151
|
Abstract
This Account describes work done in these laboratories that has used synthetic, physical organic, and biological chemistry to understand the roles played by the nucleobases, sugars, and phosphates of DNA in the molecular recognition processes central to genetics. The number of nucleobases has been increased from 4 to 12, generating an artificially expanded genetic information system. This system is used today in the clinic to monitor the levels of HIV and hepatitis C viruses in patients, helping to manage patient care. Work with uncharged phosphate replacements suggests that a repeating charge is a universal feature of genetic molecules operating in water and will be found in extraterrestrial life (if it is ever encountered). The use of ribose may reflect prebiotic processes in the presence of borate-containing minerals, which stabilize ribose formed from simple organic precursors. A new field, synthetic biology, is emerging on the basis of these experiments, where chemistry mimics biological processes as complicated as Darwinian evolution.
Collapse
Affiliation(s)
- Steven A Benner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA.
| |
Collapse
|
152
|
Abstract
This report summarizes the content of the author's lecture given at the 9th ISSOL Conference on the 'Origin of Life' in Oaxaca on 2 July 2002*. The report consists of introductory remarks followed by a reproduction of the authentic sequence of slides shown during the lecture. Each slide figure is accompanied with a short commentary on the figure's content. The lecture dealt with the structure and the properties of TNA (alpha-threofuranosyl nucleic acid) and included results of some more recent chemical investigations that had been inspired by the simplicity of TNA's molecular architecture.
Collapse
Affiliation(s)
- Albert Eschenmoser
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH), Hönggerberg HCI, Zürich, Switzerland.
| |
Collapse
|
153
|
Abstract
Why did sex ever arise in the first place? Why it does not disappear in view of the greater efficiency of asexuals? These are clearly two different questions, and we suggest here that the solution for the origin of sex does not necessarily come from theoretical considerations based on currently existing genetic systems. Thus, while we agree with a number of authors in that the emergence of sex (understood as the exchange of genetic material between genomes) is deeply rooted in the origin of life and happened during the very early stages in the transition from individual genes ('replicators') to bacteria-like cells ('reproducers'), we challenge the idea that recombinational repair was the major selective force for the emergence of sex. Taking the stochastic corrector model as a starting point, we provide arguments that question the putative costs of redundancy in primitive protocells. In addition, if genes that cause intragenomic conflict (i.e., parasites) are taken into account, it is certainly wrong to suggest that cellular fusion would be beneficial at the population level (although this strong claim needs some qualifications). However, when a continuous input of deleterious mutations that impair the fitness of the protocell as a whole is considered in the model (in the realistic range in which stable mutant distributions of quasi-species within compartments are established), there are circumstances when sex could be beneficial as a side effect of the dynamic equilibrium between cellular fusion-mutation-selection. The scenario we have explored numerically is fully consistent with the idea that the universal ancestor was not a discrete entity but an ensemble of proto-organisms that exchanged much genetic information.
Collapse
Affiliation(s)
- Mauro Santos
- Collegium Budapest, Institute for Advanced Study, Szentháromság u. 2, Budapest, Hungary.
| | | | | |
Collapse
|
154
|
Ingar AA, Luke RWA, Hayter BR, Sutherland JD. Synthesis of cytidine ribonucleotides by stepwise assembly of the heterocycle on a sugar phosphate. Chembiochem 2003; 4:504-7. [PMID: 12794860 DOI: 10.1002/cbic.200300554] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although various syntheses of the nucleic acid bases exist and ribose is a product of the formose reaction, no prebiotically plausible methods for attaching pyrimidine bases to ribose to give nucleosides have been described. Kinetic and thermodynamic factors are thought to mitigate against such condensation reactions in aqueous solution. This inability to produce pyrimidine nucleosides and hence nucleotides is a major stumbling block of the "RNA World" hypothesis and has led to suggestions of alternative nucleic acids as evolutionary precursors to RNA. Here, we show that a process in which the base is assembled in stages on a sugar phosphate can produce cytidine nucleotides. The sequential action of cyanamide and cyanoacetylene on arabinose-3-phosphate produces cytidine-2',3'-cyclophosphate and arabinocytidine-3'-phosphate.
Collapse
Affiliation(s)
- Abdul-Aziz Ingar
- Department of Chemistry The University of Manchester Oxford Road, Manchester M13 9PL, UK
| | | | | | | |
Collapse
|
155
|
Kypr J, Kejnovská I, Vorlícková M. DNA homoduplexes containing no pyrimidine nucleotide. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:154-8. [PMID: 12679858 DOI: 10.1007/s00249-003-0287-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 01/20/2003] [Accepted: 02/11/2003] [Indexed: 10/25/2022]
Abstract
We show using polyacrylamide gel electrophoresis that guanine+adenine repeat strands of DNA associate into homoduplexes at neutral pH and moderate ionic strength. The homoduplexes melt in a cooperative way like the Watson-Crick duplex, although they contain no Watson-Crick base pair. Guanine is absolutely needed for the homoduplex formation and the homoduplex stability increases with the guanine content of the repeat. The present results have implications for the nature of the first replicators, as well as regarding forces stabilizing the duplexes of DNA.
Collapse
Affiliation(s)
- Jaroslav Kypr
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | |
Collapse
|
156
|
Affiliation(s)
- Christopher H House
- Penn State Astrobiology Research Center and Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
157
|
ISSOL '02. Abstracts of the 13th International Conference on the Origin of Life. Oaxaca, Mexico, June 30-July 5, 2002. ORIGINS LIFE EVOL B 2002; 32:405-546. [PMID: 12924381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
158
|
Abstract
All life that is known to exist on Earth today and all life for which there is evidence in the geological record seems to be of the same form--one based on DNA genomes and protein enzymes. Yet there are strong reasons to conclude that DNA- and protein-based life was preceded by a simpler life form based primarily on RNA. This earlier era is referred to as the 'RNA world', during which the genetic information resided in the sequence of RNA molecules and the phenotype derived from the catalytic properties of RNA.
Collapse
Affiliation(s)
- Gerald F Joyce
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
159
|
Davis BK. Molecular evolution before the origin of species. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:77-133. [PMID: 12225777 DOI: 10.1016/s0079-6107(02)00012-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids at conserved sites in the residue sequence of 10 ancient proteins, from 844 phylogenetically diverse sources, were used to specify their time of origin in the interval before species divergence from the last common ancestor (LCA). The order of amino acid addition to the genetic code, based on biosynthesis path length and other molecular evidence, provided a reference for evaluating the 'code age' of each residue profile examined. Significantly earlier estimates were obtained for conserved amino acid residues in these proteins than non-conserved residues. Evidence from the primary structure of 'fossil' proteins thus corroborated the biosynthetic order of amino acid addition to the code.Low potential ferredoxin (Fdxn) had the earliest residue profile among the proteins in this study. A phylogenetic tree for 82 prokaryote Fdxn sequences was rooted midway between bacteria and archaea branches. LCA Fdxn had a 23-residue antecedent whose residue profile matched mid-expansion phase codon assignments and included an amide residue. It contained a highly acidic N-terminal region and a non-charged C-terminal region, with all four cysteine residues. This small protein apparently anchored a [4Fe-4S] cluster, ligated by C-terminal cysteines, to a positively charged mineral surface, consistent with mediating e(-) transfer in a primordial surface system before cells appeared. Its negatively charged N-terminal 'attachment site' was highly mutable during evolution of ancestral Fdxn for Bacteria and Archaea, consistent with a loss of function after cell formation. An initial glutamate to lysine substitution may link 'attachment site' removal to early post-expansion phase entry of basic amino acids to the code. As proteins evidently anchored non-charged amide residues initially, surface attachment of cofactors and other functional groups emerges as a general function of pre-cell proteins.A phylogenetic tree of 107 proteolipid (PL) helix-1 sequences from H(+)-ATPase of bacteria, archaea and eukaryotes had its root between prokaryote branches. LCA PL h1 residue profile optimally fit a late expansion phase codon array. Sequence repeats in transmembrane PL helices h1 and h2 indicated formation of the archetypal PL hairpin structure involved successive tandem duplications, initiated within the gene for an 11-residue (or 4-residue) hydrophobic peptide. Ancestral PL h1 lacked acidic residues, in a fundamental departure from the prototype pre-cell protein. By this stage, proteins with a hydrophobic domain had evolved. Its non-polar, late expansion phase residue profile point to ancestral PL being a component of an early permeable cell membrane. Other indicators of cell formation about this stage of code evolution include phospholipid biosynthesis path length, FtsZ residue profile, and late entry of basic amino acids into the genetic code. Estimates based on conserved residues in prokaryote cell septation protein, FtsZ, and proteins involved with synthesis, transcription and replication of DNA revealed FtsZ, ribonucleotide reductase, RNA polymerase core subunits and 5'-->3' flap exonuclease, FEN-1, originated soon after cells putatively evolved. While reverse transcriptase and topoisomerase I, Topo I, appeared late in the pre-divergence era, when the genetic code was essentially complete. The transition from RNA genes to a DNA genome seemingly proceeded via formation of a DNA-RNA heteroduplex. These results suggest formation of DNA awaited evolution of a catalyst with a hydrophobic domain, capable of sequestering radical bearing intermediates in its synthesis from ribonucleotide precursors. Late formation of topology altering protein, Topo I, further suggests consolidation of genes into chromosomes followed synthesis of comparatively thermostable DNA strands.
Collapse
Affiliation(s)
- Brian K Davis
- Research Foundation of Southern California, Inc., La Jolla, CA 92037, USA.
| |
Collapse
|
160
|
Benner SA, Hutter D. Phosphates, DNA, and the search for nonterrean life: a second generation model for genetic molecules. Bioorg Chem 2002; 30:62-80. [PMID: 11955003 DOI: 10.1006/bioo.2001.1232] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphate groups are found and used widely in biological chemistry. We have asked whether phosphate groups are likely to be important to the functioning of genetic molecules, including DNA and RNA. From observations made on synthetic analogs of DNA and RNA where the phosphates are replaced by nonanionic linking groups, we infer a set of rules that highlight the importance of the phosphodiester backbone for the proper functioning of DNA as a genetic molecule. The polyanionic backbone appears to give DNA the capability of replication following simple rules, and evolving. The polyanionic nature of the backbone appears to be critical to prevent the single strands from folding, permitting them to act as templates, guiding the interaction between two strands to form a duplex in a way that permits simple rules to guide the molecular recognition event, and buffering the sensitivity of its physicochemical properties to changes in sequence. We argue that the feature of a polyelectrolyte (polyanion or polycation) may be required for a "self-sustaining chemical system capable of Darwinian evolution." The polyelectrolyte structure therefore may be a universal signature of life, regardless of its genesis, and unique to living forms as well.
Collapse
Affiliation(s)
- Steven A Benner
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville 32611-7200, USA.
| | | |
Collapse
|
161
|
Abstract
The hypothesis that life originated and evolved from linear informational molecules capable of facilitating their own catalytic replication is deeply entrenched. However, widespread acceptance of this paradigm seems oblivious to a lack of direct experimental support. Here, we outline the fundamental objections to the de novo appearance of linear, self-replicating polymers and examine an alternative hypothesis of template-directed coding of peptide catalysts by adsorbed purine bases. The bases (which encode biological information in modern nucleic acids) spontaneously self-organize into two-dimensional molecular solids adsorbed to the uncharged surfaces of crystalline minerals; their molecular arrangement is specified by hydrogen bonding rules between adjacent molecules and can possess the aperiodic complexity to encode putative protobiological information. The persistence of such information through self-reproduction, together with the capacity of adsorbed bases to exhibit enantiomorphism and effect amino acid discrimination, would seem to provide the necessary machinery for a primitive genetic coding mechanism.
Collapse
|
162
|
Affiliation(s)
- Martin A Line
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania 7001, Australia1
| |
Collapse
|
163
|
Cleaves HJ. The reactions of nitrogen heterocycles with acrolein: scope and prebiotic significance. ASTROBIOLOGY 2002; 2:403-415. [PMID: 12593779 DOI: 10.1089/153110702762470509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been suggested that life began with a self-replicating RNA molecule. However, after much research into the prebiotic synthesis of RNA, the difficulties encountered have lead some to hypothesize that RNA was preceded by a simpler molecule, one more easily synthesized prebiotically. Many of the proposed alternative molecules are based on acrolein, since it reacts readily with nucleophiles, such as the nucleobases, via Michael addition and is readily synthesized from formaldehyde and acetaldehyde. Reports regarding the reactions of nucleobases with concentrated acrolein solutions suggest that this is a plausible reaction mechanism, though there are also reports that the "incorrect" isomers are obtained. The scope and kinetics of the reaction of acrolein with various nitrogen heterocycles are reported here. Reactions of pyrimidines often give N(1) adducts as the major products. Reactions of purines often give N(9) adducts in good yield. The reactions are rapid under neutral to slightly alkaline conditions, and proceed at low temperatures and dilutions. The implications of these findings for the origin of life are discussed.
Collapse
Affiliation(s)
- H James Cleaves
- University of California, San Diego and The Scripps Institution of Oceanography, La Jolla, California 92093, USA.
| |
Collapse
|
164
|
Wu T, Orgel LE. Disulfide-linked oligonucleotide phosphorothioates: novel analogues of nucleic acids. J Mol Evol 2001; 32:274-7. [PMID: 11538257 DOI: 10.1007/bf02102183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The synthesis of phosphorothioate analogues of oligonucleotides by the oxidation of deoxyadenosine 3',5'-bisphosphorothioate (3) was attempted. Cyclization of 3 is much more efficient than oligomerization under all the conditions investigated. However, a preformed oligonucleotide carrying a 5'-terminal phosphorothioate group undergoes efficient chain-extension when oxidized in the presence of 3.
Collapse
Affiliation(s)
- T Wu
- The Salk Institute for Biological Studies, San Diego, CA 92186-5800, USA
| | | |
Collapse
|
165
|
Weber AL. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate. ORIGINS LIFE EVOL B 2001; 19:179-86. [PMID: 11538679 DOI: 10.1007/bf01808151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.
Collapse
Affiliation(s)
- A L Weber
- The Salk Institute for Biological Studies, USA
| |
Collapse
|
166
|
Stribling R, Miller SL. Attempted nonenzymatic template-directed oligomerizations on a polyadenylic acid template: implications for the nature of the first genetic material. J Mol Evol 2001; 32:282-8. [PMID: 11538258 DOI: 10.1007/bf02102185] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previous attempts to produce nonenzymatic template-directed oligomerizations of activated pyrimidines on polypurine templates have been unsuccessful. The only efficient reactions are those where the template is composed primarily of pyrimidines, especially cytosine. Because molecular evolution requires that a synthesized daughter polynucleotide be capable of acting as a template for the synthesis of the original polynucleotide, the one-way replication achieved thus far is inadequate to initiate an evolving system. Several uracil analogs were used in this investigation in order to search for possible replacements for uracil. The monomers used in this investigation were the imidazolides of UMP, xanthosine 5'-monophosphate, the bis-monophosphates of the acyclic nucleosides of uracil, and 2,4-quinazolinedione. The concentrations of various salts, buffers, pH, and temperature were among the different variables investigated in attempts to find conditions that would permit template-directed oligomerizations. Although the different monomers in this study demonstrated varying abilities to form very short oligomers, we were unable to detect any enhancement of this oligomerization that could be attributed to the poly(A) template. Although special conditions might be found that would allow purine-rich templates to work, these reactions cannot be considered robust. The results of our experiments suggest that pyrimidines were not part of the original replicating system on the primitive Earth. It has already been shown that ribose is an unlikely component of the first replicating systems, and we now suggest that phosphate was absent as well. This is due to the low solubility of phosphate in the present ocean (3 x 10(-6) M), as well as the difficulty of prebiotic activation of phosphates.
Collapse
Affiliation(s)
- R Stribling
- Department of Chemistry, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
167
|
Kolb VM, Dworkin JP, Miller SL. Alternative bases in the RNA world: the prebiotic synthesis of urazole and its ribosides. J Mol Evol 2001; 38:549-57. [PMID: 11539446 DOI: 10.1007/bf00175873] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Urazole is a five-membered heterocyclic compound which is isosteric with uracil's hydrogen-bonding segment. Urazole reacts spontaneoulsy with ribose (and other aldoses) to give a mixture of four ribosides: alpha and beta pyranosides and furanosides. This reaction occurs in aqueous solution at mild temperatures. Thermodynamic and kinetic parameters for the reaction of urazole with ribose were determined. In contrast, uracil is completely unreactive with ribose under these conditions. Urazole's unusual reactivity is ascribed to the hydrazine portion of the molecule. Urazole can be synthesized from biuret and hydrazine under prebiotic conditions. The prebiotic synthesis of guanazole, which is isosteric in part to diaminopyrimidine and cytosine, is accomplished from dicyandiamide and hydrazine. Kinetic parameters for both prebiotic reactions were measured. Urazole and guanazole are transparent in the UV, which would be a favorable property in the absence of an ozone layer on the early Earth. Urazole makes hydrogen bonds with adenine in DMSO similar to those of uracil, as established by H NMR. All of these properties make urazole an attractive potential precursor to uracil and guanazole a potential precursor to cytosine in the RNA or pre-RNA world.
Collapse
Affiliation(s)
- V M Kolb
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0317, USA
| | | | | |
Collapse
|
168
|
Koppitz M, Nielsen PE, Orgel LE. Formation of oligonucleotide-PNA-chimeras by template-directed ligation. J Am Chem Soc 2001; 120:4563-9. [PMID: 11541746 DOI: 10.1021/ja974190y] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA sequences have previously been reported to act as templates for the synthesis of PNA, and vice versa. A continuous evolutionary transition from an informational replicating system based on one polymer to a system based on the other would be facilitated if it were possible to form chimeras, that is molecules that contain monomers of both types. Here we show that ligation to form chimeras proceeds efficiently both on PNA and on DNA templates. The efficiency of ligation is primarily determined by the number of backbone bonds at the ligation site and the relative orientation of template and substrate strands. The most efficient reactions result in the formation of chimeras with ligation junctions resembling the structures of the backbones of PNA and DNA and with antiparallel alignment of both components of the chimera with the template, that is, ligations involving formation of 3'-phosphoramidate and 5'-ester bonds. However, double helices involving PNA are stable both with antiparallel and parallel orientation of the two strands. Ligation on PNA but not on DNA templates is, therefore, sometimes possible on templates with reversed orientation. The relevance of these findings to discussions of possible transitions between genetic systems is discussed.
Collapse
Affiliation(s)
- M Koppitz
- Pharmaceutical Chemistry Department IV, Schering AG, Berlin, Germany
| | | | | |
Collapse
|
169
|
Ferris JP. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure on phosphodiester bond formation. ORIGINS LIFE EVOL B 2001; 19:609-19. [PMID: 11538680 DOI: 10.1007/bf01808121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenine deoxynucleotides bind more strongly to Na(+)-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na(+)-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na(+)-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na(+)-montmorillonite yields 3'-d-2',5'-pApA while the reaction of 2'-d-3'-AMP yields almost exclusively 3',5'-cdAMP. The reaction of 5'-TMP under the same reaction conditions give 3',5'-cpTpT and 3',5'-pTpT while 3'-TMP gives mainly 3',5'-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na(+)-montmorillonite is omitted from the reaction mixture.
Collapse
Affiliation(s)
- J P Ferris
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| |
Collapse
|
170
|
Abstract
Bismonophosphoimidazolides of acyclic analogues of guanosine IV and adenosine V were synthesized. They undergo oligomerization in the presence of complementary polynucleotide templates. Details of their synthesis and their subsequent template- and nontemplate-directed reactions are described, and their possible relevance to the origin of life is discussed.
Collapse
Affiliation(s)
- M Tohidi
- The Salk Institute for Biological Studies, San Diego, California 92138, USA
| | | |
Collapse
|
171
|
Tohidi M, Orgel LE. Polymerization of the cyclic pyrophosphates of nucleosides and their analogues. J Mol Evol 2001; 30:97-103. [PMID: 11540911 DOI: 10.1007/bf02099935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
When 2'-deoxythymidine-3',5'-cyclic diphosphate, or the cyclic pyrophosphates of the acyclic nucleoside analogues II and IV are heated to 65-85 degrees C in the presence of imidazole, oligomers with lengths up to 20-30 are formed in excellent yield. This reaction provides a useful source of oligomers for use as templates in aqueous condensation reactions. In the absence of evidence to the contrary, we assume that the oligomers are atactic. The potential significance of this reaction in prebiotic chemistry is discussed.
Collapse
Affiliation(s)
- M Tohidi
- The Salk Institute for Biological Studies, San Diego, California 92138, USA
| | | |
Collapse
|
172
|
Ferris JP, Ertem G. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation. ORIGINS LIFE EVOL B 2001; 20:279-91. [PMID: 11537409 DOI: 10.1007/bf01808110] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
2'-d-5'-GMP and 2'-d-5'-AMP bind 2 times more strongly to montmorillonite 22A than do 2'-d-5'-CMP and 5'-TMP. The dinucleotide d(pG)2 forms in 9.2% yield and the cyclic dinucleotide c(dpG)2 in 5.4% yield in the reaction of 2'-d-5'-GMP with EDAC in the presence of montmorillonite 22A. The yield of d(pC)2 (2.0%) is significantly lower but comparable to that obtained from 5'-TMP. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5'-ImdpA on montmorillonite 22A. The cyclic nucleotide (3',5'-cdAMP) was obtained in 14% yield from 3'-ImdpA. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as a catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.
Collapse
Affiliation(s)
- J P Ferris
- Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | |
Collapse
|
173
|
Harada K, Orgel LE. Template-directed oligomerization of 5'-deoxy-5'-nucleosideacetic acid derivatives. ORIGINS LIFE EVOL B 2001; 20:151-60. [PMID: 11537407 DOI: 10.1007/bf01808276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
5'-Deoxy-5'-nucleosideacetic acids II-V are isostructural analogues of nucleotides with a carboxylate group in the place of the 5'-phosphate group. We have studied their oligomerization in aqueous solution using a water-soluble carbodiimide as the condensing agent in the presence or absence of an appropriate polynucleotide template. Condensation of adenylic acid analogues IIa, IIIa, and Va in the presence of polyuridylic acid were found to be the most efficient reactions. Cyclization of the activated monomers to lactones and the insolubility of the oligomers in aqueous solution were found to be obstacles to the efficient formation of long oligomers.
Collapse
Affiliation(s)
- K Harada
- The Salk Institute for Biological Studies, San Diego, CA 92138
| | | |
Collapse
|
174
|
Abstract
The origins of life and nanotechnology are two seemingly disparate areas of scientific investigation. However, the fundamental questions of life's beginnings and the applied construction of a Drexlerian nanotechnology both share a similar problem; how did and how can self-reproducing molecular machines originate? Here we draw attention to the coincidence between nanotechnology and origins research with particular attention paid to the spontaneous adsorption and scanning tunneling microscopy investigation of purine and pyrimidine bases self-organized into monolayers, adsorbed to the surfaces of crystalline solids. These molecules which encode biological information in nucleic acids, can form supramolecular architectures exhibiting enantiomorphism with the complexity to store and encode putative protobiological information. We conclude that the application of nanotechnology to the investigation of life's origins, and vice versa, could provide a viable route to an evolution-driven synthetic life.
Collapse
Affiliation(s)
- S J Sowerby
- Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
175
|
Kawamura K, Umehara M. Kinetic Analysis of the Temperature Dependence of the Template-Directed Formation of Oligoguanylate from the 5′-Phosphorimidazolide of Guanosine on a Poly(C) Template with Zn2+. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2001. [DOI: 10.1246/bcsj.74.927] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
176
|
Abstract
The continuity of abiotically formed bilayer membranes with similar structures in contemporary cellular life, and the requirement for microenvironments in which large and small molecules could be compartmentalized, support the idea that amphiphilic boundary structures contributed to the emergence of life. As an extension of this notion, we propose here a 'Lipid World' scenario as an early evolutionary step in the emergence of cellular life on Earth. This concept combines the potential chemical activities of lipids and other amphiphiles, with their capacity to undergo spontaneous self-organization into supramolecular structures such as micelles and bilayers. In particular, the documented chemical rate enhancements within lipid assemblies suggest that energy-dependent synthetic reactions could lead to the growth and increased abundance of certain amphiphilic assemblies. We further propose that selective processes might act on such assemblies, as suggested by our computer simulations of mutual catalysis among amphiphiles. As demonstrated also by other researchers, such mutual catalysis within random molecular assemblies could have led to a primordial homeostatic system displaying rudimentary life-like properties. Taken together, these concepts provide a theoretical framework, and suggest experimental tests for a Lipid World model for the origin of life.
Collapse
Affiliation(s)
- D Segré
- Dept. of Molecular Genetics, Crown Human Genome Center, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
177
|
Sowerby SJ, Cohn CA, Heckl WM, Holm NG. Differential adsorption of nucleic acid bases: Relevance to the origin of life. Proc Natl Acad Sci U S A 2001; 98:820-2. [PMID: 11158553 PMCID: PMC14666 DOI: 10.1073/pnas.98.3.820] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adsorption of organic molecules onto the surfaces of inorganic solids has long been considered a process relevant to the origin of life. We have determined the equilibrium adsorption isotherms for the nucleic acid purine and pyrimidine bases dissolved in water on the surface of crystalline graphite. The markedly different adsorption behavior of the bases describes an elutropic series: guanine > adenine > hypoxanthine > thymine > cytosine > uracil. We propose that such differential properties were relevant to the prebiotic chemistry of the bases and may have influenced the composition of the primordial genetic architecture.
Collapse
Affiliation(s)
- S J Sowerby
- Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
178
|
Abstract
Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators.
Collapse
Affiliation(s)
- E Szathmáry
- Collegium Budapest (Institute for Advanced Study), Hungary.
| |
Collapse
|
179
|
Kawamura K. Monitoring Hydrothermal Reactions on the Millisecond Time Scale Using a Micro-Tube Flow Reactor and Kinetics of ATP Hydrolysis for the RNA World Hypothesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2000. [DOI: 10.1246/bcsj.73.1805] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
180
|
Chiral self-assembled structures from biomolecules and synthetic analogues. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1068-7459(00)80004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
181
|
Kawamura K, Ferris JP. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine. ORIGINS LIFE EVOL B 1999; 29:563-91. [PMID: 10666741 DOI: 10.1023/a:1006648524187] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.
Collapse
Affiliation(s)
- K Kawamura
- Department of Applied Chemistry, Osaka Prefecture University, Sakai, Japan
| | | |
Collapse
|
182
|
Abstract
Comparative path lengths in amino acid biosynthesis and other molecular indicators of the timing of codon assignment were examined to reconstruct the main stages of code evolution. The codon tree obtained was rooted in the 4 N-fixing amino acids (Asp, Glu, Asn, Gln) and 16 triplets of the NAN set. This small, locally phased (commaless) code evidently arose from ambiguous translation on a poly(A) collector strand, in a surface reaction network. Copolymerisation of these amino acids yields polyanionic peptide chains, which could anchor uncharged amide residues to a positively charged mineral surface. From RNA virus structure and replication in vitro, the first genes seemed to be RNA segments spliced into tRNA. Expansion of the code reduced the risk of mutation to an unreadable codon. This step was conditional on initiation at the 5'-codon of a translated sequence. Incorporation of increasingly hydrophobic amino acids accompanied expansion. As codons of the NUN set were assigned most slowly, they received the most nonpolar amino acids. The origin of ferredoxin and Gln synthetase was traced to mid-expansion phase. Surface metabolism ceased by the end of code expansion, as cells bounded by a proteo-phospholipid membrane, with a protoATPase, had emerged. Incorporation of positively charged and aromatic amino acids followed. They entered the post-expansion code by codon capture. Synthesis of efficient enzymes with acid-base catalysis was then possible. Both types of aminoacyl-tRNA synthetases were attributed to this stage. tRNA sequence diversity and error rates in RNA replication indicate the code evolved within 20 million yr in the preIsuan era. These findings on the genetic code provide empirical evidence, from a contemporaneous source, that a surface reaction network, centred on C-fixing autocatalytic cycles, rapidly led to cellular life on Earth.
Collapse
Affiliation(s)
- B K Davis
- Research Foundation of Southern California Inc., La Jolla 92037, USA
| |
Collapse
|
183
|
Shapiro R. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc Natl Acad Sci U S A 1999; 96:4396-401. [PMID: 10200273 PMCID: PMC16343 DOI: 10.1073/pnas.96.8.4396] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of theories propose that RNA, or an RNA-like substance, played a role in the origin of life. Usually, such hypotheses presume that the Watson-Crick bases were readily available on prebiotic Earth, for spontaneous incorporation into a replicator. Cytosine, however, has not been reported in analyses of meteorites nor is it among the products of electric spark discharge experiments. The reported prebiotic syntheses of cytosine involve the reaction of cyanoacetylene (or its hydrolysis product, cyanoacetaldehyde), with cyanate, cyanogen, or urea. These substances undergo side reactions with common nucleophiles that appear to proceed more rapidly than cytosine formation. To favor cytosine formation, reactant concentrations are required that are implausible in a natural setting. Furthermore, cytosine is consumed by deamination (the half-life for deamination at 25 degrees C is approximately 340 yr) and other reactions. No reactions have been described thus far that would produce cytosine, even in a specialized local setting, at a rate sufficient to compensate for its decomposition. On the basis of this evidence, it appears quite unlikely that cytosine played a role in the origin of life. Theories that involve replicators that function without the Watson-Crick pairs, or no replicator at all, remain as viable alternatives.
Collapse
Affiliation(s)
- R Shapiro
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
184
|
Beier M, Reck F, Wagner T, Krishnamurthy R, Eschenmoser A. Chemical etiology of nucleic acid structure: comparing pentopyranosyl-(2'-->4') oligonucleotides with RNA. Science 1999; 283:699-703. [PMID: 9924032 DOI: 10.1126/science.283.5402.699] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
All four members of the family of pentopyranosyl-(2'-->4') oligonucleotide systems that contain beta-ribo-, beta-xylo-, alpha-lyxo-, or alpha-arabinopyranosyl units as repeating sugar building blocks are found to be much stronger Watson-Crick base-pairing systems than RNA. The alpha-arabinopyranosyl system is the strongest of all and in fact belongs to the strongest oligonucleotide base-pairing systems known. Whatever the chemical determinants by which nature selected RNA as a genetic system, maximization of base-pairing strengths within the domain of pentose-derived oligonucleotide systems was not the critical selection criterion.
Collapse
Affiliation(s)
- M Beier
- The Skaggs Institute for Chemical Biology at The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
185
|
Abstract
The synthesis and properties of novel RNA mimetics, oligoribonucleotide N3'-->P5' phosphoramidates, are described. These oligonucleotides contain 3'-aminoribonucleosides connected via N3'-->P5' phosphoramidate linkages, replacing the native RNA O3'-->P5' phosphodiester counterparts. The key monomers 2'-t-butyldimethylsilyl-3'-(monomethoxytrityl)-amino-5'-phospho ramidi tes were synthesized and used to prepare the oligonucleotide phosphoramidates using a solid phase methodology based on the phosphoramidite transfer reaction. Oligoribophosphoramidates are very resistant to enzymatic hydrolysis by snake venom phosphodiesterase. These compounds form stable duplexes with complementary natural phosphodiester DNA and RNA strands, as well as with 2'-deoxy N3'-->P5' phosphoramidates. The increase in melting temperature, Delta T m, was 5-14 degrees C relative to the 2'-deoxy phosphoramidates for decanucleotides. Also, the thermal stability of the ribophosphoramidatehomoduplex was noticeably higher (Delta T m +9.5 degrees C) than that for the isosequential 2'-deoxy phosphoramidate complex. Furthermore, the oligopyrimidine ribo N3'-->P5' phosphoramidate formed an extremely stable triplex with an oligopurine/oligopyrimidine DNA duplex with Delta T m +14.3 degrees C relative to the 2'-deoxy N3'-->P5' phosphoramidate counterpart. The properties of the oligoribonucleotide N3'-->P5' phosphoramidates indicate that these compounds can be used as hydrolytically stable structural and functional RNA mimetics.
Collapse
Affiliation(s)
- S M Gryaznov
- Lynx Therapeutics Inc., 3832 Bay Center Place, Hayward, CA 94545, USA.
| | | |
Collapse
|
186
|
Abstract
Competitive replication among RNA or DNA molecules at linear and non-linear rates of propagation has been reviewed from the perspective of a recent physicochemical model of molecular evolution and the findings are applied to pre-replication, prebiotic and biological evolution. A system of competitively replicating molecules was seen to follow a path of least action on both its thermodynamic and kinetic branch, in evolving toward steady state kinetics and equilibrium for the nucleotide condensation reaction. Stable and unstable states of coexistence, between competing molecular species, arise at nonlinear rates of propagation, and they derive from an equilibrium between kinetic forces. The de novo formation of self-replicating RNA molecules involves damping of these scalar forces, error tolerance and RNA driven strand separation. Increases in sequence complexity in the transition to self-replication does not exceed the free energy dissipated in RNA synthesis. Retrodiction of metabolic pathways and phylogenetic evidence point to the occurrence of three pre-replication metabolic systems, driven by autocatalytic C-fixation cycles. Thermodynamic and kinetic factors led to the replication take over. Biological evolution was found to involve resource capture, in addition to competition for a shared resource.
Collapse
Affiliation(s)
- B K Davis
- Research Foundation of Southern California Inc., La Jolla 92037, USA
| |
Collapse
|
187
|
Abstract
We do not understand the steps leading from the abiotic early earth to the RNA world. Consequently, we cannot estimate the time required for the origins of life. Attempts to circumvent this essential difficulty are based on misunderstandings of the nature of the problem.
Collapse
Affiliation(s)
- L E Orgel
- The Salk Institute for Biological Studies, San Diego, CA 92186, USA
| |
Collapse
|
188
|
Groebke K, Hunziker J, Fraser W, Peng L, Diederichsen U, Zimmermann K, Holzner A, Leumann C, Eschenmoser A. Warum Pentose- und nicht Hexose-Nucleins�uren?? Teil V. (Purin-Purin)-Basenpaarung in der homo-DNS-Reihe: Guanin, Isoguanin, 2,6-Diaminopurin und Xanthin. Helv Chim Acta 1998. [DOI: 10.1002/hlca.19980810302] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
189
|
|
190
|
Schmidt JG, Nielsen PE, Orgel LE. Information transfer from peptide nucleic acids to RNA by template-directed syntheses. Nucleic Acids Res 1997; 25:4797-802. [PMID: 9365259 PMCID: PMC147122 DOI: 10.1093/nar/25.23.4797] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peptide nucleic acids (PNAs) are uncharged analogs of DNA and RNA in which the ribose-phosphate backbone is substituted by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. A PNA C10 oligomer has been shown to act as template for efficient formation of oligoguanylates from activated guanosine ribonucleotides. In a previous paper we used heterosequences of DNA as templates in sequence-dependent polymerization of PNA dimers. In this paper we show that information can be transferred from PNA to RNA. We describe the reactions of activated mononucleotides on heterosequences of PNA. Adenylic, cytidylic and guanylic acids were incorporated into the products opposite their complement on PNA, although less efficiently than on DNA templates.
Collapse
Affiliation(s)
- J G Schmidt
- The Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
| | | | | |
Collapse
|
191
|
Abstract
In the sequel of some general remarks on a chemical etiology of nucleic-acid structure, the paper presents a reproduction of the sequence of slides which were shown in the author's lecture 'Pyranosyl-RNA' at the 8. ISSOL Conference in Orléans. Each slide figure is accompanied by a short explanatory comment.
Collapse
Affiliation(s)
- A Eschenmoser
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology, Zürich, Switzerland
| |
Collapse
|
192
|
Schmidt JG, Christensen L, Nielsen PE, Orgel LE. Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Res 1997; 25:4792-6. [PMID: 9365258 PMCID: PMC147107 DOI: 10.1093/nar/25.23.4792] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.
Collapse
Affiliation(s)
- J G Schmidt
- The Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
| | | | | | | |
Collapse
|
193
|
Abstract
Recent results show that the self-assembly of long homochiral oligomers of a nucleotide analogue can be achieved by ligation of short oligomers of chirally mixed composition. Do these results show how the RNA world might have arisen?
Collapse
Affiliation(s)
- A W Schwartz
- Evolutionary Biology Research Group, Faculty of Science, University of Nijmegen, The Netherlands
| |
Collapse
|
194
|
Abstract
The first systems of molecules having the properties of the living state presumably self-assembled from a mixture of organic compounds available on the prebiotic Earth. To carry out the polymer synthesis characteristic of all forms of life, such systems would require one or more sources of energy to activate monomers to be incorporated into polymers. Possible sources of energy for this process include heat, light energy, chemical energy, and ionic potentials across membranes. These energy sources are explored here, with a particular focus on mechanisms by which self-assembled molecular aggregates could capture the energy and use it to form chemical bonds in polymers. Based on available evidence, a reasonable conjecture is that membranous vesicles were present on the prebiotic Earth and that systems of replicating and catalytic macromolecules could become encapsulated in the vesicles. In the laboratory, this can be modeled by encapsulated polymerases prepared as liposomes. By an appropriate choice of lipids, the permeability properties of the liposomes can be adjusted so that ionic substrates permeate at a sufficient rate to provide a source of monomers for the enzymes, with the result that nucleic acids accumulate in the vesicles. Despite this progress, there is still no clear mechanism by which the free energy of light, ion gradients, or redox potential can be coupled to polymer bond formation in a protocellular structure.
Collapse
Affiliation(s)
- D W Deamer
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA.
| |
Collapse
|
195
|
Roberts C, Bandaru R, Switzer C. Theoretical and Experimental Study of Isoguanine and Isocytosine: Base Pairing in an Expanded Genetic System. J Am Chem Soc 1997. [DOI: 10.1021/ja970123s] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Roberts
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521
| | - Rajanikanth Bandaru
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521
| | - Christopher Switzer
- Contribution from the Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
196
|
|
197
|
Abstract
Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the kinetics of enantioselective processes? This study is an attempt to survey all existing hypotheses containing this phenomenon.
Collapse
Affiliation(s)
- V Avetisov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
198
|
Harris M, Usher D. A new amide-linked polynucleotide analog. ORIGINS LIFE EVOL B 1996. [DOI: 10.1007/bf02459834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
199
|
|
200
|
Reich Z, Schramm O, Brumfeld V, Minsky A. Chiral Discrimination in DNA−Peptide Interactions Involving Chiral DNA Mesophases: A Geometric Analysis. J Am Chem Soc 1996. [DOI: 10.1021/ja9600237] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ziv Reich
- Contribution from the Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Oded Schramm
- Contribution from the Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vlad Brumfeld
- Contribution from the Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Abraham Minsky
- Contribution from the Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|