151
|
|
152
|
Jay SM, Shepherd BR, Andrejecsk JW, Kyriakides TR, Pober JS, Saltzman WM. Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization. Biomaterials 2010; 31:3054-62. [PMID: 20110124 DOI: 10.1016/j.biomaterials.2010.01.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/05/2010] [Indexed: 12/22/2022]
Abstract
Transplantation of endothelial cells (EC) for therapeutic vascularization is a promising approach in tissue engineering but has yet to be proven effective in clinical trials. This cell-based therapy is hindered by significant apoptosis of EC upon transplantation as well as poor recruitment of host mural cells to stabilize nascent vessels. Here, we address these deficiencies by augmenting endothelial cell transplantation with dual delivery of vascular endothelial growth factor (VEGF) - to improve survival of transplanted EC - and monocyte chemotactic protein-1 (MCP-1) - to induce mural cell recruitment. We produced alginate microparticles that deliver VEGF and MCP-1 with distinct release kinetics and that can be integrated into a collagen/fibronectin (protein) gel construct for delivery of EC. Combined delivery of VEGF and MCP-1 increased functional vessel formation from transplanted EC and also led to a higher number of smooth muscle cell-invested vessels than did EC therapy alone. Despite the well-known role of MCP-1 in inflammation, these beneficial effects were accomplished without a long-term increase in monocyte/macrophage recruitment or a shift to a pro-inflammatory (M1) macrophage phenotype. Overall, these data suggest a potential benefit of combined delivery of MCP-1 and VEGF from EC-containing hydrogels as a strategy for therapeutic vascularization.
Collapse
Affiliation(s)
- Steven M Jay
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
153
|
Hager S, Lampert FM, Orimo H, Stark GB, Finkenzeller G. Up-regulation of alkaline phosphatase expression in human primary osteoblasts by cocultivation with primary endothelial cells is mediated by p38 mitogen-activated protein kinase-dependent mRNA stabilization. Tissue Eng Part A 2010; 15:3437-47. [PMID: 19409035 DOI: 10.1089/ten.tea.2009.0133] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For the regeneration of bone in tissue engineering applications, it is essential to provide cues that support neovascularization. This can be achieved by cell-based therapies using mature endothelial cells (ECs) or endothelial progenitor cells. In this context, ECs were used in various in vivo studies in combination with primary osteoblasts to enhance neovascularization of bone grafts. In a previous study, we have shown that cocultivation of human primary ECs and human primary osteoblasts (hOBs) leads to a cell contact-dependent up-regulation of alkaline phosphatase (ALP) expression in osteoblasts, indicating that cocultivated ECs may support osteogenic differentiation and osteoblastic cell functions. In the present study, we investigated this effect in more detail, revealing a time and cell number dependency of EC-mediated up-regulation of the early osteoblastic marker ALP, whereas osteocalcin, a late marker of osteogenesis, was down-regulated. The effect on ALP expression was bidirectional specific for both cell types. Functional inhibition of gap junctional communication between ECs and hOBs by 18alpha-glycyrrhetinic acid had only a weak suppressive effect on EC-mediated ALP up-regulation. In contrast, inhibition of p38 mitogen-activated protein kinase nearly completely prevented the EC-mediated stimulation of osteoblastic ALP expression. To investigate the molecular mechanism underlying the ALP up-regulation, we examined the effect of EC cocultivation on osteoblastic ALP promoter activity as well as mRNA stability. Cocultivation of ECs with hOBs significantly elevated the half-life of osteoblastic ALP mRNA without affecting its promoter activity. In summary, our data show that EC-mediated up-regulation of osteoblastic ALP expression is cell-type specific and is posttranscriptionally regulated via p38 mitogen-activated protein kinase-dependent mRNA turn-over.
Collapse
Affiliation(s)
- Sven Hager
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | |
Collapse
|
154
|
Deschaseaux F, Pontikoglou C, Sensébé L. Bone regeneration: the stem/progenitor cells point of view. J Cell Mol Med 2010; 14:103-15. [PMID: 19840188 PMCID: PMC3837599 DOI: 10.1111/j.1582-4934.2009.00878.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/04/2009] [Indexed: 02/06/2023] Open
Abstract
After bone injuries, several molecular mechanisms establish bone repair from stem/progenitor cells. Inflammation factors attract regenerative cells which expand and differentiate in order to build up a bone highly similar to that before injury. Bone marrow (BM) mesenchymal stem cells (MSCs) as skeletal stem cells and endothelial progenitors (EPCs) are at the origin of such reparation mechanisms. However, discrepancies exist about their identities. Although cultured MSCs are extensively described, their in vivo native forms are poorly known. In addition, recent experiments show that several types of EPC exist. We therefore review up-to-date data on the characterization of such stem/progenitor cells and propose a new point of view of their function in bone regeneration.
Collapse
Affiliation(s)
- Frédéric Deschaseaux
- Etablissement Français du Sang Centre-Atlantique, Groupe de Recherche sur les Cellules Souches Mésenchymateuses (GECSoM), Tours, France.
| | | | | |
Collapse
|
155
|
Gupta R, Van Rooijen N, Sefton MV. Fate of endothelialized modular constructs implanted in an omental pouch in nude rats. Tissue Eng Part A 2009; 15:2875-87. [PMID: 19265460 DOI: 10.1089/ten.tea.2008.0494] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modular tissue engineering is a novel microscale approach that aims to assemble tissue constructs with inherent vascularization. We transplanted endothelialized modules (sub-millimeter-sized collagen gel cylinders covered with human umbilical vein endothelial cell [HUVEC] on the outside surface) in the omental pouch of nude rats to characterize remodeling of the collagen gels and the fate of the transplanted HUVEC. Endothelialized modules randomly assembled in vivo to form channels among individual modules that persisted for at least 14 days. Transplanted HUVEC migrated and formed primitive vessels in these channels; however, host inflammation limited HUVEC survival beyond 3 days. Temporary depletion of peritoneal macrophages (by treatment with clodronate liposomes) prolonged the survival of HUVEC-derived vessels to 7 days, and some vessels appeared to be perfused with host erythrocytes and invested with host vascular cells (either rat von Willebrand factor or smooth muscle alpha-actin-positive cells). Despite treatment, HUVEC were presumed to be still subject to immune rejection. The presence of primitive HUVEC-derived vessels is encouraging in this first in vivo study of the modular approach, in a partially immune-compromised animal model. It suggests that with appropriate attention to the host response to transplanted endothelial cells and improved vessel survival, cells that would be embedded in modules could be adequately perfused.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
156
|
Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns 2009; 36:450-60. [PMID: 20022702 DOI: 10.1016/j.burns.2009.08.016] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 08/14/2009] [Indexed: 01/27/2023]
Abstract
The engineering of skin substitutes and their application on human patients has become a reality. However, cell biologists, biochemists, technical engineers, and surgeons are still struggling with the generation of complex skin substitutes that can readily be transplanted in large quantities, possibly in only one surgical intervention and without significant scarring. Constructing a dermo-epidermal substitute that rapidly vascularizes, optimally supports a stratifying epidermal graft on a biodegradable matrix, and that can be conveniently handled by the surgeon, is now the ambitious goal. After all, this goal has to be reached coping with strict safety requirements and the harsh rules of the economic market.
Collapse
Affiliation(s)
- Sophie Böttcher-Haberzeth
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | |
Collapse
|
157
|
Griffith CK, George SC. The effect of hypoxia on in vitro prevascularization of a thick soft tissue. Tissue Eng Part A 2009; 15:2423-34. [PMID: 19292659 DOI: 10.1089/ten.tea.2008.0267] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prevascularizing an implantable tissue is one strategy to improve oxygen (O(2)) transport throughout larger tissues upon implantation. This study examined the role of hypoxia both during (i.e., as a stimulus) and after (i.e., mimicking implant conditions) vascularization of an implantable tissue. Tissues consisted of microcarrier beads coated with human umbilical vein endothelial cells embedded in fibrin. The fibrin was covered with a monolayer of normal human lung fibroblasts (NHLFs), or exposed to conditioned media from NHLFs. Capillary networks developed at 20% or 1% O(2) tension for 8 days. In some experiments, tissues were supplemented with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor, whereas in others the tissues prevascularized at 20% O(2) were transferred to 1% O(2) for 8 additional days. Maximal capillary formation occurred in media conditioned by NHLFs at 20% O(2), supplemented with VEGF (concentration >10 pM). Hypoxia (1% O(2)) did not stimulate basic fibroblast growth factor production and decreased in vitro angiogenesis, despite an increase in endogenous VEGF production. Hypoxia also degraded a preformed capillary network within 4 days. Hence, strategies to prevascularize implantable tissues may not require the physical presence of stromal cells, but will likely require fibroblast-derived growth factors in addition to VEGF to maintain capillary growth.
Collapse
Affiliation(s)
- Craig K Griffith
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
158
|
Kögler G, Critser P, Trapp T, Yoder M. Future of cord blood for non-oncology uses. Bone Marrow Transplant 2009; 44:683-97. [PMID: 19802027 DOI: 10.1038/bmt.2009.287] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For the last 5 years cord blood (CB) has been under intense experimental investigation in in vitro differentiation models and in preclinical animal models ranging from bone to muscle regeneration, cardiovascular diseases including myocardial and peripheral arterial disease, stroke and Parkinson's disease. On the basis of its biological advantages, CB can be an ideal source for tissue regeneration. However, in the hype of the so-called 'plasticity', many cell types have been characterized either on cell surface Ag expression alone or by RNA expression only, and without detailed characterization of genetic pathways; frequently, cells are defined without analysis of cellular function in vitro and in vivo, and the definition of the lineage of origin and cells have not been defined in preclinical studies. Here, we explore not only the most consistent data with regard to differentiation of CB cells in vitro and in vivo, but also show technical limitations, such as why in contrast to cell populations isolated from fresh CB, cryopreserved CB is not the ideal source for tissue regeneration. By taking advantage of numerous CB units discarded due to lack of sufficient hematopoietic cells for clinical transplantation, new concepts to produce off-the-shelf products are presented as well.
Collapse
Affiliation(s)
- G Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany.
| | | | | | | |
Collapse
|
159
|
Akiyama M, Nakamura M. Bone regeneration and neovascularization processes in a pellet culture system for periosteal cells. Cell Transplant 2009; 18:443-52. [PMID: 19622231 DOI: 10.3727/096368909788809820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reliable bone regeneration can be achieved with a pellet culture system using bovine periosteal cells. However, bone regeneration and neovascularization processes in this system have remained unclear. The present study aimed to clarify the extracellular environment and neovascularization process. To detect components of the extracellular matrix secreted by cells and to identify the conditions necessary for bone regeneration in the body, Western blotting and in vivo tests in nude mice were performed. Cells were cultured with or without ascorbic acid and culture supernatant was precipitated. Western blotting showed that culture supernatant contained collagen type I, procollagen type I, and procollagen type I C-terminus when cells were cultured with ascorbic acid. Cells cultured with ascorbic acid formed partial bony tissues at 2 weeks after grafting to nude mice, while bone formation was missing without ascorbic acid. Immunostaining was performed using species-specific vascular endothelial cell markers to ascertain whether vascular endothelial cells were bovine or murine (nude mouse). Immunohistological methods showed vascular endothelial cells in osseous tissue formed in the subcutaneous tissue of nude mice were murine. Extracellular matrix synthesis in vitro and host blood flow in vivo are essential for bone regeneration.
Collapse
Affiliation(s)
- Mari Akiyama
- Department of Biomaterials, Osaka Dental University, Osaka, Japan.
| | | |
Collapse
|
160
|
Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CCW, George SC. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A 2009; 15:1363-71. [PMID: 18976155 DOI: 10.1089/ten.tea.2008.0314] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One critical obstacle facing tissue engineering is the formation of functional vascular networks that can support tissue survival in vivo. We hypothesized that prevascularizing a tissue construct with networks of well-formed capillaries would accelerate functional anastomosis with the host upon implantation. Fibrin-based tissues were prevascularized with capillary networks by coculturing human umbilical vein endothelial cells (HUVECs) and fibroblasts in fibrin gels for 1 week. The prevascularized tissue and nonprevascularized controls were implanted subcutaneously onto the dorsal surface of immune-deficient mice and retrieved at days 3, 5, 7 and 14. HUVEC-lined vessels containing red blood cells were evident in the prevascularized tissue by day 5, significantly earlier than nonprevascularized tissues (14 days). Analysis of the HUVEC-lined vessels demonstrated that the number and area of perfused lumens in the prevascularized tissue were significantly larger compared to controls. In addition, collagen deposition and a larger number of proliferating cells were evident in the prevascularized tissue at day 14. Our results demonstrate that prevascularizing a fibrin-based tissue with well-formed capillaries accelerates anastomosis with the host vasculature, and promotes cellular activity consistent with tissue remodeling. Our prevascularization strategy may be useful to design large three-dimensional engineered tissues.
Collapse
Affiliation(s)
- Xiaofang Chen
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697-2715, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
The Use of Endothelial Progenitor Cells for Prevascularized Bone Tissue Engineering. Tissue Eng Part A 2009; 15:2015-27. [DOI: 10.1089/ten.tea.2008.0318] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
162
|
Zhou J, Liu L, Li X, Chen H, Zhang Q. Primary Study on Transplantation of Endothelialized Dermal Equivalents Into Normal Rats. ACTA ACUST UNITED AC 2009; 35:377-90. [PMID: 17701484 DOI: 10.1080/10731190701460242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was designed to determine the ability of human umbilical vein endothelial cells (HUVEC) in dermal equivalent (DE) to form microvessel-like tubes after transplantation into normal rats. A mixture of rat fibroblasts and HUVEC was inosculated into collagen-chitosan sponges to prepare endothelialized dermal equivalents (EDE). After culture in vitro for 24 hours, inosculated cells dispersed throughout the sponges and the equivalents were transplanted subcutaneously into the back of normal Lewis rats. Anti-human specific CD31 antibody was used for immunohistochemical localization of human endothelial cells in sections of EDE excised from rats after grafting. HUVEC in EDE organized into microvessel-like tubes at the end of the first week after transplantation, which still persisted after two weeks. The host microvessels began to pervade both DE and EDE during the second week after transplantation. These results demonstrated that HUVEC in EDE was able to persist and form microvessel-like tubes after transplantation into normal rats, and this is the first time to transplant DE containing HUVEC into normal rats.
Collapse
Affiliation(s)
- Juan Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College [corrected] Key Laboratory of Biomedical Material of Tianjin, Tianjin, PR China
| | | | | | | | | |
Collapse
|
163
|
Tan H, Yang B, Duan X, Wang F, Zhang Y, Jin X, Dai G, Yang L. The promotion of the vascularization of decalcified bone matrix in vivo by rabbit bone marrow mononuclear cell-derived endothelial cells. Biomaterials 2009; 30:3560-6. [DOI: 10.1016/j.biomaterials.2009.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/11/2009] [Indexed: 11/16/2022]
|
164
|
Steffens L, Wenger A, Stark GB, Finkenzeller G. In vivo engineering of a human vasculature for bone tissue engineering applications. J Cell Mol Med 2009; 13:3380-6. [PMID: 18624770 PMCID: PMC4516493 DOI: 10.1111/j.1582-4934.2008.00418.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neovascularization of three-dimensional voluminous tissues, such as bone, represents an important challenge in tissue engineering applications. The formation of a preformed vascular plexus could maintain cell viability and promote vascularization after transplantation. We have developed a three-dimensional spheroidal coculture system consisting of human primary endothelial cells and human primary osteoblasts (hOBs) to improve angiogenesis in bone tissue engineering applications. In this study, we investigated the survival and vascularization of the engineered implants in vivo. Endothelial cell spheroids were cocultured with hOBs in fibrin and seeded into scaffolds consisting of processed bovine cancellous bone (PBCB). The cell-seeded scaffolds were evaluated for their angiogenic potential in two different in vivo assays: the chick embryo chorioallantoic membrane (CAM) model and the severe combined immunodeficiency disorder (SCID) mouse model. In both assays, the development of a complex three-dimensional network of perfused human neovessels could be detected. After subcutaneous implantation into immunodeficient mice, the newly formed human vasculature was stabilized by the recruitment of murine smooth muscle α-actin-positive mural cells and anastomoses with the mouse vasculature. We conclude that this endothelial cell spheroid system can be used to create a network of functional perfused blood vessels in vivo. The finding that this process takes place with high efficacy in the presence of co-implanted primary osteoblasts and in an osteoconductive environment provided by the PBCB scaffold, suggests that this system may be suitable for improving vascularization in bone tissue engineering.
Collapse
Affiliation(s)
- Lilian Steffens
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | |
Collapse
|
165
|
Truslow JG, Price GM, Tien J. Computational design of drainage systems for vascularized scaffolds. Biomaterials 2009; 30:4435-43. [PMID: 19481796 DOI: 10.1016/j.biomaterials.2009.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/28/2009] [Indexed: 01/09/2023]
Abstract
This computational study analyzes how to design a drainage system for porous scaffolds so that the scaffolds can be vascularized and perfused without collapse of the vessel lumens. We postulate that vascular transmural pressure--the difference between lumenal and interstitial pressures--must exceed a threshold value to avoid collapse. Model geometries consisted of hexagonal arrays of open channels in an isotropic scaffold, in which a small subset of channels was selected for drainage. Fluid flow through the vessels and drainage channel, across the vascular wall, and through the scaffold were governed by Navier-Stokes equations, Starling's Law of Filtration, and Darcy's Law, respectively. We found that each drainage channel could maintain a threshold transmural pressure only in nearby vessels, with a radius-of-action dependent on vascular geometry and the hydraulic properties of the vascular wall and scaffold. We illustrate how these results can be applied to microvascular tissue engineering, and suggest that scaffolds be designed with both perfusion and drainage in mind.
Collapse
Affiliation(s)
- James G Truslow
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
166
|
Finkenzeller G, Graner S, Kirkpatrick CJ, Fuchs S, Stark GB. Impaired in vivo vasculogenic potential of endothelial progenitor cells in comparison to human umbilical vein endothelial cells in a spheroid-based implantation model. Cell Prolif 2009; 42:498-505. [PMID: 19489982 DOI: 10.1111/j.1365-2184.2009.00610.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Neovascularization represents a major challenge in tissue engineering applications since implantation of voluminous grafts without sufficient vascularity results in hypoxic cell death of implanted cells. An attractive therapeutic approach to overcome this is based on co-implantation of endothelial cells to create vascular networks. We have investigated the potential of human endothelial progenitor cells (EPC) to form functional blood vessels in vivo in direct comparison to vascular-derived endothelial cells, represented by human umbilical vein endothelial cells (HUVEC). MATERIALS AND METHODS EPCs were isolated from human peripheral blood, expanded in vitro and analysed in vitro for phenotypical and functional parameters. In vivo vasculogenic potential of EPCs and HUVECs was evaluated in a xenograft model where spheroidal endothelial aggregates were implanted subcutaneously into immunodeficient mice. RESULTS EPCs were indistinguishable from HUVECs in terms of expression of classical endothelial markers CD31, von Willebrand factor, VE-cadherin and vascular endothelial growth factor-R2, and in their ability to endocytose acetylated low-density lipoprotein. Moreover, EPCs and HUVECs displayed almost identical angiogenic potential in vitro, as assessed by in vitro Matrigel sprouting assay. However in vivo, a striking and unexpected difference between EPCs and HUVECs was detected. Whereas implanted HUVEC spheroids gave rise to formation of a stable network of perfused microvessels, implanted EPC spheroids showed significantly impaired ability to form vascular structures under identical experimental conditions. CONCLUSION Our results indicate that vascular-derived endothelial cells, such as HUVECs are superior to EPCs in terms of promoting in vivo vascularization of engineered tissues.
Collapse
Affiliation(s)
- G Finkenzeller
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
167
|
Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, Johnstone BH, Ingram DA, March KL. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104:1410-20. [PMID: 19443841 DOI: 10.1161/circresaha.108.190926] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rapid induction and maintenance of blood flow through new vascular networks is essential for successfully treating ischemic tissues and maintaining function of engineered neo-organs. We have previously shown that human endothelial progenitor cells (EPCs) form functioning vessels in mice, but these are limited in number and persistence; and also that human adipose stromal cells (ASCs) are multipotent cells with pericytic properties which can stabilize vascular assembly in vitro. In this study, we tested whether ASCs would cooperate with EPCs to coassemble vessels in in vivo implants. Collagen implants containing EPCs, ASCs, or a 4:1 mixture of both were placed subcutaneously into NOD/SCID mice. After a range of time periods, constructs were explanted and evaluated with regard to vascular network assembly and cell fate; and heterotypic cell interactions were explored by targeted molecular perturbations. The density and complexity of vascular networks formed by the synergistic dual-cell system was many-fold higher than found in implants containing either ASCs or EPCs alone. Coimplantation of ASCs and EPCs with either pancreatic islets or adipocytes produced neoorgans populated by these parenchymal cells, as well as by chimeric human vessels conducting flow. This study is the first to demonstrate prompt and consistent assembly of a vascular network by human ASCs and endothelial cells and vascularization by these cells of parenchymal cells in implants. Mixture of these 2 readily available, nontransformed human cell types provides a practical approach to tissue engineering, therapeutic revascularization, and in vivo studies of human vasculogenesis.
Collapse
Affiliation(s)
- Dmitry O Traktuev
- Indiana Center for Vascular Biology, Indiana University, School of Medicine, 975 W Walnut St, IB441, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Shepherd BR, Jay SM, Saltzman WM, Tellides G, Pober JS. Human aortic smooth muscle cells promote arteriole formation by coengrafted endothelial cells. Tissue Eng Part A 2009; 15:165-73. [PMID: 18620481 DOI: 10.1089/ten.tea.2008.0010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Collagen-fibronectin gels containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVEC) implanted in the abdominal walls of immunodeficient mice form mature microvessels invested by host-derived smooth muscle cells (SMC) by 8 weeks. We tested the hypothesis that coengraftment of human aortic SMC (HASMC) could accelerate vessel maturation. To prevent SMC-mediated gel contraction, we polymerized the gel within a nonwoven poly(glycolic acid) (PGA) scaffold. Implanted grafts were evaluated at 15, 30, and 60 days. Acellular PGA-supported protein gels elicited a macrophage-rich foreign body reaction and transient host angiogenic response. When transplanted alone, HASMC tightly associated with the fibers of the scaffold and incorporated into the walls of angiogenic mouse microvessels, preventing their regression. When transplanted alone in PGA-supported gels, Bcl-2-HUVEC retained the ability to form microvessels invested by mouse SMC. Interestingly, grafts containing both Bcl-2-HUVEC and HASMC displayed greater numbers of smooth muscle alpha-actin-expressing cells associated with human EC-lined arteriole-like microvessels at all times examined and showed a significant increase in the number of larger caliber microvessels at 60 days. We conclude that SMC coengraftment can accelerate vessel development by EC and promote arteriolization. This strategy of EC-SMC coengraftment in PGA-supported protein gels may have broader application for perfusing bioengineered tissues.
Collapse
Affiliation(s)
- Benjamin R Shepherd
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520-8089, USA
| | | | | | | | | |
Collapse
|
169
|
Chen W, Begum S, Opare-Addo L, Garyu J, Gibson TF, Bothwell ALM, Papaioannou VE, Herold KC. Promotion of beta-cell differentiation in pancreatic precursor cells by adult islet cells. Endocrinology 2009; 150:570-9. [PMID: 18845629 PMCID: PMC2646532 DOI: 10.1210/en.2008-1009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is thought that differentiation of beta-cell precursors into mature cells is largely autonomous, but under certain conditions differentiation can be modified by external factors. The factors that modify beta-cell differentiation have not been identified. In this study, we tested whether adult islet cells can affect the differentiation process in mouse and human pancreatic anlage cells. We assessed beta-cell proliferation and differentiation in mouse and human pancreatic anlage cells cocultured with adult islet cells or betaTC3 cells using cellular, molecular, and immunohistochemical methods. Differentiation of murine anlage cells into beta-cells was induced by mature islet cells. It was specific for beta-cells and not a general feature of endodermal derived cells. beta-Cell differentiation required cell-cell contact. The induced cells acquired features of mature beta-cells including increased expression of beta-cell transcription factors and surface expression of receptor for stromal cell-derived factor 1 and glucose transporter-2 (GLUT-2). They secreted insulin in response to glucose and could correct hyperglycemia in vivo when cotransplanted with vascular cells. Human pancreatic anlage cells responded in a similar manner and showed increased expression of pancreatic duodenal homeobox 1 and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A and increased production of proinsulin when cocultured with adult islets. We conclude that mature beta-cells can modify the differentiation of precursor cells and suggest a mechanism whereby changes in differentiation of beta-cells can be affected by other beta-cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Shi H, Han C, Mao Z, Ma L, Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng Part A 2009; 14:1775-85. [PMID: 18950270 DOI: 10.1089/ten.tea.2007.0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial dermis lacks a vascular network, and angiogenesis is slow in vivo. Controlled delivery of angiogenin (ANG), a potent inducer of angiogenesis, should promote angiogenesis in artificial dermis. In this study, a porous collagen-chitosan scaffold was fabricated and heparinized using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) with a freeze-drying method. Using radioiodine labeling, the effect of heparin on the binding of ANG to the scaffold was studied. The release of ANG from the heparinized scaffold was investigated using a radioiodine labeling method or an enzyme-linked immunosorbent assay method. In vivo angiogenesis of the scaffold was studied for 28 days. All scaffolds possess three-dimensional porous structures, and their mean pore sizes increase upon EDC-NHS cross-linking. The binding of ANG to the scaffold showed a linear correlation with ANG concentration. With ANG concentrations of 160 ng/mL, the binding of ANG to the heparinized scaffold was 36.5%. In vitro, ANG was released from the heparinized scaffold in a controlled manner. The presence of ANG enhanced the angiogenesis of the heparinized scaffold after subcutaneous implantation into rabbits. The results of this study indicate that a porous collagen-chitosan scaffold loaded with ANG may be valuable in the development of artificial dermis requiring enhanced angiogenesis.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Burn, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
171
|
Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 2008; 3:e3922. [PMID: 19081793 PMCID: PMC2597748 DOI: 10.1371/journal.pone.0003922] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/17/2008] [Indexed: 11/19/2022] Open
Abstract
Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs) and mesenchymal stem/progenitor cells (MSCs) were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP) scaffolds, followed by infusion of gel-suspended CD34(+) hematopoietic cells. Co-transplantation of CD34(+) HSCs and CD34(-) MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+) and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+) cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+) cells. Based on additional in vitro results of endothelial differentiation of CD34(+) cells by vascular endothelial growth factor (VEGF), we adsorbed VEGF with co-transplanted CD34(+) and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+) cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone, adipose, muscle and dermal grafts, and may have implications in the regeneration of internal organs.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - Paul A. Clark
- Department of Neurological Surgery CSC, University of Wisconsin at Madison Hospital, Madison, Wisconsin, United States of America
| | - Mo Chen
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - James E. Dennis
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Helaman P. Erickson
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - Stanton L. Gerson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeremy J. Mao
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| |
Collapse
|
172
|
Abstract
Intravital microscopy has provided unprecedented insights into tumor pathophysiology, including angiogenesis and the microenvironment. Tumor vasculature shows an abnormal organization, structure, and function. Tumor vessels are leaky, blood flow is heterogeneous and often compromised. Vascular hyperpermeability and the lack of functional lymphatic vessels inside tumors causes elevation of interstitial fluid pressure in solid tumors. These abnormalities form physiological barriers to the delivery of therapeutic agents to tumors and also lead to a hostile microenvironment characterized by hypoxia and acidosis, which hinders the effectiveness of anti-tumor treatments such as radiation therapy and chemotherapy. In addition, host-tumor interactions regulate expression of pro- and anti-angiogenic factors, resulting in pathophysiological characteristics of the tumor. On the other hand, in a physiological setting, angiogenic vessels become mature and form long-lasting functional units. Restoring the balance of pro- and anti-angiogenic factors in tumors may "normalize" tumor vasculature and thus improve its function. Administration of cytotoxic therapy during the vascular normalization would enhance its efficacy.
Collapse
Affiliation(s)
- Dai Fukumura
- Edwin L Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
173
|
Sieminski AL, Semino CE, Gong H, Kamm RD. Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res A 2008; 87:494-504. [DOI: 10.1002/jbm.a.31785] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
174
|
Mead LE, Prater D, Yoder MC, Ingram DA. Isolation and characterization of endothelial progenitor cells from human blood. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2C.1. [PMID: 18770637 DOI: 10.1002/9780470151808.sc02c01s6] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) in adult human peripheral blood were originally identified in 1997 by Asahara et al., which challenged the paradigm that vasculogenesis is a process restricted to embryonic development. Since their original identification, EPCs have been extensively studied as biomarkers to assess the risk of cardiovascular disease in human subjects and as a potential cell therapeutic for vascular regeneration. Endothelial colony-forming cells (ECFCs), which are a subtype of EPCs, were recently identified from circulating adult and human umbilical cord blood. In contrast to other types of EPCs, which display various monocyte/macrophage phenotypes and functions, ECFCs are characterized by robust proliferative potential, secondary and tertiary colony formation upon replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In this unit, we describe detailed methodologies for isolation and characterization of ECFCs from both human peripheral and umbilical cord blood.
Collapse
Affiliation(s)
- Laura E Mead
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
175
|
Enis DR, Dunmore B, Johnson N, Pober JS, Print CG. Antiapoptotic activities of bcl-2 correlate with vascular maturation and transcriptional modulation of human endothelial cells. ACTA ACUST UNITED AC 2008; 15:59-71. [PMID: 18568946 DOI: 10.1080/10623320802092393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Overexpression of a caspase-resistant form of Bcl-2 (D34A) in human umbilical vein endothelial cells (ECs) implanted into immunodeficient mice promotes the maturation of human EC-lined microvessels invested by vascular smooth muscle cells (VSMCs) of mouse origin. In contrast, EC implants not overexpressing Bcl-2 form only simple, uncoated EC tubes. Here the authors compare the phenotypes of vessels formed in vivo and the transcriptomes in vitro of EC expressing different forms of Bcl-2. Wild-type Bcl-2, like the caspase-resistant D34A Bcl-2 mutant, is antiapoptotic in vitro and promotes VSMC recruitment in vivo, whereas a G145E mutant that has diminished antiapoptotic activity in vitro does not promote vessel maturation in vivo. The D34A and wild-type forms of Bcl-2, but not the G145E mutant form of Bcl-2, significantly regulate RNA transcripts previously associated with EC-VSMC interactions and VSMC biology, including matrix Gla protein, insulin-like growth factor-binding protein (IGFBP)-2, matrix metalloproteinase (MMP)-14, ADAM17, stanniocalcin-1, and targets of the nuclear factor (NF)-kappa B, cAMP response element-binding (CREB), and activator protein 1 (AP1) transcription factor families. These effects of Bcl-2 on the transcriptome are detected in ECs cultured as angiogenic three-dimensional (3-D) tubes but are attenuated in ECs cultured as 2-D monolayers. Bcl-2-regulated transcription in ECs may contribute to vascular maturation, and support design of tissue engineering strategies using EC.
Collapse
Affiliation(s)
- David R Enis
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
176
|
Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 2008; 103:194-202. [PMID: 18556575 DOI: 10.1161/circresaha.108.178590] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The success of therapeutic vascularization and tissue engineering will rely on our ability to create vascular networks using human cells that can be obtained readily, can be expanded safely ex vivo, and can produce robust vasculogenic activity in vivo. Here we describe the formation of functional microvascular beds in immunodeficient mice by coimplantation of human endothelial and mesenchymal progenitor cells isolated from blood and bone marrow. Evaluation of implants after 1 week revealed an extensive network of human blood vessels containing erythrocytes, indicating the rapid formation of functional anastomoses within the host vasculature. The implanted endothelial progenitor cells were restricted to the luminal aspect of the vessels; mesenchymal progenitor cells were adjacent to lumens, confirming their role as perivascular cells. Importantly, the engineered vascular networks remained patent at 4 weeks in vivo. This rapid formation of long-lasting microvascular networks by postnatal progenitor cells obtained from noninvasive sources constitutes an important step forward in the development of clinical strategies for tissue vascularization.
Collapse
Affiliation(s)
- Juan M Melero-Martin
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Kim S, von Recum H. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:133-47. [PMID: 18454639 DOI: 10.1089/teb.2007.0304] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial cells are of great interest because of their potential in cell therapy for vascular diseases and ischemic tissue, tissue engineering for vascular grafts and vascularized tissue beds, and modeling for pharmaceutical transport across endothelial barriers. However, limited availability and proliferation capability of mature endothelial cells hampers development of these applications. Recent advances in stem cell technology have enabled researchers to derive endothelial or endothelial-like cells from stem cells or other precursor populations. The current state of these cell sources and their in vitro differentiation, selection, and applications are discussed in this review.
Collapse
Affiliation(s)
- Saejeong Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
178
|
Abstract
Cell growth is critical to the regeneration of most tissues. Current methods for analyzing cell growth in scaffolds used for tissue engineering are reviewed in the context of their limitations. A mathematical model for analyzing cell growth in scaffolds is presented to highlight the key parameters that govern cell growth. To overcome the diffusion barrier that limits the formation of thicker tissues, strategies to promote better nutrient delivery are discussed.
Collapse
Affiliation(s)
- James CY Dunn
- Mail Code 709818, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
179
|
Jay SM, Shepherd BR, Bertram JP, Pober JS, Saltzman WM. Engineering of multifunctional gels integrating highly efficient growth factor delivery with endothelial cell transplantation. FASEB J 2008; 22:2949-56. [PMID: 18450813 DOI: 10.1096/fj.08-108803] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transplantation of Bcl-2-transduced human umbilical vein endothelial cells (ECs) in protein gels into the gastrocnemius muscle improves local reperfusion in immunodeficient mouse hosts with induced hind limb ischemia. We tested the hypothesis that incorporation of local, sustained growth factor delivery could enhance and accelerate this effect. Tissue engineering scaffolds often use synthetic polymers to enable controlled release of proteins, but most synthetic delivery systems have major limitations, most notably hydrophobicity and inefficient protein loading. Here, we report the development of a novel alginate-based delivery system for vascular endothelial growth factor-A(165) (VEGF) that exhibits superior loading efficiency and physical properties to previous systems in vitro. In vivo, VEGF released from alginate microparticles within protein gels was biologically active and, when combined with EC transplantation, led to increased survival of transplanted cells at 28 days. The composite graft described also improved early (14 days) tissue perfusion and late (28 days) muscle myoglobin expression, a sign of recovery from ischemia, compared with EC transplantation and VEGF delivery separately. We conclude that our improved approach to sustained VEGF delivery in tissue engineering is useful in vivo and that the integration of high efficiency protein delivery enhances the therapeutic effect of protein gel-based EC transplantation.
Collapse
Affiliation(s)
- Steven M Jay
- Yale University, Department of Biomedical Engineering, 55 Prospect St., New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
180
|
Lokmic Z, Mitchell GM. Engineering the Microcirculation. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:87-103. [DOI: 10.1089/teb.2007.0299] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Zerina Lokmic
- Bernard O'Brien Institute of Microsurgery, Melbourne, Victoria, Australia
- Institute for Physiological Chemistry and Pathobiochemistry, Muenster, Germany
| | | |
Collapse
|
181
|
Ingram DA, Lien IZ, Mead LE, Estes M, Prater DN, Derr-Yellin E, DiMeglio LA, Haneline LS. In vitro hyperglycemia or a diabetic intrauterine environment reduces neonatal endothelial colony-forming cell numbers and function. Diabetes 2008; 57:724-31. [PMID: 18086900 DOI: 10.2337/db07-1507] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Emerging data demonstrate that maternal diabetes has long-term health consequences for offspring, including the development of hypertension. In adults, circulating endothelial progenitor cells (EPCs) participate in vascular repair, and EPC numbers and function inversely correlate with the risk of developing vascular disease. Therefore, our objectives were to determine whether hyperglycemia or exposure to a diabetic intrauterine environment alters EPC function. RESEARCH DESIGN AND METHODS We used well-established clonogenic endothelial colony-forming cell (ECFC) assays and murine transplantation experiments to examine human vasculogenesis. RESULTS Both in vitro hyperglycemia and a diabetic intrauterine environment reduced ECFC colony formation, self-renewal capacity, and capillary-like tube formation in matrigel. This cellular phenotype was linked to premature senescence and reduced proliferation. Further, cord blood ECFCs from diabetic pregnancies formed fewer chimeric vessels de novo after transplantation into immunodeficient mice compared with neonatal ECFCs harvested from uncomplicated pregnancies. CONCLUSIONS; Collectively, these data demonstrate that hyperglycemia or exposure to a diabetic intrauterine environment diminishes neonatal ECFC function both in vitro and in vivo, providing potential mechanistic insights into the long-term cardiovascular complications observed in newborns of diabetic pregnancies.
Collapse
Affiliation(s)
- David A Ingram
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Mondrinos MJ, Koutzaki SH, Poblete HM, Crisanti MC, Lelkes PI, Finck CM. In Vivo Pulmonary Tissue Engineering: Contribution of Donor-Derived Endothelial Cells to Construct Vascularization*. Tissue Eng Part A 2008; 14:361-8. [DOI: 10.1089/tea.2007.0041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mark J. Mondrinos
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Sirma H. Koutzaki
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Honesto M. Poblete
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - M. Cecilia Crisanti
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Peter I. Lelkes
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Christine M. Finck
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Current address: Department of Pediatric Surgery, Connecticut Children's Hospital, Hartford, Connecticut
| |
Collapse
|
183
|
Liu M, Kluger MS, D'Alessio A, García-Cardeña G, Pober JS. Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1088-99. [PMID: 18292233 DOI: 10.2353/ajpath.2008.070603] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We analyzed tumor necrosis factor (TNF) responses of human umbilical artery and vein endothelial cells (HUAECs and HUVECs) in organ and cell culture. In organ culture, TNF induced expression of E-selectin, VCAM-1, and ICAM-1 on HUVECs but only ICAM-1 on HUAECs. Activation of nuclear factor-kappaB, c-jun, and ATF2 by TNF was comparable in HUAECs and HUVECs, whereas binding of transcription factors and p300 co-activator to the E-selectin enhancer was lower in HUAECs compared to HUVECs. In cell culture, HUAECs rapidly acquired inducible E-selectin and VCAM-1 whereas ICAM-1 inducibility decreased. Culture of HUVECs rapidly decreased TNF responses of all three genes. By 72 hours in cell culture, TNF-treated HUVECs and HUAECs showed comparable adhesion molecule induction and transcription factor binding to the E-selectin enhancer. Freshly isolated HUAECs expressed higher levels of Kruppel-like factor 2 (KLF2) than HUVECs, consistent with greater KLF2 induction by arterial levels of shear stress in vitro. KLF2 expression decreased rapidly in both cell types during culture. Transduction of HUVECs with KLF2 reduced TNF-mediated induction of E-selectin and VCAM-1 while increasing ICAM-1 induction and reduced transcription factor/co-activator binding to the E-selectin enhancer. In conclusion, the differential responses of HUAECs and HUVECs to TNF in organ culture correlate with transcription factor/co-activator binding to DNA and converge during cell culture. Flow-induced expression of KLF2 contributes to the in situ responses of HUAECs but not of HUVECs.
Collapse
Affiliation(s)
- Meng Liu
- Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06509, USA
| | | | | | | | | |
Collapse
|
184
|
Shepherd BR, Hoying JB, Williams SK. Microvascular transplantation after acute myocardial infarction. ACTA ACUST UNITED AC 2008; 13:2871-9. [PMID: 17883324 DOI: 10.1089/ten.2007.0025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The primary objective of this study was to evaluate epicardial transplantation of an intact microvascular network for treatment of myocardial ischemia in a murine model of acute myocardial infarction. We describe transplantation of an intact microvascular network constructed from isolated microvascular segments stabilized in a 3-dimensional matrix to the epicardial surface after acute myocardial infarction. This microvascular graft was implanted as a patch on the epicardium of mice after left coronary artery ligation. After 14 and 28 days of implantation, left ventricular (LV) function was assessed and grafts evaluated via histology and cytochemistry. Inosculation of microvessels within the graft with host coronary microcirculation occurred as early as 7 days after initial tissue grafting. Morphologic evaluation of the grafts revealed arterioles, venules, capillaries, and erythrocytes within vascular lumina. Control grafts of collagen alone remained avascular. LV infarct size was smaller, and LV function improved in treated animals. Engraftment of whole microvascular units can be achieved to support cell-assisted vascular remodeling. Microvascular grafts may provide therapeutic benefit as a primary treatment or serve as a microvascular platform for cardiac repair and regeneration.
Collapse
|
185
|
Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008; 111:4551-8. [PMID: 18256324 DOI: 10.1182/blood-2007-10-118273] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular tissue engineering requires a ready source of endothelial cells and perivascular cells. Here, we evaluated human bone marrow-derived mesenchymal stem cells (hMSCs) for use as vascular progenitor cells in tissue engineering and regenerative medicine. hMSCs expressed a panel of smooth muscle markers in vitro including the cardiac/smooth muscle-specific transcription coactivator, myocardin. Cell-cell contact between endothelial cells and hMSCs up-regulated the transcription of myocardin. hMSCs efficiently stabilized nascent blood vessels in vivo by functioning as perivascular precursor cells. The engineered blood vessels derived from human umbilical cord vein endothelial cells and hMSCs remained stable and functional for more than 130 days in vivo. On the other hand, we could not detect differentiation of hMSCs to endothelial cells in vitro, and hMSCs by themselves could not form conduit for blood flow in vivo. Similar to normal perivascular cells, hMSC-derived perivascular cells contracted in response to endothelin-1 in vivo. In conclusion, hMSCs are perivascular cell precursors and may serve as an attractive source of cells for use in vascular tissue engineering and for the study of perivascular cell differentiation.
Collapse
|
186
|
Suárez Y, Shepherd BR, Rao DA, Pober JS. Alloimmunity to human endothelial cells derived from cord blood progenitors. THE JOURNAL OF IMMUNOLOGY 2008; 179:7488-96. [PMID: 18025193 DOI: 10.4049/jimmunol.179.11.7488] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is considerable interest in exploiting circulating endothelial progenitor cells (EPCs) for therapeutic organ repair. Such cells may be differentiated into endothelial cells (ECs) in vitro and then expanded for use in tissue engineering. Vessel-derived ECs are variably immunogenic, depending upon tissue source, and it is unknown whether ECs derived from cord blood EPCs are able to initiate an allogeneic response. In this study, we compare the phenotype and alloantigenicity of human cord blood progenitor cell-derived ECs with HUVECs isolated from the same donors. Human cord blood progenitor cell-derived ECs are very similar to HUVECs in the expression of proteins relevant for alloimmunity, including MHC molecules, costimulators, adhesion molecules, cytokines, chemokines, and IDO, and in their ability to initiate allogeneic CD4(+) and CD8(+) memory T cell responses in vitro and in vivo. These findings have significant implications for the use of cord blood EPCs in regenerative medicine or tissue engineering.
Collapse
Affiliation(s)
- Yajaira Suárez
- Department of Immunobiology, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
187
|
In Vivo Perfusion of Human Skin Substitutes With Microvessels Formed by Adult Circulating Endothelial Progenitor Cells. Dermatol Surg 2008. [DOI: 10.1097/00042728-200802000-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
188
|
KUNG ELAINEF, WANG FEIYA, SCHECHNER JEFFREYS. In Vivo Perfusion of Human Skin Substitutes With Microvessels Formed by Adult Circulating Endothelial Progenitor Cells. Dermatol Surg 2008; 34:137-46. [DOI: 10.1111/j.1524-4725.2007.34030.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
189
|
Melero-Martin JM, Bischoff J. Chapter 13. An in vivo experimental model for postnatal vasculogenesis. Methods Enzymol 2008; 445:303-29. [PMID: 19022065 DOI: 10.1016/s0076-6879(08)03013-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid and complete vascularization of ischemic tissues and thick engineered tissues is likely to require vasculogenesis. Therefore, the search for clinically relevant sources of vasculogenic cells and the subsequent development of experimental models of vasculogenesis is of utmost importance. Here, we describe a methodology adapted from the Matrigel plug assay to deliver human blood-derived endothelial progenitor cells (EPCs) and mature smooth muscle cells (SMCs) subcutaneously into immunodeficient mice. One week after implantation, an extensive microvascular network composed of the human EPCs and SMCs is formed within the Matrigel. The presence of human EPC-lined lumens containing host erythrocytes can be seen throughout the implants indicating not only the formation (de novo) of a vascular network, but also the development of functional anastomoses with the host circulatory system. This is a very versatile assay that allows (1) dialing the final microvessel density by varying either the total number of cells in the original cell suspension or the ratio between EPCs and SMCs, (2) studying the effect of substituting another type of perivascular cell for mature SMCs or another type of endothelial cell, (3) tracking each of the implanted cell types by labeling (e.g., GFP tagging) prior to implantation, and (4) studying the effect of genetically modifying the cells prior to implantation. Additionally, this assay is relatively simple to perform and it does not require an incision or surgical procedure. This murine model of human vasculogenesis is ideally suited for studies on the cellular and molecular components of microvessel development, pathologic neovascular responses, and for the development and investigation of strategies to enhance neovascularization of engineered human tissues and organs.
Collapse
Affiliation(s)
- Juan M Melero-Martin
- Vascular Biology Program and Department of Surgery, Children's Hospital, Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
190
|
Sanz L, Santos-Valle P, Alonso-Camino V, Salas C, Serrano A, Vicario JL, Cuesta AM, Compte M, Sánchez-Martín D, Alvarez-Vallina L. Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 2007; 75:308-14. [PMID: 18252255 DOI: 10.1016/j.mvr.2007.11.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/13/2007] [Accepted: 11/29/2007] [Indexed: 11/29/2022]
Abstract
Angiogenesis is a multistep process that encompasses complex molecular and cellular interactions that can not be recapitulated in vitro. Here, we demonstrate that vasculature generated from lentivirally transduced human primary endothelial cells expressing firefly luciferase and co-implanted with human bone marrow mesenchymal stem cells in immunodeficient mice can be assessed quantitatively by in vivo whole body bioluminescence imaging for more than 120 days. Luciferase activity correlated with the formation of a network of functional, mature blood vessels of human nature inside the implant that critically depend on the presence of mesenchymal stem cells. In summary, our study offers an unprecedented opportunity to perform long-term serial analysis of the molecular events involved in the angiogenic process and monitoring responses to anti-angiogenic agents.
Collapse
Affiliation(s)
- Laura Sanz
- Unidad de Inmunología Molecular, Hospital Universitario Puerta de Hierro, 28035 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Mok W, Boucher Y, Jain RK. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res 2007; 67:10664-8. [PMID: 18006807 DOI: 10.1158/0008-5472.can-07-3107] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic viral vectors show enormous potential for the treatment of many solid tumors. However, these vectors often suffer from insufficient delivery within tumors, which limits their efficacy in both preclinical and clinical settings. We have previously shown that tumor collagen can significantly hinder diffusion, and that its degradation can enhance the distribution and efficacy of an oncolytic herpes simplex virus (HSV) vector. Here, we identify two members of the matrix metalloproteinase (MMP) family of enzymes, MMP-1 and MMP-8, which can modulate the tumor matrix and enhance HSV delivery and efficacy. We show that overexpression of MMP-1 and MMP-8 in the human soft tissue sarcoma HSTS26T leads to a significant depletion of tumor-sulfated glycosaminoglycans. This increases the hydraulic conductivity of these tumors and enhances the flow of virus during injection. In control tumors, injected virus accumulates primarily in the periphery of the tumor. In contrast, we observed a more widespread distribution of virus around the injection site in MMP-1- and MMP-8-expressing tumors. Due to this enhanced vector delivery, MMP-expressing tumors respond significantly better to oncolytic HSV treatment than control tumors. Thus, these findings introduce a new approach to improve the delivery and efficacy of oncolytic viral vectors: modulation of tumor glycosaminoglycans to enhance convection.
Collapse
Affiliation(s)
- Wilson Mok
- Department of Radiation Oncology, Edwin L. Steele Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
192
|
Abstract
The means by which extracellular matrix density regulates three-dimensional capillary morphogenesis is unclear. To study this phenomenon, we utilized a fibrin-based in vitro assay in which a fibroblast monolayer is plated atop a fibrin gel approximately 2.5 mm away from endothelial cell-coated beads within the matrix. Increasing fibrin density from 2.5 to 10 mg/ml resulted in a threefold reduction in capillary network formation. However, distributing fibroblasts throughout the matrix completely eliminated this inhibitory effect, resulting in robustly vascularized matrices suitable for in vivo applications, as functional anastomoses formed between the implanted tissues and host vasculature when implanted into immune-compromised mice. Dense matrices did not stimulate fibroblast-mediated matrix remodeling: differentiation into myofibroblasts, matrix production, and protease secretion were not enhanced by the dense condition. Instead, quantifying diffusivity of FITC-dextran (molecular mass 10, 40, 70, and 150 kDa) through fibrin revealed a two- to threefold decrease within the 10 mg/ml matrices. Thus, distributing a proangiogenic source (fibroblasts) throughout the matrix stimulates capillary network formation by overcoming this diffusion restriction due to significantly reduced diffusion distances. Although roles for matrix stiffness and ligand binding density have previously been identified, our results emphasize the importance of diffusion restrictions in limiting capillary morphogenesis.
Collapse
|
193
|
Affara M, Dunmore B, Savoie C, Imoto S, Tamada Y, Araki H, Charnock-Jones DS, Miyano S, Print C. Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal? Philos Trans R Soc Lond B Biol Sci 2007; 362:1469-87. [PMID: 17569639 PMCID: PMC2440409 DOI: 10.1098/rstb.2007.2129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endothelial cell (EC) apoptosis may play an important role in blood vessel development, homeostasis and remodelling. In support of this concept, EC apoptosis has been detected within remodelling vessels in vivo, and inactivation of EC apoptosis regulators has caused dramatic vascular phenotypes. EC apoptosis has also been associated with cardiovascular pathologies. Therefore, understanding the regulation of EC apoptosis, with the goal of intervening in this process, has become a current research focus. The protein-based signalling and cleavage cascades that regulate EC apoptosis are well known. However, the possibility that programmed transcriptome and glycome changes contribute to EC apoptosis has only recently been explored. Traditional bioinformatic techniques have allowed simultaneous study of thousands of molecular signals during the process of EC apoptosis. However, to progress further, we now need to understand the complex cause and effect relationships among these signals. In this article, we will first review current knowledge about the function and regulation of EC apoptosis including the roles of the proteome transcriptome and glycome. Then, we assess the potential for further bioinformatic analysis to advance our understanding of EC apoptosis, including the limitations of current technologies and the potential of emerging technologies such as gene regulatory networks.
Collapse
Affiliation(s)
- Muna Affara
- Department of Pathology, Cambridge UniversityTennis Court Road, Cambridge CB2 1QP, UK
| | - Benjamin Dunmore
- Department of Obstetrics and Gynaecology, Cambridge UniversityThe Rosie Hospital, Cambridge CB2 2SW, UK
| | - Christopher Savoie
- GNI Ltd. Kasumigaseki IHF Building 3-5-1Kasumigaseki, Chiyoda-ku, 100-0013 Toyko, Japan
| | - Seiya Imoto
- Human Genome Centre, Institute of Medical Science, University of Tokyo4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshinori Tamada
- Department of Obstetrics and Gynaecology, Cambridge UniversityThe Rosie Hospital, Cambridge CB2 2SW, UK
- Bioinformatics Centre, Institute for Chemical Research, Kyoto UniversityGokasho, Uji, Kyoto 611-0011, Japan
| | - Hiromitsu Araki
- GNI Ltd. Kasumigaseki IHF Building 3-5-1Kasumigaseki, Chiyoda-ku, 100-0013 Toyko, Japan
| | - D. Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, Cambridge UniversityThe Rosie Hospital, Cambridge CB2 2SW, UK
| | - Satoru Miyano
- Human Genome Centre, Institute of Medical Science, University of Tokyo4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Cristin Print
- Department of Molecular Medicine and Pathology, University of Auckland85 Park Road, Private Bag 92019, Auckland, New Zealand
- Author for correspondence ()
| |
Collapse
|
194
|
Finkenzeller G, Torio-Padron N, Momeni A, Mehlhorn AT, Stark GB. In vitro angiogenesis properties of endothelial progenitor cells: a promising tool for vascularization of ex vivo engineered tissues. ACTA ACUST UNITED AC 2007; 13:1413-20. [PMID: 17550338 DOI: 10.1089/ten.2006.0369] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Survival of ex vivo constructed tissues after transplantation is limited by insufficient oxygen and nutrient supply. Therefore, strategies aiming at the improvement of neovascularization of engineered tissues are a key issue. A method to enhance graft vascularization is to establish a primitive vascular plexus within the graft before transplantation by the use of cellular-based concepts. To explore the utility of endothelial progenitor cells (EPCs) for the ex vivo vascularization of tissue engineered grafts, we analyzed the in vitro angiogenic properties of this cell type in two different angiogenesis models: the 3-dimensional spheroid sprouting assay and the 2-dimensional matrigel assay. In both assays, EPCs were able to form tubelike structures, resembling early capillaries. This process was significantly enhanced by the addition of angiogenic growth factors. Direct comparison between EPCs and mature endothelial cells, represented by human umbilical vein endothelial cells (HUVECs), revealed that both cell types displayed an almost identical angiogenic potential. Other functional in vitro parameters such as angiogenic growth factor induced cell proliferation and cell survival were investigated as well, revealing a significantly decreased level of apoptosis of EPCs in relation to HUVECs under serum-deprived conditions. The observed survival advantage of EPCs along with the observation that EPCs perform very well in the above mentioned in vitro angiogenesis assays, make them an ideal autologous cell source for vascularization of ex vivo generated tissues. The attractiveness of this cell type for tissue engineering applications is strengthened further by the fact that these cells can be easily isolated from the peripheral blood of patients, thereby eliminating donor site morbidity.
Collapse
Affiliation(s)
- Günter Finkenzeller
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Hugstetter Str. 55, D-79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
195
|
Smith CM, Cole Smith J, Williams SK, Rodriguez JJ, Hoying JB. Automatic thresholding of three-dimensional microvascular structures from confocal microscopy images. J Microsc 2007; 225:244-57. [PMID: 17371447 DOI: 10.1111/j.1365-2818.2007.01739.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have combined confocal microscopy, image processing, and optimization techniques to obtain automated, accurate volumetric measurements of microvasculature. Initially, we made tissue phantoms containing 15-microm FocalCheck microspheres suspended in type I collagen. Using these phantoms we obtained a stack of confocal images and examined the accuracy of various thresholding schemes. Thresholding algorithms from the literature that utilize a unimodal histogram, a bimodal histogram, or an intensity and edge-based algorithm all significantly overestimated the volume of foreground structures in the image stack. Instead, we developed a heuristic technique to automatically determine good-quality threshold values based on the depth, intensity, and (optionally) gradient of each voxel. This method analyzed intensity and gradient threshold methods for each individual image stack, taking into account the intensity attenuation that is seen in deeper images of the stack. Finally, we generated a microvascular construct comprised of rat fat microvessel fragments embedded in collagen I gels and obtained stacks of confocal images. Using our new thresholding scheme we were able to obtain automatic volume measurements of growing microvessel fragments.
Collapse
Affiliation(s)
- Cynthia M Smith
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
196
|
Bogdanov AA, Lin CP, Kang HW. Optical imaging of the adoptive transfer of human endothelial cells in mice using anti-human CD31 monoclonal antibody. Pharm Res 2007; 24:1186-92. [PMID: 17373582 PMCID: PMC2795329 DOI: 10.1007/s11095-006-9219-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/15/2006] [Indexed: 11/29/2022]
Abstract
PURPOSE The development of endothelium-specific imaging agents capable of specific binding to human cells under the conditions of flow for the needs of regenerative medicine and cancer research. The goal of the study was testing the feasibility of optical imaging of human endothelial cells implanted in mice. METHODS Mouse model of adoptive human endothelial cell transfer was obtained by implanting cells in Matrigel matrix in subcutaneous space (Kang, Torres, Wald, Weissleder, and Bogdanov, Jr., Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab. Invest. 86: 599-609, 2006). Several endothelium-specific proteins were labeled with near-infrared fluorochrome (Cy5.5) and tested in vitro. Fluorescence imaging using anti-human CD31 antibody was performed in vivo. The obtained results were corroborated by using fluorescence microscopy of tissue sections. RESULTS We determined that monoclonal anti-human CD31 antibodies labeled with Cy5.5 were efficiently binding to human endothelial cells and were not subject to rapid endocytosis. We further demonstrated that specific near-infrared optical imaging signal was present only in Matrigel implants seeded with human endothelium cells and was absent from control Matrigel implants. Histology showed staining of cells lining vessels and revealed the formation of branched networks of CD31-positive cells. CONCLUSIONS Anti-human CD31 antibodies tagged with near-infrared fluorochromes can be used for detection of perfused blood vessels harboring human endothelial cells in animal models of adoptive transfer.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- S2-804, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
197
|
Petersen T, Niklason L. Cellular lifespan and regenerative medicine. Biomaterials 2007; 28:3751-6. [PMID: 17574669 PMCID: PMC2706083 DOI: 10.1016/j.biomaterials.2007.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/21/2007] [Indexed: 01/23/2023]
Abstract
Tissue engineering is a promising approach to aid in the treatment of a wide range of clinical disorders by developing replacement tissues for damaged or diseased organs. Such approaches, however, will require large and functional cell populations in order to produce a tissue that can replicate in vivo function. Most adult cells have limited replicative potential that limits their use in tissue engineering applications. Thus, cell populations with expanded lifespan or increased replicative potential are of interest. Stem cell-derived populations may allow the creation of large cell populations that have increased replicative potential over adult differentiated cells. In addition, ectopic human telomerase reverse transcriptase expression and induced B-cell lymphoma 2 (bcl-2) expression can allow adult cells to proliferate more extensively than unaltered cells. However, concerns for malignant transformation exist with telomerase and bcl-2 approaches. The current states of research in these areas are reviewed as they relate to tissue engineering and the cellular lifespan.
Collapse
Affiliation(s)
- Thomas Petersen
- Department of Biomedical Engineering, 136 Hudson Hall, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
198
|
Kobayashi A, Miyake H, Hattori H, Kuwana R, Hiruma Y, Nakahama KI, Ichinose S, Ota M, Nakamura M, Takeda S, Morita I. In vitro formation of capillary networks using optical lithographic techniques. Biochem Biophys Res Commun 2007; 358:692-7. [PMID: 17509527 DOI: 10.1016/j.bbrc.2007.04.206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Tissue engineering approaches have been developed for vascular grafts, but success has been limited to arterial replacements of large-caliber vessels. We have developed an innovative technique to transplant engineered capillary networks by printing techniques. Endothelial cells were cultured on a patterned substrate, in which network patterns were generated by prior optical lithography. Subsequently, the patterned cells were transferred to extracellular matrix and tissue at which point they changed their morphologies and formed tubular structures. Microinjection of dye showed that the micrometer-scale tubular structure had in vitro flow potential. When capillary-like networks engineered on amnion membranes were transplanted into mice, we found blood cells inside of the lumen of the transplanted capillary-like structure. This is the first report of the in vitro formation of capillary networks using cell transfer technique, and this novel technique may open the way for development of rapid and effective blood perfusion systems in regenerative medicine.
Collapse
Affiliation(s)
- Akiko Kobayashi
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Since 1997, postnatal vasculogenesis has been purported to be an important mechanism for neoangiogenesis via bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs). Based on this paradigm, EPCs have been extensively studied as biomarkers to assess severity of cardiovascular disease and as a cell-based therapy for several human cardiovascular disorders. In the majority of studies to date, EPCs were identified and enumerated by two primary methodologies; EPCs were obtained and quantified following in vitro cell culture, or EPCs were identified and enumerated by flow cytometry. Both methods have proven controversial. This review will attempt to outline the definition of EPCs from some of the most widely cited published reports in an effort to provide a framework for understanding subsequent studies in this rapidly evolving field. We will focus this review on studies that used cell culture techniques to define EPCs.
Collapse
Affiliation(s)
- D N Prater
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
200
|
Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109:4761-8. [PMID: 17327403 DOI: 10.1182/blood-2006-12-062471] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascularization of tissues is a major challenge of tissue engineering (TE). We hypothesize that blood-derived endothelial progenitor cells (EPCs) have the required proliferative and vasculogenic activity to create vascular networks in vivo. To test this, EPCs isolated from human umbilical cord blood or from adult peripheral blood, and human saphenous vein smooth muscle cells (HSVSMCs) as a source of perivascular cells, were combined in Matrigel and implanted subcutaneously into immunodeficient mice. Evaluation of implants at one week revealed an extensive network of human-specific lumenal structures containing erythrocytes, indicating formation of functional anastomoses with the host vasculature. Quantitative analyses showed the microvessel density was significantly superior to that generated by human dermal microvascular endothelial cells (HDMECs) but similar to that generated by human umbilical vein endothelial cells (HUVECs). We also found that as EPCs were expanded in culture, their morphology, growth kinetics, and proliferative responses toward angiogenic factors progressively resembled those of HDMECs, indicating a process of in vitro maturation. This maturation correlated with a decrease in the degree of vascularization in vivo, which could be compensated for by increasing the number of EPCs seeded into the implants. Our findings strongly support the use of human EPCs to form vascular networks in engineered organs and tissues.
Collapse
Affiliation(s)
- Juan M Melero-Martin
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|