151
|
A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prostate Cancer (PCa) is the most common oncological disease in Western men. Even though a growing effort has been carried out by the scientific community in recent years, accurate and reliable automated PCa detection methods on multiparametric Magnetic Resonance Imaging (mpMRI) are still a compelling issue. In this work, a Deep Neural Network architecture is developed for the task of classifying clinically significant PCa on non-contrast-enhanced MR images. In particular, we propose the use of Conditional Random Fields as a Recurrent Neural Network (CRF-RNN) to enhance the classification performance of XmasNet, a Convolutional Neural Network (CNN) architecture specifically tailored to the PROSTATEx17 Challenge. The devised approach builds a hybrid end-to-end trainable network, CRF-XmasNet, composed of an initial CNN component performing feature extraction and a CRF-based probabilistic graphical model component for structured prediction, without the need for two separate training procedures. Experimental results show the suitability of this method in terms of classification accuracy and training time, even though the high-variability of the observed results must be reduced before transferring the resulting architecture to a clinical environment. Interestingly, the use of CRFs as a separate postprocessing method achieves significantly lower performance with respect to the proposed hybrid end-to-end approach. The proposed hybrid end-to-end CRF-RNN approach yields excellent peak performance for all the CNN architectures taken into account, but it shows a high-variability, thus requiring future investigation on the integration of CRFs into a CNN.
Collapse
|
152
|
Wang Z, Lin Y, Cheng KT, Yang X. Semi-supervised mp-MRI data synthesis with StitchLayer and auxiliary distance maximization. Med Image Anal 2020; 59:101565. [DOI: 10.1016/j.media.2019.101565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/25/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022]
|
153
|
Maciel JG, de Araújo IM, Trazzi LC, de Azevedo-Marques PM, Salmon CEG, de Paula FJA, Nogueira-Barbosa MH. Association of bone mineral density with bone texture attributes extracted using routine magnetic resonance imaging. Clinics (Sao Paulo) 2020; 75:e1766. [PMID: 32876107 PMCID: PMC7442400 DOI: 10.6061/clinics/2020/e1766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Dual-energy X-ray absorptiometry (DXA)-derived bone mineral density (BMD) often fails to predict fragility fractures. Quantitative textural analysis using magnetic resonance imaging (MRI) may potentially yield useful radiomic features to predict fractures. We aimed to investigate the correlation between BMD and texture attributes (TAs) extracted from MRI scans and the interobserver reproducibility of the analysis. METHODS Forty-nine volunteers underwent lumbar spine 1.5-T MRI and DXA. Three-dimensional (3-D) gray-level co-occurrence matrices were measured from routine sagittal T2 fast spin-echo images using the IBEX software. Twenty-two TAs were extracted from 3-D segmented L3 vertebrae. The estimated concordance coefficient was calculated using linear regression analysis. A Pearson correlation coefficient analysis was performed to evaluate the correlation between BMD and the TAs. Interobserver reproducibility was assessed with the concordance coefficient described by Lin. RESULTS The results revealed a fair-to-moderate significant correlation between BMD and 13 TAs (r=-0.20 to 0.39; p<0.05). Eight TAs (autocorrelation, energy, homogeneity 1, homogeneity 1.1, maximum probability, sum average, sum variance, and inverse difference normalized) negatively correlated with BMD (r=-0.20 to -0.38; p<0.05), whereas five TAs (dissimilarity, difference entropy, entropy, sum entropy, and information measure corr 1) positively correlated with BMD (r=0.29-0.39; p<0.05). The interobserver agreement was almost perfect for all significant TAs (95% confidence interval, 0.92-1.00; p<0.05). CONCLUSION Specific TAs could be reliably extracted from routine MRI and correlated with BMD. Our results encourage future evaluation of the potential usefulness of quantitative texture measurements from MRI scans for predicting fragility fractures.
Collapse
Affiliation(s)
- Jamilly Gomes Maciel
- Departamento de Imagens Medicas, Hematologia e Oncologia Clinica, Faculdade de Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Ribeirao Preto, SP, BR
- *Corresponding author. E-mails: /
| | - Iana Mizumukai de Araújo
- Medicina Interna, Faculdade de Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Lucio C. Trazzi
- Departamento de Imagens Medicas, Hematologia e Oncologia Clinica, Faculdade de Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Paulo Mazzoncini de Azevedo-Marques
- Departamento de Imagens Medicas, Hematologia e Oncologia Clinica, Faculdade de Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Carlos Ernesto Garrido Salmon
- Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras (FFCL), Universidade de São Paulo, Ribeirao Preto, SP, BR
| | | | - Marcello Henrique Nogueira-Barbosa
- Departamento de Imagens Medicas, Hematologia e Oncologia Clinica, Faculdade de Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| |
Collapse
|
154
|
Chen Q, Hu S, Long P, Lu F, Shi Y, Li Y. A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI. Technol Cancer Res Treat 2019; 18:1533033819858363. [PMID: 31221034 PMCID: PMC6589968 DOI: 10.1177/1533033819858363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: In prostate focal therapy, it is important to accurately localize malignant lesions in order to increase biological effect of the tumor region while achieving a reduction in dose to noncancerous tissue. In this work, we proposed a transfer learning–based deep learning approach, for classification of prostate lesions in multiparametric magnetic resonance imaging images. Methods: Magnetic resonance imaging images were preprocessed to remove bias artifact and normalize the data. Two state-of-the-art deep convolutional neural network models, InceptionV3 and VGG-16, were pretrained on ImageNet data set and retuned on the multiparametric magnetic resonance imaging data set. As lesion appearances differ by the prostate zone that it resides in, separate models were trained. Ensembling was performed on each prostate zone to improve area under the curve. In addition, the predictions from lesions on each prostate zone were scaled separately to increase the area under the curve for all lesions combined. Results: The models were tuned to produce the highest area under the curve on validation data set. When it was applied to the unseen test data set, the transferred InceptionV3 model achieved an area under the curve of 0.81 and the transferred VGG-16 model achieved an area under the curve of 0.83. This was the third best score among the 72 methods from 33 participating groups in ProstateX competition. Conclusion: The transfer learning approach is a promising method for prostate cancer detection on multiparametric magnetic resonance imaging images. Features learned from ImageNet data set can be useful for medical images.
Collapse
Affiliation(s)
- Quan Chen
- 1 Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Peiran Long
- 2 iLuvatar Corex, Nanjing, Jiangsu, China.,3 Computer Science, Brown University, Providence, RI, USA
| | - Fang Lu
- 2 iLuvatar Corex, Nanjing, Jiangsu, China.,4 Computer Science, Syracuse University, Syracuse, NY, USA
| | - Yujie Shi
- 2 iLuvatar Corex, Nanjing, Jiangsu, China
| | - Yunpeng Li
- 2 iLuvatar Corex, Nanjing, Jiangsu, China
| |
Collapse
|
155
|
Yoo S, Gujrathi I, Haider MA, Khalvati F. Prostate Cancer Detection using Deep Convolutional Neural Networks. Sci Rep 2019; 9:19518. [PMID: 31863034 PMCID: PMC6925141 DOI: 10.1038/s41598-019-55972-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intensively studied for accurate detection of prostate cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks such as object detection and segmentation, different CNN architectures are increasingly investigated in medical imaging research community as promising solutions for designing more accurate CAD tools for cancer detection. In this work, we developed and implemented an automated CNN-based pipeline for detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 patients without PCa. To measure the performance of the proposed pipeline, a test set of 108 (out of 427) patients were set aside and not used in the training phase. The proposed pipeline achieved area under the receiver operating characteristic curve (AUC) of 0.87 (95[Formula: see text] Confidence Interval (CI): 0.84-0.90) and 0.84 (95[Formula: see text] CI: 0.76-0.91) at slice level and patient level, respectively.
Collapse
Affiliation(s)
- Sunghwan Yoo
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Isha Gujrathi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Farzad Khalvati
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
156
|
Checcucci E, Autorino R, Cacciamani GE, Amparore D, De Cillis S, Piana A, Piazzolla P, Vezzetti E, Fiori C, Veneziano D, Tewari A, Dasgupta P, Hung A, Gill I, Porpiglia F. Artificial intelligence and neural networks in urology: current clinical applications. MINERVA UROL NEFROL 2019; 72:49-57. [PMID: 31833725 DOI: 10.23736/s0393-2249.19.03613-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION As we enter the era of "big data," an increasing amount of complex health-care data will become available. These data are often redundant, "noisy," and characterized by wide variability. In order to offer a precise and transversal view of a clinical scenario the artificial intelligence (AI) with machine learning (ML) algorithms and Artificial neuron networks (ANNs) process were adopted, with a promising wide diffusion in the near future. The present work aims to provide a comprehensive and critical overview of the current and potential applications of AI and ANNs in urology. EVIDENCE ACQUISITION A non-systematic review of the literature was performed by screening Medline, PubMed, the Cochrane Database, and Embase to detect pertinent studies regarding the application of AI and ANN in Urology. EVIDENCE SYNTHESIS The main application of AI in urology is the field of genitourinary cancers. Focusing on prostate cancer, AI was applied for the prediction of prostate biopsy results. For bladder cancer, the prediction of recurrence-free probability and diagnostic evaluation were analysed with ML algorithms. For kidney and testis cancer, anecdotal experiences were reported for staging and prediction of diseases recurrence. More recently, AI has been applied in non-oncological diseases like stones and functional urology. CONCLUSIONS AI technologies are growing their role in health care; but, up to now, their "real-life" implementation remains limited. However, in the near future, the potential of AI-driven era could change the clinical practice in Urology, improving overall patient outcomes.
Collapse
Affiliation(s)
- Enrico Checcucci
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy -
| | | | | | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Sabrina De Cillis
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Alberto Piana
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Pietro Piazzolla
- Department of Management and Production Engineer, Politechnic University of Turin, Turin, Italy
| | - Enrico Vezzetti
- Department of Management and Production Engineer, Politechnic University of Turin, Turin, Italy
| | - Cristian Fiori
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Domenico Veneziano
- Department of Urology and Renal Transplantation, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Ash Tewari
- Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | | | - Andrew Hung
- USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Inderbir Gill
- USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Francesco Porpiglia
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | | |
Collapse
|
157
|
Bhattacharjee S, Kim CH, Park HG, Prakash D, Madusanka N, Cho NH, Choi HK. Multi-Features Classification of Prostate Carcinoma Observed in Histological Sections: Analysis of Wavelet-Based Texture and Colour Features. Cancers (Basel) 2019; 11:E1937. [PMID: 31817111 PMCID: PMC6966617 DOI: 10.3390/cancers11121937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Microscopic biopsy images are coloured in nature because pathologists use the haematoxylin and eosin chemical colour dyes for biopsy examinations. In this study, biopsy images are used for histological grading and the analysis of benign and malignant prostate tissues. The following PCa grades are analysed in the present study: benign, grade 3, grade 4, and grade 5. Biopsy imaging has become increasingly important for the clinical assessment of PCa. In order to analyse and classify the histological grades of prostate carcinomas, pixel-based colour moment descriptor (PCMD) and gray-level co-occurrence matrix (GLCM) methods were used to extract the most significant features for multilayer perceptron (MLP) neural network classification. Haar wavelet transformation was carried out to extract GLCM texture features, and colour features were extracted from RGB (red/green/blue) colour images of prostate tissues. The MANOVA statistical test was performed to select significant features based on F-values and P-values using the R programming language. We obtained an average highest accuracy of 92.7% using level-1 wavelet texture and colour features. The MLP classifier performed well, and our study shows promising results based on multi-feature classification of histological sections of prostate carcinomas.
Collapse
Affiliation(s)
- Subrata Bhattacharjee
- Department of Computer Engineering, u-AHRC, Inje University, Gimhae 50834, Korea; (S.B.); (H.-G.P.); (D.P.); (N.M.)
| | - Cho-Hee Kim
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Korea;
| | - Hyeon-Gyun Park
- Department of Computer Engineering, u-AHRC, Inje University, Gimhae 50834, Korea; (S.B.); (H.-G.P.); (D.P.); (N.M.)
| | - Deekshitha Prakash
- Department of Computer Engineering, u-AHRC, Inje University, Gimhae 50834, Korea; (S.B.); (H.-G.P.); (D.P.); (N.M.)
| | - Nuwan Madusanka
- Department of Computer Engineering, u-AHRC, Inje University, Gimhae 50834, Korea; (S.B.); (H.-G.P.); (D.P.); (N.M.)
| | - Nam-Hoon Cho
- Department of Pathology, Yonsei University Hospital, Seoul 03722, Korea;
| | - Heung-Kook Choi
- Department of Computer Engineering, u-AHRC, Inje University, Gimhae 50834, Korea; (S.B.); (H.-G.P.); (D.P.); (N.M.)
| |
Collapse
|
158
|
Zhang R, Zhu L, Cai Z, Jiang W, Li J, Yang C, Yu C, Jiang B, Wang W, Xu W, Chai X, Zhang X, Tang Y. Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions. Eur J Radiol 2019; 121:108735. [DOI: 10.1016/j.ejrad.2019.108735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023]
|
159
|
Horvat N, Bates DDB, Petkovska I. Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol (NY) 2019; 44:3764-3774. [PMID: 31055615 DOI: 10.1007/s00261-019-02042-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION As computational capabilities have advanced, radiologists and their collaborators have looked for novel ways to analyze diagnostic images. This has resulted in the development of radiomics and radiogenomics as new fields in medical imaging. Radiomics and radiogenomics may change the practice of medicine, particularly for patients with colorectal cancer. Radiomics corresponds to the extraction and analysis of numerous quantitative imaging features from conventional imaging modalities in correlation with several endpoints, including the prediction of pathology, genomics, therapeutic response, and clinical outcome. In radiogenomics, qualitative and/or quantitative imaging features are extracted and correlated with genetic profiles of the imaged tissue. Thus far, several studies have evaluated the use of radiomics and radiogenomics in patients with colorectal cancer; however, there are challenges to be overcome before its routine implementation including challenges related to sample size, model design and interpretability, and the lack of robust multicenter validation set. MATERIAL AND METHODS In this article, we will review the concepts of radiomics and radiogenomics and their potential applications in rectal cancer. CONCLUSION Radiologists should be aware of the basic concepts, benefits, pitfalls, and limitations of new radiomic and radiogenomics techniques to achieve a balanced interpretation of the results.
Collapse
Affiliation(s)
- Natally Horvat
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - David D B Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Iva Petkovska
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| |
Collapse
|
160
|
Cao R, Mohammadian Bajgiran A, Afshari Mirak S, Shakeri S, Zhong X, Enzmann D, Raman S, Sung K. Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2496-2506. [PMID: 30835218 DOI: 10.1109/tmi.2019.2901928] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
Collapse
|
161
|
Giambelluca D, Cannella R, Vernuccio F, Comelli A, Pavone A, Salvaggio L, Galia M, Midiri M, Lagalla R, Salvaggio G. PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate Cancer. Curr Probl Diagn Radiol 2019; 50:175-185. [PMID: 31761413 DOI: 10.1067/j.cpradiol.2019.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine the diagnostic performance of texture analysis of prostate MRI for the diagnosis of prostate cancer among Prostate Imaging Reporting and Data System (PI-RADS) 3 lesions. MATERIALS AND METHODS Forty-three patients with at least 1 PI-RADS 3 lesion on prostate MRI performed between June 2016 and January 2019 were retrospectively included. Reference standard was pathological analysis of radical prostatectomy specimens or MRI-targeted biopsies. Texture analysis extraction of target lesions was performed on axial T2-weighted images and apparent diffusion coefficient (ADC) maps using a radiomic software. Lesions were categorized as prostate cancer (Gleason score [GS] ≥ 6), and no prostate cancer. Statistical analysis was performed using the generalized linear model (GLM) regression and the discriminant analysis (DA). AUROC with 95% confidence intervals were calculated to assess the diagnostic performance of standalone features and predictive models for the diagnosis of prostate cancer (GS ≥ 6) and clinically-significant prostate cancer (GS ≥ 7). RESULTS The analysis of 46 PI-RADS 3 lesions (ie, 27 [58.7%] no prostate cancers; 19 [41.3%] prostate cancers) revealed 9 and 6 independent texture parameters significantly correlated with the final histopathological results on T2-weighted and ADC maps images, respectively. The resulting GLM and DA predictive models for the diagnosis of prostate cancer yielded an AUROC of 0.775 and 0.779 on T2-weighted images or 0.815 and 0.821 on ADC maps images. For the diagnosis of clinically-significant prostate cancer, the resulting GLM and DA predictive models for the diagnosis of prostate cancer yielded an AUROC of 0.769 and 0.817 on T2-weighted images or 0.749 and 0.744 on ADC maps images. CONCLUSION Texture analysis of PI-RADS 3 lesions on T2-weighted and ADC maps images helps identifying prostate cancer. The good diagnostic performance of the combination of multiple radiomic features for the diagnosis of prostate cancer may help predicting lesions where aggressive management may be warranted.
Collapse
Affiliation(s)
- Dario Giambelluca
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Roberto Cannella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Federica Vernuccio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy; University Paris 7 Diderot, Sorbonne Paris Cité, Paris, France; I.R.C.C.S. Centro Neurolesi Bonino Pulejo, Messina, Italy.
| | - Albert Comelli
- Ri.MED Foundation, Palermo, Italy; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA, US; Department of Industrial and Digital Innovation (DIID), University of Palermo, Italy
| | - Alice Pavone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Leonardo Salvaggio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Massimo Galia
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Massimo Midiri
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Roberto Lagalla
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Giuseppe Salvaggio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
162
|
Schick U, Lucia F, Dissaux G, Visvikis D, Badic B, Masson I, Pradier O, Bourbonne V, Hatt M. MRI-derived radiomics: methodology and clinical applications in the field of pelvic oncology. Br J Radiol 2019; 92:20190105. [PMID: 31538516 DOI: 10.1259/bjr.20190105] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Personalized medicine aims at offering optimized treatment options and improved survival for cancer patients based on individual variability. The success of precision medicine depends on robust biomarkers. Recently, the requirement for improved non-biologic biomarkers that reflect tumor biology has emerged and there has been a growing interest in the automatic extraction of quantitative features from medical images, denoted as radiomics. Radiomics as a methodological approach can be applied to any image and most studies have focused on PET, CT, ultrasound, and MRI. Here, we aim to present an overview of the radiomics workflow as well as the major challenges with special emphasis on the use of multiparametric MRI datasets. We then reviewed recent studies on radiomics in the field of pelvic oncology including prostate, cervical, and colorectal cancer.
Collapse
Affiliation(s)
- Ulrike Schick
- Radiation Oncology department, University Hospital, Brest, France.,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| | - François Lucia
- Radiation Oncology department, University Hospital, Brest, France.,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
| | - Gurvan Dissaux
- Radiation Oncology department, University Hospital, Brest, France.,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| | - Dimitris Visvikis
- LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
| | - Bogdan Badic
- LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France.,Department of General and Digestive Surgery, University Hospital, Brest, France
| | - Ingrid Masson
- LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
| | - Olivier Pradier
- Radiation Oncology department, University Hospital, Brest, France.,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| | - Vincent Bourbonne
- Radiation Oncology department, University Hospital, Brest, France.,LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
| | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, University of Brest, ISBAM, UBO, UBL, Brest, France
| |
Collapse
|
163
|
Chen J, Remulla D, Nguyen JH, Dua A, Liu Y, Dasgupta P, Hung AJ. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int 2019; 124:567-577. [PMID: 31219658 DOI: 10.1111/bju.14852] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the applications of artificial intelligence (AI) in diagnosis, treatment and outcome predictionin urologic diseases and evaluate its advantages over traditional models and methods. MATERIALS AND METHODS A literature search was performed after PROSPERO registration (CRD42018103701) and in compliance with Preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA) methods. Articles between 1994 and 2018 using the search terms "urology", "artificial intelligence", "machine learning" were included and categorized by the application of AI in urology. Review articles, editorial comments, articles with no full-text access, and nonurologic studies were excluded. RESULTS Initial search yielded 231 articles, but after excluding duplicates and following full-text review and examination of article references, only 111 articles were included in the final analysis. AI applications in urology include: utilizing radiomic imaging or ultrasonic echo data to improve or automate cancer detection or outcome prediction, utilizing digitized tissue specimen images to automate detection of cancer on pathology slides, and combining patient clinical data, biomarkers, or gene expression to assist disease diagnosis or outcome prediction. Some studies employed AI to plan brachytherapy and radiation treatments while others used video based or robotic automated performance metrics to objectively evaluate surgical skill. Compared to conventional statistical analysis, 71.8% of studies concluded that AI is superior in diagnosis and outcome prediction. CONCLUSION AI has been widely adopted in urology. Compared to conventional statistics AI approaches are more accurate in prediction and more explorative for analyzing large data cohorts. With an increasing library of patient data accessible to clinicians, AI may help facilitate evidence-based and individualized patient care.
Collapse
Affiliation(s)
- Jian Chen
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| | - Daphne Remulla
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| | - Jessica H Nguyen
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| | - Aastha Dua
- Computer Science Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yan Liu
- Computer Science Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Prokar Dasgupta
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| | - Andrew J Hung
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, University of Southern California Institute of Urology, Los Angeles, CA, USA
| |
Collapse
|
164
|
Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison With Expert-Level Radiologists. AJR Am J Roentgenol 2019; 214:W44-W54. [PMID: 31553660 DOI: 10.2214/ajr.19.21617] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE. The objective of our study was to compare the performance of radiologicradiomic machine learning (ML) models and expert-level radiologists for differentiation of benign and malignant solid renal masses using contrast-enhanced CT examinations. MATERIALS AND METHODS. This retrospective study included a cohort of 254 renal cell carcinomas (RCCs) (190 clear cell RCCs [ccRCCs], 38 chromophobe RCCs [chrRCCs], and 26 papillary RCCs [pRCCs]), 26 fat-poor angioleiomyolipomas, and 10 oncocytomas with preoperative CT examinations. Lesions identified by four expert-level radiologists (> 3000 genitourinary CT and MRI studies) were manually segmented for radiologicradiomic analysis. Disease-specific support vector machine radiologic-radiomic ML models for classification of renal masses were trained and validated using a 10-fold cross-validation. Performance values for the expert-level radiologists and radiologic-radiomic ML models were compared using the McNemar test. RESULTS. The performance values for the four radiologists were as follows: sensitivity of 73.7-96.8% (median, 84.5%; variance, 122.7%) and specificity of 48.4-71.9% (median, 61.8%; variance, 161.6%) for differentiating ccRCCs from pRCCs and chrRCCs; sensitivity of 73.7-96.8% (median, 84.5%; variance, 122.7%) and specificity of 52.8-88.9% for differentiating ccRCCs from fat-poor angioleiomyolipomas and oncocytomas (median, 80.6%; variance, 269.1%); and sensitivity of 28.1-60.9% (median, 84.5%; variance, 122.7%) and specificity of 75.0-88.9% for differentiating pRCCs and chrRCCs from fat-poor angioleiomyolipomas and oncocytomas (median, 50.0%; variance, 191.1%). After a 10-fold cross-validation, the radiologic-radiomic ML model yielded the following performance values for differentiating ccRCCs from pRCCs and chrRCCs, ccRCCs from fat-poor angioleiomyolipomas and oncocytomas, and pRCCs and chrRCCs from fat-poor angioleiomyolipomas and oncocytomas: a sensitivity of 90.0%, 86.3%, and 73.4% and a specificity of 89.1%, 83.3%, and 91.7%, respectively. CONCLUSION. Expert-level radiologists had obviously large variances in performance for differentiating benign from malignant solid renal masses. Radiologic-radiomic ML can be a potential way to improve interreader concordance and performance.
Collapse
|
165
|
Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network. Eur Radiol 2019; 30:1243-1253. [DOI: 10.1007/s00330-019-06417-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023]
|
166
|
Himoto Y, Veeraraghavan H, Zheng J, Zamarin D, Snyder A, Capanu M, Nougaret S, Vargas HA, Shitano F, Callahan M, Wang W, Sala E, Lakhman Y. Computed Tomography-Derived Radiomic Metrics Can Identify Responders to Immunotherapy in Ovarian Cancer. JCO Precis Oncol 2019; 3:1900038. [PMID: 32914033 DOI: 10.1200/po.19.00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To determine if radiomic measures of tumor heterogeneity derived from baseline contrast-enhanced computed tomography (CE-CT) are associated with durable clinical benefit and time to off-treatment in patients with recurrent ovarian cancer (OC) enrolled in prospective immunotherapeutic trials. MATERIALS AND METHODS This retrospective study included 75 patients with recurrent OC who were enrolled in prospective immunotherapeutic trials (n = 74) or treated off-label (n = 1) and had baseline CE-CT scans. Disease burden (total tumor volume, number of disease sites), radiomic measures of intertumor heterogeneity (cluster-site entropy, cluster-site dissimilarity), and intratumor heterogeneity of the largest lesion (Haralick texture features) were computed. Associations of clinical, conventional imaging, and radiomic measures with durable clinical benefit and time to off-treatment were examined. RESULTS In univariable analysis, fewer disease sites, lower intertumor heterogeneity (lower cluster-site entropy, lower cluster-site dissimilarity), and lower intratumor heterogeneity of the largest lesion (higher energy) were significantly associated with durable clinical benefit (P ≤ .031). More disease sites, presence of pleural disease and/or distant metastases, higher intertumor heterogeneity (higher cluster-site entropy, higher cluster-site dissimilarity), and higher intratumor heterogeneity of the largest lesion (higher Contrastlargest-lesion) were significantly associated with shorter time to off-treatment (P ≤ .034). In multivariable analysis, higher Energylargest-lesion (indicator of lower intratumor heterogeneity; P = .006; odds ratio, 1.41) and fewer disease sites (P = .003; odds ratio, 1.64) remained significant indicators of durable clinical benefit (multivariable model C-index, 0.821). Higher cluster-site dissimilarity (indicator of higher intertumor heterogeneity) was a modest but single independent indicator of shorter time to off-treatment (P = .004; hazard ratio, 1.19; C-index, 0.6). CONCLUSION Fewer disease sites and lower intra- and intertumor heterogeneity modeled from the baseline CE-CT may indicate better response of OC to immunotherapy.
Collapse
Affiliation(s)
- Yuki Himoto
- Memorial Sloan Kettering Cancer Center, New York, NY.,Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | | | - Junting Zheng
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dmitriy Zamarin
- Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medical College, New York, NY
| | - Alexandra Snyder
- Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medical College, New York, NY.,Merck, Kenilworth, NJ
| | | | - Stephanie Nougaret
- Memorial Sloan Kettering Cancer Center, New York, NY.,Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | | | - Fuki Shitano
- Memorial Sloan Kettering Cancer Center, New York, NY.,Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Margaret Callahan
- Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medical College, New York, NY
| | - Wei Wang
- Memorial Sloan Kettering Cancer Center, New York, NY.,Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Evis Sala
- Memorial Sloan Kettering Cancer Center, New York, NY.,Cancer Research UK Cambridge Center, Cambridge, United Kingdom
| | - Yulia Lakhman
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
167
|
Sun Y, Reynolds HM, Wraith D, Williams S, Finnegan ME, Mitchell C, Murphy D, Haworth A. Automatic stratification of prostate tumour aggressiveness using multiparametric MRI: a horizontal comparison of texture features. Acta Oncol 2019; 58:1118-1126. [PMID: 30994052 DOI: 10.1080/0284186x.2019.1598576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Previous studies have identified apparent diffusion coefficient (ADC) from diffusion-weighted imaging (DWI) can stratify prostate cancer into high- and low-grade disease (HG and LG, respectively). In this study, we consider the improvement of incorporating texture features (TFs) from T2-weighted (T2w) multiparametric magnetic resonance imaging (mpMRI) relative to mpMRI alone to predict HG and LG disease. Material and methods: In vivo mpMRI was acquired from 30 patients prior to radical prostatectomy. Sequences included T2w imaging, DWI and dynamic contrast enhanced (DCE) MRI. In vivo mpMRI data were co-registered with 'ground truth' histology. Tumours were delineated on the histology with Gleason scores (GSs) and classed as HG if GS ≥ 4 + 3, or LG if GS ≤ 3 + 4. Texture features based on three statistical families, namely the grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRLM) and the grey-level size zone matrix (GLSZM), were computed from T2w images. Logistic regression models were trained using different feature subsets to classify each lesion as either HG or LG. To avoid overfitting, fivefold cross validation was applied on feature selection, model training and performance evaluation. Performance of all models generated was evaluated using the area under the curve (AUC) method. Results: Consistent with previous studies, ADC was found to discriminate between HG and LG with an AUC of 0.76. Of the three statistical TF families, GLCM (plus select mpMRI features including ADC) scored the highest AUC (0.84) with GLRLM plus mpMRI similarly performing well (AUC = 0.82). When all TFs were considered in combination, an AUC of 0.91 (95% confidence interval 0.87-0.95) was achieved. Conclusions: Incorporating T2w TFs significantly improved model performance for classifying prostate tumour aggressiveness. This result, however, requires further validation in a larger patient cohort.
Collapse
Affiliation(s)
- Yu Sun
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- School of Physics, The University of Sydney, Sydney, Australia
| | - Hayley M. Reynolds
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Darren Wraith
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Scott Williams
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mary E. Finnegan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Annette Haworth
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- School of Physics, The University of Sydney, Sydney, Australia
| |
Collapse
|
168
|
Banna GL, Olivier T, Rundo F, Malapelle U, Fraggetta F, Libra M, Addeo A. The Promise of Digital Biopsy for the Prediction of Tumor Molecular Features and Clinical Outcomes Associated With Immunotherapy. Front Med (Lausanne) 2019; 6:172. [PMID: 31417906 PMCID: PMC6685050 DOI: 10.3389/fmed.2019.00172] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy by immune checkpoint inhibitors has emerged as an effective treatment for a slight proportion of patients with aggressive tumors. Currently, some molecular determinants, such as the expression of the programmed cell death ligand-1 (PD-L1) or the tumor mutational burden (TMB) have been used in the clinical practice as predictive biomarkers, although they fail in consistency, applicability, or reliability to precisely identify the responding patients mainly because of their spatial intratumoral heterogeneity. Therefore, new biomarkers for early prediction of patient response to immunotherapy, that could integrate several approaches, are eagerly sought. Novel methods of quantitative image analysis (such as radiomics or pathomics) might offer a comprehensive approach providing spatial and temporal information from macroscopic imaging features potentially predictive of underlying molecular drivers, tumor-immune microenvironment, tumor-related prognosis, and clinical outcome (in terms of response or toxicity) following immunotherapy. Preliminary results from radiomics and pathomics analysis have demonstrated their ability to correlate image features with PD-L1 tumor expression, high CD3 cell infiltration or CD8 cell expression, or to produce an image signature concordant with gene expression. Furthermore, the predictive power of radiomics and pathomics can be improved by combining information from other modalities, such as blood values or molecular features, leading to increase the accuracy of these models. Thus, “digital biopsy,” which could be defined by non-invasive and non-consuming digital techniques provided by radiomics and pathomics, may have the potential to allow for personalized approach for cancer patients treated with immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Luigi Banna
- Oncology Department, United Lincolnshire Hospital Trust, Lincoln, United Kingdom
| | - Timothée Olivier
- Oncology Department, University Hospital Geneva, Geneva, Switzerland
| | - Francesco Rundo
- ADG Central R&D - STMicroelectronics of Catania, Catania, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | | | - Massimo Libra
- Oncologic, Clinic and General Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
169
|
Toivonen J, Montoya Perez I, Movahedi P, Merisaari H, Pesola M, Taimen P, Boström PJ, Pohjankukka J, Kiviniemi A, Pahikkala T, Aronen HJ, Jambor I. Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization. PLoS One 2019; 14:e0217702. [PMID: 31283771 PMCID: PMC6613688 DOI: 10.1371/journal.pone.0217702] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose To develop and validate a classifier system for prediction of prostate cancer (PCa) Gleason score (GS) using radiomics and texture features of T2-weighted imaging (T2w), diffusion weighted imaging (DWI) acquired using high b values, and T2-mapping (T2). Methods T2w, DWI (12 b values, 0–2000 s/mm2), and T2 data sets of 62 patients with histologically confirmed PCa were acquired at 3T using surface array coils. The DWI data sets were post-processed using monoexponential and kurtosis models, while T2w was standardized to a common scale. Local statistics and 8 different radiomics/texture descriptors were utilized at different configurations to extract a total of 7105 unique per-tumor features. Regularized logistic regression with implicit feature selection and leave pair out cross validation was used to discriminate tumors with 3+3 vs >3+3 GS. Results In total, 100 PCa lesions were analysed, of those 20 and 80 had GS of 3+3 and >3+3, respectively. The best model performance was obtained by selecting the top 1% features of T2w, ADCm and K with ROC AUC of 0.88 (95% CI of 0.82–0.95). Features from T2 mapping provided little added value. The most useful texture features were based on the gray-level co-occurrence matrix, Gabor transform, and Zernike moments. Conclusion Texture feature analysis of DWI, post-processed using monoexponential and kurtosis models, and T2w demonstrated good classification performance for GS of PCa. In multisequence setting, the optimal radiomics based texture extraction methods and parameters differed between different image types.
Collapse
Affiliation(s)
- Jussi Toivonen
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
- Dept. of Future Technologies, University of Turku, Turku, Finland
- * E-mail:
| | - Ileana Montoya Perez
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
- Dept. of Future Technologies, University of Turku, Turku, Finland
| | - Parisa Movahedi
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
- Dept. of Future Technologies, University of Turku, Turku, Finland
| | - Harri Merisaari
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
- Dept. of Future Technologies, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| | - Marko Pesola
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
| | - Pekka Taimen
- Institute of Biomedicine, University of Turku and Dept. of Pathology, Turku University Hospital, Turku, Finland
| | | | | | - Aida Kiviniemi
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Tapio Pahikkala
- Dept. of Future Technologies, University of Turku, Turku, Finland
| | - Hannu J. Aronen
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Ivan Jambor
- Dept. of Diagnostic Radiology, University of Turku, Turku, Finland
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
170
|
Shahid AH, Singh M. Computational intelligence techniques for medical diagnosis and prognosis: Problems and current developments. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
171
|
Schwier M, van Griethuysen J, Vangel MG, Pieper S, Peled S, Tempany C, Aerts HJWL, Kikinis R, Fennessy FM, Fedorov A. Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci Rep 2019; 9:9441. [PMID: 31263116 PMCID: PMC6602944 DOI: 10.1038/s41598-019-45766-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
In this study we assessed the repeatability of radiomics features on small prostate tumors using test-retest Multiparametric Magnetic Resonance Imaging (mpMRI). The premise of radiomics is that quantitative image-based features can serve as biomarkers for detecting and characterizing disease. For such biomarkers to be useful, repeatability is a basic requirement, meaning its value must remain stable between two scans, if the conditions remain stable. We investigated repeatability of radiomics features under various preprocessing and extraction configurations including various image normalization schemes, different image pre-filtering, and different bin widths for image discretization. Although we found many radiomics features and preprocessing combinations with high repeatability (Intraclass Correlation Coefficient > 0.85), our results indicate that overall the repeatability is highly sensitive to the processing parameters. Neither image normalization, using a variety of approaches, nor the use of pre-filtering options resulted in consistent improvements in repeatability. We urge caution when interpreting radiomics features and advise paying close attention to the processing configuration details of reported results. Furthermore, we advocate reporting all processing details in radiomics studies and strongly recommend the use of open source implementations.
Collapse
Affiliation(s)
- Michael Schwier
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Mark G Vangel
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Sharon Peled
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clare Tempany
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hugo J W L Aerts
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ron Kikinis
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Fraunhofer MEVIS, Bremen, Germany
- Mathematics/Computer Science Faculty, University of Bremen, Bremen, Germany
| | - Fiona M Fennessy
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andriy Fedorov
- Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
172
|
Osman SOS, Leijenaar RTH, Cole AJ, Lyons CA, Hounsell AR, Prise KM, O'Sullivan JM, Lambin P, McGarry CK, Jain S. Computed Tomography-based Radiomics for Risk Stratification in Prostate Cancer. Int J Radiat Oncol Biol Phys 2019; 105:448-456. [PMID: 31254658 DOI: 10.1016/j.ijrobp.2019.06.2504] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023]
Abstract
PURPOSE To explore the role of Computed tomography (CT)-based radiomics features in prostate cancer risk stratification. METHODS AND MATERIALS The study population consisted of 506 patients with prostate cancer collected from a clinically annotated database. After applying exclusion criteria, 342 patients were included in the final analysis. CT-based radiomics features were extracted from planning CT scans for prostate gland-only structure, and machine learning was used to train models for Gleason score (GS) and risk group (RG) classifications. Repeated cross-validation was used. The discriminatory performance of the developed models was assessed using receiver operating characteristic area under the curve (AUC) analysis. RESULTS Classifiers using CT-based radiomics features distinguished between GS ≤ 6 versus GS ≥ 7 with AUC = 0.90 and GS 7(3 + 4) versus GS 7(4 + 3) with AUC = 0.98. Developed classifiers also showed excellent performance in distinguishing low versus high RG (AUC = 0.96) and low versus intermediate RG (AUC = 1.00), but poorer performance was observed for GS 7 versus GS > 7 (AUC = 0.69). An overall modest performance was observed for validation on holdout data sets with the highest AUC of 0.75 for classifiers of low versus high RG and an AUC of 0.70 for GS 7 versus GS > 7. CONCLUSIONS Our results show that radiomics features from routinely acquired planning CT scans could provide insights into prostate cancer aggressiveness in a noninvasive manner. Assessing models on training data sets, the classifiers were especially accurate in discerning high-risk from low-risk patients and in classifying GS 7 versus GS > 7 and GS 7(3 + 4) versus G7(4 + 3); however, classifiers were less adept at distinguishing high RG versus intermediate RG. External validation and prospective studies are warranted to verify the presented findings. These findings could potentially guide targeted radiation therapy strategies in radical intent radiation therapy for prostate cancer.
Collapse
Affiliation(s)
- Sarah O S Osman
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - Ralph T H Leijenaar
- The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Aidan J Cole
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Ciara A Lyons
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Alan R Hounsell
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Kevin M Prise
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Joe M O'Sullivan
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Philippe Lambin
- The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Conor K McGarry
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Suneil Jain
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
173
|
Abstract
PURPOSE OF REVIEW To briefly review the radiomics concept, its applications, and challenges in oncology in the era of precision medicine. RECENT FINDINGS Over the last 5 years, more than 500 studies have evaluated the role of radiomics to predict tumor diagnosis, genetic pattern, tumor response to therapy, and survival in multiple cancers. This new post-processing method is aimed at extracting multiple quantitative features from the image and converting them into mineable data. Radiomics models developed have shown promising results and may play a role in the near future in the daily patient management especially to assess tumor heterogeneity acting as a whole tumor virtual biopsy. For now, radiomics is limited by its lack of standardization; future challenges will be to provide robust and reproducible metrics extracted from large multicenter databases.
Collapse
|
174
|
Abstract
Radiomics and radiogenomics are attractive research topics in prostate cancer. Radiomics mainly focuses on extraction of quantitative information from medical imaging, whereas radiogenomics aims to correlate these imaging features to genomic data. The purpose of this review is to provide a brief overview summarizing recent progress in the application of radiomics-based approaches in prostate cancer and to discuss the potential role of radiogenomics in prostate cancer.
Collapse
|
175
|
Unenhanced CT Texture Analysis of Clear Cell Renal Cell Carcinomas: A Machine Learning-Based Study for Predicting Histopathologic Nuclear Grade. AJR Am J Roentgenol 2019; 212:W132-W139. [PMID: 30973779 DOI: 10.2214/ajr.18.20742] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE. The purpose of this study is to investigate the predictive performance of machine learning (ML)-based unenhanced CT texture analysis in distinguishing low (grades I and II) and high (grades III and IV) nuclear grade clear cell renal cell carcinomas (RCCs). MATERIALS AND METHODS. For this retrospective study, 81 patients with clear cell RCC (56 high and 25 low nuclear grade) were included from a public database. Using 2D manual segmentation, 744 texture features were extracted from unenhanced CT images. Dimension reduction was done in three consecutive steps: reproducibility analysis by two radiologists, collinearity analysis, and feature selection. Models were created using artificial neural network (ANN) and binary logistic regression, with and without synthetic minority oversampling technique (SMOTE), and were validated using 10-fold cross-validation. The reference standard was histopathologic nuclear grade (low vs high). RESULTS. Dimension reduction steps yielded five texture features for the ANN and six for the logistic regression algorithm. None of clinical variables was selected. ANN alone and ANN with SMOTE correctly classified 81.5% and 70.5%, respectively, of clear cell RCCs, with AUC values of 0.714 and 0.702, respectively. The logistic regression algorithm alone and with SMOTE correctly classified 75.3% and 62.5%, respectively, of the tumors, with AUC values of 0.656 and 0.666, respectively. The ANN performed better than the logistic regression (p < 0.05). No statistically significant difference was present between the model performances created with and without SMOTE (p > 0.05). CONCLUSION. ML-based unenhanced CT texture analysis using ANN can be a promising noninvasive method in predicting the nuclear grade of clear cell RCCs.
Collapse
|
176
|
Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, Yang G, Yan X, Zhang YD, Liu XS. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol 2019; 70:1133-1144. [PMID: 30876945 DOI: 10.1016/j.jhep.2019.02.023] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/30/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC. METHODS In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression. RESULTS Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality. CONCLUSIONS The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores. LAY SUMMARY The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence.
Collapse
Affiliation(s)
- Xun Xu
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hai-Long Zhang
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiu-Ping Liu
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shu-Wen Sun
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Zhang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Fei-Peng Zhu
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Xi-Sheng Liu
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
177
|
Clinically significant prostate cancer detection on MRI: A radiomic shape features study. Eur J Radiol 2019; 116:144-149. [PMID: 31153556 DOI: 10.1016/j.ejrad.2019.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Prostate multiparametric MRI (mpMRI) is the imaging modality of choice for detecting clinically significant prostate cancer (csPCa). Among various parameters, lesion maximum diameter and volume are currently considered of value to increase diagnostic accuracy. Quantitative radiomics allows for the extraction of more advanced shape features. Our aim was to assess which shape features derived from MRI index lesions correlate with csPCa presence. MATERIALS AND METHODS We retrospectively enrolled 75 consecutive subjects, who underwent mpMRI on a 3 T scanner, divided based on MRI index lesion Gleason Score in a csPCa group (GS > 3 + 4, n = 41) and a non-csPCa one (n = 34). Ten shape features were extracted both from axial T2-weighted and ADC maps images, after lesion tridimensional segmentation. Univariable and multivariable logistic analysis were used to evaluate the relationship between shape features and csPCa. Diagnostic performance was assessed measuring the area under the curve of the receiver operating characteristic (ROC) analysis. Diagnostic accuracy, sensitivity, and specificity were determined using the best cut-off on each ROC. A P value < 0.05 was considered statistically significant. RESULTS Univariable analysis demonstrated that almost every shape feature was statistically significant between csPCa e non-csPCa groups. However, multivariable analysis revealed that the parameter defined as surface area to volume ratio (SAVR), especially when extracted from ADC maps is the strongest independent predictor of csPCa among tested shape features. CONCLUSION The radiomic shape feature SAVR, extracted from ADC maps after index lesion segmentation, appears as a promising tool for csPCa detection.
Collapse
|
178
|
Using biparametric MRI radiomics signature to differentiate between benign and malignant prostate lesions. Eur J Radiol 2019; 114:38-44. [DOI: 10.1016/j.ejrad.2019.02.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 02/07/2023]
|
179
|
Xu X, Wang H, Du P, Zhang F, Li S, Zhang Z, Yuan J, Liang Z, Zhang X, Guo Y, Liu Y, Lu H. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors. J Magn Reson Imaging 2019; 50:1893-1904. [PMID: 30980695 DOI: 10.1002/jmri.26749] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Preoperative prediction of bladder cancer (BCa) recurrence risk is critical for individualized clinical management of BCa patients. PURPOSE To develop and validate a nomogram based on radiomics and clinical predictors for personalized prediction of the first 2 years (TFTY) recurrence risk. STUDY TYPE Retrospective. POPULATION Preoperative MRI datasets of 71 BCa patients (34 recurrent) were collected, and divided into training (n = 50) and validation cohorts (n = 21). FIELD STRENGTH/SEQUENCE 3.0T MRI/T2 -weighted (T2 W), multi-b-value diffusion-weighted (DW), and dynamic contrast-enhanced (DCE) sequences. ASSESSMENT Radiomics features were extracted from the T2 W, DW, apparent diffusion coefficient, and DCE images. A Rad_Score model was constructed using the support vector machine-based recursive feature elimination approach and a logistic regression model. Combined with the important clinical factors, including age, gender, grade, and muscle-invasive status (MIS) of the archived lesion, tumor size and number, surgery, and image signs like stalk and submucosal linear enhancement, a radiomics-clinical nomogram was developed, and its performance was evaluated in the training and the validation cohorts. The potential clinical usefulness was analyzed by the decision curve. STATISTICAL TESTS Univariate and multivariate analyses were performed to explore the independent predictors for BCa recurrence prediction. RESULTS Of the 1872 features, the 32 with the highest area under the curve (AUC) of receiver operating characteristic were selected for the Rad_Score calculation. The nomogram developed by two independent predictors, MIS and Rad_Score, showed good performance in the training (accuracy 88%, AUC 0.915, P << 0.01) and validation cohorts (accuracy 80.95%, AUC 0.838, P = 0.009). The decision curve exhibited when the risk threshold was larger than 0.3, more benefit was observed by using the radiomics-clinical nomogram than using the radiomics or clinical model alone. DATA CONCLUSION The proposed radiomics-clinical nomogram has potential in the preoperative prediction of TFTY BCa recurrence. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1893-1904.
Collapse
Affiliation(s)
- Xiaopan Xu
- School of Biomedical Engineering, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, PR China
| | - Huanjun Wang
- Department of Radiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Peng Du
- School of Biomedical Engineering, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, PR China
| | - Fan Zhang
- Department of Radiology, Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Shurong Li
- Department of Radiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhongwei Zhang
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Jing Yuan
- Mathematics and Statistics School, Xidian University, Xi'an, Shaanxi, PR China
| | - Zhengrong Liang
- Departments of Radiology, School of Computer Science and Biomedical Engineering, State University of New York, Stony Brook, New York, USA
| | - Xi Zhang
- School of Biomedical Engineering, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, PR China
| | - Yan Guo
- Department of Radiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yang Liu
- School of Biomedical Engineering, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, PR China
| | - Hongbing Lu
- School of Biomedical Engineering, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, PR China
| |
Collapse
|
180
|
Chirra P, Leo P, Yim M, Bloch BN, Rastinehad AR, Purysko A, Rosen M, Madabhushi A, Viswanath SE. Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral zone prostate tumors on MRI. J Med Imaging (Bellingham) 2019; 6:024502. [PMID: 31259199 PMCID: PMC6566001 DOI: 10.1117/1.jmi.6.2.024502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Recent advances in the field of radiomics have enabled the development of a number of prognostic and predictive imaging-based tools for a variety of diseases. However, wider clinical adoption of these tools is contingent on their generalizability across multiple sites and scanners. This may be particularly relevant in the context of radiomic features derived from T1- or T2-weighted magnetic resonance images (MRIs), where signal intensity values are known to lack tissue-specific meaning and vary based on differing acquisition protocols between institutions. We present the first empirical study of benchmarking five different radiomic feature families in terms of both reproducibility and discriminability in a multisite setting, specifically, for identifying prostate tumors in the peripheral zone on MRI. Our cohort comprised 147 patient T2-weighted MRI datasets from four different sites, all of which are first preprocessed to correct for acquisition-related artifacts such as bias field, differing voxel resolutions, and intensity drift (nonstandardness). About 406 three-dimensional voxel-wise radiomic features from five different families (gray, Haralick, gradient, Laws, and Gabor) were evaluated in a cross-site setting to determine (a) how reproducible they are within a relatively homogeneous nontumor tissue region and (b) how well they could discriminate tumor regions from nontumor regions. Our results demonstrate that a majority of the popular Haralick features are reproducible in over 99% of all cross-site comparisons, as well as achieve excellent cross-site discriminability (classification accuracy of ≈ 0.8 ). By contrast, a majority of Laws features are highly variable across sites (reproducible in < 75 % of all cross-site comparisons) as well as resulting in low cross-site classifier accuracies ( < 0.6 ), likely due to a large number of noisy filter responses that can be extracted. These trends suggest that only a subset of radiomic features and associated parameters may be both reproducible and discriminable enough for use within machine learning classifier schemes.
Collapse
Affiliation(s)
- Prathyush Chirra
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Patrick Leo
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Michael Yim
- Northeast Ohio Medical University, College of Medicine, Rootstown, Ohio, United States
| | - B. Nicolas Bloch
- Boston University School of Medicine, Department of Radiology, Boston, Massachusetts, United States
| | - Ardeshir R. Rastinehad
- Icahn School of Medicine at Mount Sinai, Department of Urology, New York, New York, United States
| | - Andrei Purysko
- Cleveland Clinic, Department of Radiology, Cleveland, Ohio, United States
| | - Mark Rosen
- Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Anant Madabhushi
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio, United States
| | - Satish E. Viswanath
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| |
Collapse
|
181
|
Abraham B, Nair MS. Computer-aided grading of prostate cancer from MRI images using Convolutional Neural Networks. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019. [DOI: 10.3233/jifs-169913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Bejoy Abraham
- Department of Computer Science, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam 691601, Kerala, India
| | - Madhu S. Nair
- Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| |
Collapse
|
182
|
Cova TFGG, Bento DJ, Nunes SCC. Computational Approaches in Theranostics: Mining and Predicting Cancer Data. Pharmaceutics 2019; 11:E119. [PMID: 30871264 PMCID: PMC6471740 DOI: 10.3390/pharmaceutics11030119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
The ability to understand the complexity of cancer-related data has been prompted by the applications of (1) computer and data sciences, including data mining, predictive analytics, machine learning, and artificial intelligence, and (2) advances in imaging technology and probe development. Computational modelling and simulation are systematic and cost-effective tools able to identify important temporal/spatial patterns (and relationships), characterize distinct molecular features of cancer states, and address other relevant aspects, including tumor detection and heterogeneity, progression and metastasis, and drug resistance. These approaches have provided invaluable insights for improving the experimental design of therapeutic delivery systems and for increasing the translational value of the results obtained from early and preclinical studies. The big question is: Could cancer theranostics be determined and controlled in silico? This review describes the recent progress in the development of computational models and methods used to facilitate research on the molecular basis of cancer and on the respective diagnosis and optimized treatment, with particular emphasis on the design and optimization of theranostic systems. The current role of computational approaches is providing innovative, incremental, and complementary data-driven solutions for the prediction, simplification, and characterization of cancer and intrinsic mechanisms, and to promote new data-intensive, accurate diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tânia F G G Cova
- Coimbra Chemistry Centre, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniel J Bento
- Coimbra Chemistry Centre, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Sandra C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
183
|
Sun Y, Reynolds HM, Parameswaran B, Wraith D, Finnegan ME, Williams S, Haworth A. Multiparametric MRI and radiomics in prostate cancer: a review. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:3-25. [PMID: 30762223 DOI: 10.1007/s13246-019-00730-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
Multiparametric MRI (mpMRI) is an imaging modality that combines anatomical MR imaging with one or more functional MRI sequences. It has become a versatile tool for detecting and characterising prostate cancer (PCa). The traditional role of mpMRI was confined to PCa staging, but due to the advanced imaging techniques, its role has expanded to various stages in clinical practises including tumour detection, disease monitor during active surveillance and sequential imaging for patient follow-up. Meanwhile, with the growing speed of data generation and the increasing volume of imaging data, it is highly demanded to apply computerised methods to process mpMRI data and extract useful information. Hence quantitative analysis for imaging data using radiomics has become an emerging paradigm. The application of radiomics approaches in prostate cancer has not only enabled automatic localisation of the disease but also provided a non-invasive solution to assess tumour biology (e.g. aggressiveness and the presence of hypoxia). This article reviews mpMRI and its expanding role in PCa detection, staging and patient management. Following that, an overview of prostate radiomics will be provided, with a special focus on its current applications as well as its future directions.
Collapse
Affiliation(s)
- Yu Sun
- University of Sydney, Sydney, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Darren Wraith
- Queensland University of Technology, Brisbane, Australia
| | - Mary E Finnegan
- Imperial College Healthcare NHS Trust, London, UK.,Imperial College London, London, UK
| | | | | |
Collapse
|
184
|
Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images. Sci Rep 2019; 9:1570. [PMID: 30733585 PMCID: PMC6367324 DOI: 10.1038/s41598-018-38381-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment.
Collapse
|
185
|
Feng QX, Liu C, Qi L, Sun SW, Song Y, Yang G, Zhang YD, Liu XS. An Intelligent Clinical Decision Support System for Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer. J Am Coll Radiol 2019; 16:952-960. [PMID: 30733162 DOI: 10.1016/j.jacr.2018.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The aim of this study was to develop and validate a computational clinical decision support system (DSS) on the basis of CT radiomics features for the prediction of lymph node (LN) metastasis in gastric cancer (GC) using machine learning-based analysis. METHODS Clinicopathologic and CT imaging data were retrospectively collected from 490 patients who were diagnosed with GC between January 2002 and December 2016. Radiomics features were extracted from venous-phase CT images. Relevant features were selected, ranked, and modeled using a support vector machine classifier in 326 training and validation data sets. A model test was performed independently in a test set (n = 164). Finally, a head-to-head comparison of the diagnostic performance of the DSS and that of the conventional staging criterion was performed. RESULTS Two hundred ninety-seven of the 490 patients examined had histopathologic evidence of LN metastasis, yielding a 60.6% metastatic rate. The area under the curve for predicting LN+ was 0.824 (95% confidence interval, 0.804-0.847) for the DSS in the training and validation data and 0.764 (95% confidence interval, 0.699-0.833) in the test data. The calibration plots showed good concordance between the predicted and observed probability of LN+ using the DSS approach. The DSS was better able to predict LN metastasis than the conventional staging criterion in the training and validation data (accuracy 76.4% versus 63.5%) and in the test data (accuracy 71.3% versus 63.2%) CONCLUSIONS: A DSS based on 13 "worrisome" radiomics features appears to be a promising tool for the preoperative prediction of LN status in patients with GC.
Collapse
Affiliation(s)
- Qiu-Xia Feng
- Department of Radiology, First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Department of Radiology, First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Liang Qi
- Department of Radiology, First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Shu-Wen Sun
- Department of Radiology, First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yang Song
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yu-Dong Zhang
- Department of Radiology, First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Xi-Sheng Liu
- Department of Radiology, First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| |
Collapse
|
186
|
Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas. J Cancer Res Clin Oncol 2019; 145:543-550. [PMID: 30719536 PMCID: PMC6394679 DOI: 10.1007/s00432-018-2787-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Purpose Reliable and accurate predictive models are necessary to drive the success of radiomics. Our aim was to identify the optimal radiomics-based machine learning method for isocitrate dehydrogenase (IDH) genotype prediction in diffuse gliomas. Methods Eight classical machine learning methods were evaluated in terms of their stability and performance for pre-operative IDH genotype prediction. A total of 126 patients were enrolled for analysis. Overall, 704 radiomic features extracted from the pre-operative MRI images were analyzed. The patients were randomly assigned to either the training set or the validation set at a ratio of 2:1. Feature selection and classification model training were done using the training set, whereas the predictive performance and stability of the model were independently assessed using the validation set. Results Random Forest (RF) showed high predictive performance (accuracy 0.885 ± 0.041, AUC 0.931 ± 0.036), whereas neural network (NN) (accuracy 0.829 ± 0.064, AUC 0.878 ± 0.052) and flexible discriminant analysis (FDA) (accuracy 0.851 ± 0.049, AUC 0.875 ± 0.057) displayed low predictive performance. With regard to stability, RF also showed high robustness against data perturbation (relative standard deviations, RSD 3.87%). Conclusions RF is a promising machine learning method in predicting IDH genotype. Development of an accurate and reliable model can assist in the initial diagnostic evaluation and treatment planning for diffuse glioma patients. Electronic supplementary material The online version of this article (10.1007/s00432-018-2787-1) contains supplementary material, which is available to authorized users.
Collapse
|
187
|
Jensen C, Carl J, Boesen L, Langkilde NC, Østergaard LR. Assessment of prostate cancer prognostic Gleason grade group using zonal-specific features extracted from biparametric MRI using a KNN classifier. J Appl Clin Med Phys 2019; 20:146-153. [PMID: 30712281 PMCID: PMC6370983 DOI: 10.1002/acm2.12542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose To automatically assess the aggressiveness of prostate cancer (PCa) lesions using zonal‐specific image features extracted from diffusion weighted imaging (DWI) and T2W MRI. Methods Region of interest was extracted from DWI (peripheral zone) and T2W MRI (transitional zone and anterior fibromuscular stroma) around the center of 112 PCa lesions from 99 patients. Image histogram and texture features, 38 in total, were used together with a k‐nearest neighbor classifier to classify lesions into their respective prognostic Grade Group (GG) (proposed by the International Society of Urological Pathology 2014 consensus conference). A semi‐exhaustive feature search was performed (1–6 features in each feature set) and validated using threefold stratified cross validation in a one‐versus‐rest classification setup. Results Classifying PCa lesions into GGs resulted in AUC of 0.87, 0.88, 0.96, 0.98, and 0.91 for GG1, GG2, GG1 + 2, GG3, and GG4 + 5 for the peripheral zone, respectively. The results for transitional zone and anterior fibromuscular stroma were AUC of 0.85, 0.89, 0.83, 0.94, and 0.86 for GG1, GG2, GG1 + 2, GG3, and GG4 + 5, respectively. CONCLUSION This study showed promising results with reasonable AUC values for classification of all GG indicating that zonal‐specific imaging features from DWI and T2W MRI can be used to differentiate between PCa lesions of various aggressiveness.
Collapse
Affiliation(s)
- Carina Jensen
- Department of Medical Physics, Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper Carl
- Department of Oncology, Naestved Sygehus, Zealand University Hospital, Roskilde, Denmark
| | - Lars Boesen
- Department of Urology, Herlev Gentofte University Hospital, Herlev, Denmark
| | | | | |
Collapse
|
188
|
Wu M, Krishna S, Thornhill RE, Flood TA, McInnes MD, Schieda N. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis. J Magn Reson Imaging 2019; 50:940-950. [DOI: 10.1002/jmri.26674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mark Wu
- Department of Medical Imaging; Ottawa Hospital, University of Ottawa; Ontario Canada
| | - Satheesh Krishna
- Joint Department of Medical Imaging; University Health Network, Mount Sinai Hospital, Women's College Hospital, University of Toronto; Ontario Canada
| | - Rebecca E. Thornhill
- Department of Medical Imaging; Ottawa Hospital, University of Ottawa; Ontario Canada
| | - Trevor A. Flood
- Department of Anatomical Pathology; Ottawa Hospital, University of Ottawa; Ontario Canada
| | - Matthew D.F. McInnes
- Department of Medical Imaging; Ottawa Hospital, University of Ottawa; Ontario Canada
| | - Nicola Schieda
- Department of Medical Imaging; Ottawa Hospital, University of Ottawa; Ontario Canada
| |
Collapse
|
189
|
Steiger P, Sood R. How Can Radiomics Be Consistently Applied across Imagers and Institutions? Radiology 2019; 291:60-61. [PMID: 30694167 DOI: 10.1148/radiol.2019190051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Steiger
- From the Department of Scientific and Medical Services, Parexel Informatics, Parexel International, 2 Federal St, Billerica, MA 01820
| | - Rohit Sood
- From the Department of Scientific and Medical Services, Parexel Informatics, Parexel International, 2 Federal St, Billerica, MA 01820
| |
Collapse
|
190
|
Yuan Y, Qin W, Buyyounouski M, Ibragimov B, Hancock S, Han B, Xing L. Prostate cancer classification with multiparametric MRI transfer learning model. Med Phys 2019; 46:756-765. [DOI: 10.1002/mp.13367] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yixuan Yuan
- Department of Electronic Engineering City University of Hong Kong Kowloon Tong Hong Kong
- Department of Radiation Oncology Stanford University Stanford 94305USA
| | - Wenjian Qin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055People's Republic of China
| | - Mark Buyyounouski
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055People's Republic of China
| | - Bulat Ibragimov
- Department of Radiation Oncology Stanford University Stanford 94305USA
| | - Steve Hancock
- Department of Radiation Oncology Stanford University Stanford 94305USA
| | - Bin Han
- Department of Radiation Oncology Stanford University Stanford 94305USA
| | - Lei Xing
- Department of Radiation Oncology Stanford University Stanford 94305USA
| |
Collapse
|
191
|
Abdollahi H, Mofid B, Shiri I, Razzaghdoust A, Saadipoor A, Mahdavi A, Galandooz HM, Mahdavi SR. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med 2019; 124:555-567. [PMID: 30607868 DOI: 10.1007/s11547-018-0966-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To develop different radiomic models based on the magnetic resonance imaging (MRI) radiomic features and machine learning methods to predict early intensity-modulated radiation therapy (IMRT) response, Gleason scores (GS) and prostate cancer (Pca) stages. METHODS Thirty-three Pca patients were included. All patients underwent pre- and post-IMRT T2-weighted (T2 W) and apparent diffusing coefficient (ADC) MRI. IMRT response was calculated in terms of changes in the ADC value, and patients were divided as responders and non-responders. A wide range of radiomic features from different feature sets were extracted from all T2 W and ADC images. Univariate radiomic analysis was performed to find highly correlated radiomic features with IMRT response, and a paired t test was used to find significant features between responders and non-responders. To find high predictive radiomic models, tenfold cross-validation as the criterion for feature selection and classification was applied on the pre-, post- and delta IMRT radiomic features, and area under the curve (AUC) of receiver operating characteristics was calculated as model performance value. RESULTS Of 33 patients, 15 patients (45%) were found as responders. Univariate analysis showed 20 highly correlated radiomic features with IMRT response (20 ADC and 20 T2). Two and fifteen T2 and ADC radiomic features were found as significant (P-value ≤ 0.05) features between responders and non-responders, respectively. Several cross-combined predictive radiomic models were obtained, and post-T2 radiomic models were found as high predictive models (AUC 0.632) followed by pre-ADC (AUC 0.626) and pre-T2 (AUC 0.61). For GS prediction, T2 W radiomic models were found as more predictive (mean AUC 0.739) rather than ADC models (mean AUC 0.70), while for stage prediction, ADC models had higher prediction performance (mean AUC 0.675). CONCLUSIONS Radiomic models developed by MR image features and machine learning approaches are noninvasive and easy methods for personalized prostate cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hamid Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Mofid
- Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Isaac Shiri
- Biomedical and Health Informatics, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Razzaghdoust
- Urology and Nephrology Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Saadipoor
- Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahdavi
- Department of Radiology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki Galandooz
- Faculty of Computer Science and Engineering, Image Processing and Distributed System Lab, Shahid Beheshti University, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
192
|
Abraham B, Nair MS. Automated grading of prostate cancer using convolutional neural network and ordinal class classifier. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
193
|
Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B. Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis. Front Oncol 2018; 8:630. [PMID: 30619764 PMCID: PMC6305278 DOI: 10.3389/fonc.2018.00630] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose: Use of quantitative imaging features and encoding the intra-tumoral heterogeneity from multi-parametric magnetic resonance imaging (mpMRI) for the prediction of Gleason score is gaining attention as a non-invasive biomarker for prostate cancer (PCa). This study tested the hypothesis that radiomic features, extracted from mpMRI, could predict the Gleason score pattern of patients with PCa. Methods: This analysis included T2-weighted (T2-WI) and apparent diffusion coefficient (ADC, computed from diffusion-weighted imaging) scans of 99 PCa patients from The Cancer Imaging Archive (TCIA). A total of 41 radiomic features were calculated from a local tumor sub-volume (i.e., regions of interest) that is determined by a centroid coordinate of PCa volume, grouped based on their Gleason score patterns. Kruskal-Wallis and Spearman's rank correlation tests were used to identify features related to Gleason score groups. Random forest (RF) classifier model was used to predict Gleason score groups and identify the most important signature among the 41 radiomic features. Results: Gleason score groups could be discriminated based on zone size percentage, large zone size emphasis and zone size non-uniformity values (p < 0.05). These features also showed a significant correlation between radiomic features and Gleason score groups with a correlation value of -0.35, 0.32, 0.42 for the large zone size emphasis, zone size non-uniformity and zone size percentage, respectively (corrected p < 0.05). RF classifier model achieved an average of the area under the curves of the receiver operating characteristic (ROC) of 83.40, 72.71, and 77.35% to predict Gleason score groups (G1) = 6; 6 < (G2) < (3 + 4) and (G3) ≥ 4 + 3, respectively. Conclusion: Our results suggest that the radiomic features can be used as a non-invasive biomarker to predict the Gleason score of the PCa patients.
Collapse
Affiliation(s)
- Ahmad Chaddad
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada.,Department of Automated Production Engineering, ETS, Montreal, QC, Canada
| | - Tamim Niazi
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada
| | - Stephan Probst
- Division of Nuclear Medicine, McGill University, Montreal, QC, Canada
| | - Franck Bladou
- Depatment of Urology, McGill University, Montreal, QC, Canada
| | - Maurice Anidjar
- Depatment of Urology, McGill University, Montreal, QC, Canada
| | - Boris Bahoric
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
194
|
The value of MR textural analysis in prostate cancer. Clin Radiol 2018; 74:876-885. [PMID: 30573283 DOI: 10.1016/j.crad.2018.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023]
Abstract
Current diagnosis and treatment stratification of patients with suspected prostate cancer relies on a combination of histological and magnetic resonance imaging (MRI) findings. The aim of this article is to provide a brief overview of prostate pathological grading as well as the relevant aspects of multiparametric (MRI) mpMRI, before indicating the potential that magnetic resonance textural analysis (MRTA) offers within prostate cancer. A review of the evidence base on MRTA in prostate cancer will enable discussion of the utility of this field while also indicating recommendations to future research. Radiomic textural analysis allows the assessment of spatial inter-relationships between pixels within an image by use of mathematical methods. First-order textural analysis is better understood and may have more clinical validity than higher-order textural features. Textural features extracted from apparent diffusion coefficient maps have shown the most potential for clinical utility in MRTA of prostate cancers. Future studies should aim to integrate machine learning techniques to better represent the role of MRTA in prostate cancer clinical practice. Nomenclature should be used to reduce misidentification between first-order and second-order energy and entropy. Automated methods of segmentation should be encouraged in order to reduce problems associated with inclusion of normal tissue within regions of interest. The retrospective and small-scale nature of most published studies, make it difficult to draw meaningful conclusions. Future larger prospective studies are required to validate the textural features indicated to have potential in characterisation and/or diagnosis of prostate cancer before translation into routine clinical practice.
Collapse
|
195
|
Napel S, Mu W, Jardim‐Perassi BV, Aerts HJWL, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 2018; 124:4633-4649. [PMID: 30383900 PMCID: PMC6482447 DOI: 10.1002/cncr.31630] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/07/2022]
Abstract
Although cancer often is referred to as "a disease of the genes," it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as "radiomics," can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1-2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of "deep learning," wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions ("habitats") within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology.
Collapse
Affiliation(s)
- Sandy Napel
- Department of RadiologyStanford UniversityStanfordCalifornia
| | - Wei Mu
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| | | | - Hugo J. W. L. Aerts
- Dana‐Farber Cancer Institute, Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Robert J. Gillies
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| |
Collapse
|
196
|
Fedorov A, Schwier M, Clunie D, Herz C, Pieper S, Kikinis R, Tempany C, Fennessy F. An annotated test-retest collection of prostate multiparametric MRI. Sci Data 2018; 5:180281. [PMID: 30512014 PMCID: PMC6278692 DOI: 10.1038/sdata.2018.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Multiparametric Magnetic Resonance Imaging (mpMRI) is widely used for characterizing prostate cancer. Standard of care use of mpMRI in clinic relies on visual interpretation of the images by an expert. mpMRI is also increasingly used as a quantitative imaging biomarker of the disease. Little is known about repeatability of such quantitative measurements, and no test-retest datasets have been available publicly to support investigation of the technical characteristics of the MRI-based quantification in the prostate. Here we present an mpMRI dataset consisting of baseline and repeat prostate MRI exams for 15 subjects, manually annotated to define regions corresponding to lesions and anatomical structures, and accompanied by region-based measurements. This dataset aims to support further investigation of the repeatability of mpMRI-derived quantitative prostate measurements, study of the robustness and reliability of the automated analysis approaches, and to support development and validation of new image analysis techniques. The manuscript can also serve as an example of the use of DICOM for standardized encoding of the image annotation and quantification results.
Collapse
Affiliation(s)
- Andriy Fedorov
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Schwier
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Christian Herz
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ron Kikinis
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Fraunhofer MEVIS, Bremen, Germany
- Mathematics/Computer Science Faculty, University of Bremen, Bremen, Germany
| | - Clare Tempany
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fiona Fennessy
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
197
|
Tschudi Y, Pollack A, Punnen S, Ford JC, Chang YC, Soodana-Prakash N, Breto AL, Kwon D, Munera F, Abramowitz MC, Kryvenko ON, Stoyanova R. Automatic Detection of Prostate Tumor Habitats using Diffusion MRI. Sci Rep 2018; 8:16801. [PMID: 30429515 PMCID: PMC6235961 DOI: 10.1038/s41598-018-34916-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/02/2018] [Indexed: 01/11/2023] Open
Abstract
A procedure for identification of optimal Apparent Diffusion Coefficient (ADC) thresholds for automatic delineation of prostatic lesions with restricted diffusion at differing risk for cancer was developed. The relationship between the size of the identified Volumes of Interest (VOIs) and Gleason Score (GS) was evaluated. Patients with multiparametric (mp)MRI, acquired prior to radical prostatectomy (RP) (n = 18), mpMRI-ultrasound fused (MRI-US) (n = 21) or template biopsies (n = 139) were analyzed. A search algorithm, spanning ADC thresholds in 50 µm2/s increments, determined VOIs that were matched to RP tumor nodules. Three ADC thresholds for both peripheral zone (PZ) and transition zone (TZ) were identified for estimation of VOIs at low, intermediate, and high risk of prostate cancer. The determined ADC thresholds for low, intermediate and high risk in PZ/TZ were: 900/800; 1100/850; and 1300/1050 µm2/s. The correlation coefficients between the size of the high/intermediate/low risk VOIs and GS in the three cohorts were 0.771/0.778/0.369, 0.561/0.457/0.355 and 0.423/0.441/0.36 (p < 0.05). Low risk VOIs mapped all RP lesions; area under the curve (AUC) for intermediate risk VOIs to discriminate GS6 vs GS ≥ 7 was 0.852; for high risk VOIs to discriminate GS6,7 vs GS ≥ 8 was 0.952. In conclusion, the automatically delineated volumes in the prostate with restricted diffusion were found to strongly correlate with cancer aggressiveness.
Collapse
Affiliation(s)
- Yohann Tschudi
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanoj Punnen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yu-Cherng Chang
- University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Adrian L Breto
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deukwoo Kwon
- Biostatistics and Bioinformatics Shared Resources, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Felipe Munera
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oleksandr N Kryvenko
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
198
|
Armato SG, Huisman H, Drukker K, Hadjiiski L, Kirby JS, Petrick N, Redmond G, Giger ML, Cha K, Mamonov A, Kalpathy-Cramer J, Farahani K. PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. J Med Imaging (Bellingham) 2018; 5:044501. [PMID: 30840739 DOI: 10.1117/1.jmi.5.4.044501] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Grand challenges stimulate advances within the medical imaging research community; within a competitive yet friendly environment, they allow for a direct comparison of algorithms through a well-defined, centralized infrastructure. The tasks of the two-part PROSTATEx Challenges (the PROSTATEx Challenge and the PROSTATEx-2 Challenge) are (1) the computerized classification of clinically significant prostate lesions and (2) the computerized determination of Gleason Grade Group in prostate cancer, both based on multiparametric magnetic resonance images. The challenges incorporate well-vetted cases for training and testing, a centralized performance assessment process to evaluate results, and an established infrastructure for case dissemination, communication, and result submission. In the PROSTATEx Challenge, 32 groups apply their computerized methods (71 methods total) to 208 prostate lesions in the test set. The area under the receiver operating characteristic curve for these methods in the task of differentiating between lesions that are and are not clinically significant ranged from 0.45 to 0.87; statistically significant differences in performance among the top-performing methods, however, are not observed. In the PROSTATEx-2 Challenge, 21 groups apply their computerized methods (43 methods total) to 70 prostate lesions in the test set. When compared with the reference standard, the quadratic-weighted kappa values for these methods in the task of assigning a five-point Gleason Grade Group to each lesion range from - 0.24 to 0.27; superiority to random guessing can be established for only two methods. When approached with a sense of commitment and scientific rigor, challenges foster interest in the designated task and encourage innovation in the field.
Collapse
Affiliation(s)
- Samuel G Armato
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Henkjan Huisman
- Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Karen Drukker
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Lubomir Hadjiiski
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States
| | - Justin S Kirby
- Frederick National Laboratory for Cancer Research, Cancer Imaging Program, Frederick, Maryland, United States
| | - Nicholas Petrick
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - George Redmond
- National Cancer Institute, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, Bethesda, Maryland, United States
| | - Maryellen L Giger
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Kenny Cha
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States.,U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, United States
| | - Artem Mamonov
- MGH/Harvard Medical School, Boston, Massachusetts, United States
| | | | - Keyvan Farahani
- National Cancer Institute, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, Bethesda, Maryland, United States
| |
Collapse
|
199
|
Construction of a Preoperative Radiologic-Risk Signature for Predicting the Pathologic Status of Prostate Cancer at Radical Prostatectomy. AJR Am J Roentgenol 2018; 211:805-811. [PMID: 29995494 DOI: 10.2214/ajr.17.19360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
200
|
Bonekamp D, Kohl S, Wiesenfarth M, Schelb P, Radtke JP, Götz M, Kickingereder P, Yaqubi K, Hitthaler B, Gählert N, Kuder TA, Deister F, Freitag M, Hohenfellner M, Hadaschik BA, Schlemmer HP, Maier-Hein KH. Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values. Radiology 2018; 289:128-137. [DOI: 10.1148/radiol.2018173064] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|