integration of multiple morphogenic signalling pathways and transcription factor networks is essential to mediate neural crest (NC) cell induction, delamination, survival, stem-cell properties, fate choice and differentiation. Although the transcriptional control of NC development is well documented in mammals, the role of post-transcriptional modifications, and in particular ubiquitination, has not been explored. Here we report an essential role for the ubiquitin ligase Nedd4 in cranial NC cell development. Our analysis of Nedd4(-/-) embryos identified profound deficiency of cranial NC cells in the absence of structural defects in the neural tube. Nedd4 is expressed in migrating cranial NC cells and was found to positively regulate expression of the NC transcription factors Sox9, Sox10 and FoxD3. We found that in the absence of these factors, a subset of cranial NC cells undergo apoptosis. In accordance with a lack of cranial NC cells, Nedd4(-/-) embryos have deficiency of the trigeminal ganglia, NC derived bone and malformation of the craniofacial skeleton. Our analyses therefore uncover an essential role for Nedd4 in a subset of cranial NC cells and highlight E3 ubiquitin ligases as a likely point of convergence for multiple NC signalling pathways and transcription factor networks.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci U S A 2013; 110:18042-51. [PMID: 24058167 DOI: 10.1073/pnas.1311760110] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian organs, including the lung and kidney, often adopt a branched structure to achieve high efficiency and capacity of their physiological functions. Formation of a functional lung requires two developmental processes: branching morphogenesis, which builds a tree-like tubular network, and alveolar differentiation, which generates specialized epithelial cells for gas exchange. Much progress has been made to understand each of the two processes individually; however, it is not clear whether the two processes are coordinated and how they are deployed at the correct time and location. Here we show that an epithelial branching morphogenesis program antagonizes alveolar differentiation in the mouse lung. We find a negative correlation between branching morphogenesis and alveolar differentiation temporally, spatially, and evolutionarily. Gain-of-function experiments show that hyperactive small GTPase Kras expands the branching program and also suppresses molecular and cellular differentiation of alveolar cells. Loss-of-function experiments show that SRY-box containing gene 9 (Sox9) functions downstream of Fibroblast growth factor (Fgf)/Kras to promote branching and also suppresses premature initiation of alveolar differentiation. We thus propose that lung epithelial progenitors continuously balance between branching morphogenesis and alveolar differentiation, and such a balance is mediated by dual-function regulators, including Kras and Sox9. The resulting temporal delay of differentiation by the branching program may provide new insights to lung immaturity in preterm neonates and the increase in organ complexity during evolution.
Collapse
|
195
|
Jing J, Ren Y, Zong Z, Liu C, Kamiya N, Mishina Y, Liu Y, Zhou X, Feng JQ. BMP receptor 1A determines the cell fate of the postnatal growth plate. Int J Biol Sci 2013; 9:895-906. [PMID: 24163588 PMCID: PMC3807016 DOI: 10.7150/ijbs.7508] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/16/2013] [Indexed: 02/05/2023] Open
Abstract
Bone morphogenic proteins (BMPs) are critical for both chondrogenesis and osteogenesis. Previous studies reported that embryos deficient in Bmp receptor (Bmpr)1a or Bmpr1b in cartilage display subtle skeletal defects; however, double mutant embryos develop severe skeletal defects, suggesting a functional redundancy that is essential for early chondrogenesis. In this study, we examined the postnatal role of Bmpr1a in cartilage. In the Bmpr1a conditional knockout (cKO, a cross between Bmpr1a flox and aggrecan-CreERT2 induced by a one-time-tamoxifen injection at birth and harvested at ages of 2, 4, 8 and 20 weeks), there was essentially no long bone growth with little expression of cartilage markers such as SOX9, IHH and glycoproteins. Unexpectedly, the null growth plate was replaced by bone-like tissues, supporting the notions that the progenitor cells in the growth plate, which normally form cartilage, can form other tissues such as bone and fibrous; and that BMPR1A determines the cell fate. A working hypothesis is proposed to explain the vital role of BMPR1A in postnatal chondrogenesis.
Collapse
Affiliation(s)
- Junjun Jing
- 1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China. ; 2. Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
A conditional mouse line for lineage tracing of Sox9 loss-of-function cells using enhanced green fluorescent protein. Biotechnol Lett 2013; 35:1991-6. [PMID: 23907671 DOI: 10.1007/s10529-013-1303-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Traditionally, conditional knockout studies in mouse have utilized the Cre or Flpe technology to activate the expression of reporter genes such as lacZ or PLAP. Employing these reporter genes, however, requires tissue fixation. To make way for downstream in vivo or in vitro applications, we have inserted enhanced green fluorescent protein (EGFP) into the endogenous Sox9 locus and generated a novel conditional Sox9 null allele, by flanking the entire Sox9 coding region with loxP sites and inserting an EGFP reporter gene into the 3'-UTR allowing for EGFP to be expressed upon Sox9 loss of function yet under the control of the endogenous Sox9 promoter. Mating this new allele to any Cre-expressing line, the fate of Sox9 null cells can be traced in the cell type of interest in vivo or in vitro after fluorescence-activated cell sorting.
Collapse
|
197
|
Le NQ, Binh NT, Takarada T, Takarada-Iemata M, Hinoi E, Yoneda Y. Negative correlation between Per1 and Sox6 expression during chondrogenic differentiation in pre-chondrocytic ATDC5 cells. J Pharmacol Sci 2013; 122:318-25. [PMID: 23883486 DOI: 10.1254/jphs.13091fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Pre-chondrocytes undergo cellular differentiation stages during chondrogenesis under the influence by different transcription factors such as sry-type high mobility group box-9 (Sox9) and runt-related transcription factor-2 (Runx2). We have shown upregulation by parathyroid hormone (PTH) of the clock gene Period-1 (Per1) through the cAMP/protein kinase A signaling pathway in pre-chondrocytic ATDC5 cells. Here, we investigated the role of Per1 in the suppression of chondrogenic differentiation by PTH. In ATDC5 cells exposed to 10 nM PTH, a drastic but transient increase in Per1 expression was seen only 1 h after addition together with a prolonged decrease in Sox6 levels. However, no significant changes were induced in Sox5 and Runx2 levels in cells exposed to PTH. In stable Per1 transfectants, a significant decrease in Sox6 levels was seen, with no significant changes in Sox5 and Sox9 levels, in addition to the inhibition of gene transactivation by Sox9 allies. Knockdown of Per1 by siRNA significantly increased the Sox6 and type II collagen levels in cells cultured for 24 - 60 h. These results suggest that Per1 plays a role in the suppressed chondrocytic differentiation by PTH through a mechanism relevant to negative regulation of transactivation of the Sox6 gene during chondrogenesis.
Collapse
Affiliation(s)
- Nguyen Quynh Le
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
198
|
Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, Facchini A, Aversa F. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int 2013; 2013:312501. [PMID: 23766767 PMCID: PMC3676919 DOI: 10.1155/2013/312501] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-related transcription factor 2 (Runx2) and Wnt signaling-related molecules are the major factors critically involved in the osteogenic differentiation process by hMSCs, and SRY-related high-mobility-group (HMG) box transcription factor 9 (SOX9) is involved in the chondrogenic one. hMSCs have generated a great interest in the field of regenerative medicine, particularly in bone regeneration. In this paper, we focused our attention on the molecular mechanisms involved in osteogenic and chondrogenic differentiation of hMSC, and the potential clinical use of hMSCs in osteoarticular pediatric disease characterized by fracture nonunion and pseudarthrosis.
Collapse
Affiliation(s)
- Nicola Giuliani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marina Magnani
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Costantina Racano
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Marina Bolzoni
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Dalla Palma
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Angelica Spolzino
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Cristina Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Caterina Abati
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Denise Toscani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Andrea Facchini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Franco Aversa
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
199
|
Zhang X, Dai J, Lu L, Zhang J, Zhang M, Wang Y, Guo M, Wang X, Wang M. Experimentally created unilateral anterior crossbite induces a degenerative ossification phenotype in mandibular condyle of growing Sprague-Dawley rats. J Oral Rehabil 2013; 40:500-8. [DOI: 10.1111/joor.12072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2013] [Indexed: 12/25/2022]
Affiliation(s)
- X. Zhang
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - J. Dai
- Department of Orthodontics; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - L. Lu
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - J. Zhang
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - M. Zhang
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - Y. Wang
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - M. Guo
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - X. Wang
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - M. Wang
- Department of Oral Anatomy and Physiology and TMD; School of Stomatology; Fourth Military Medical University; Xi'an China
| |
Collapse
|
200
|
Abstract
Recent advances in developmental biology have greatly expanded our understanding of progenitor cell programming and the fundamental roles that Sox9 plays in liver and pancreas organogenesis. In the last 2 years, several studies have dissected the behavior of the Sox9+ duct cells in adult organs, but conflicting results have left unanswered the long-standing question of whether physiologically functioning progenitors exist in adult liver and pancreas. On the other hand, increasing evidence suggests that duct cells function as progenitors in the tissue restoration process after injury, during which embryonic programs are sometimes reactivated. This article discusses the role of Sox9 in programming liver and pancreatic progenitors as well as controversies in the field.
Collapse
Affiliation(s)
- Yoshiya Kawaguchi
- Department of Clinical Application, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|