151
|
Ikner A, Ashkenazi A. TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem 2011; 286:21546-54. [PMID: 21525013 DOI: 10.1074/jbc.m110.203745] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TNFSF12, CD255) (TWEAK) can stimulate apoptosis in certain cancer cells. Previous studies suggest that TWEAK activates cell death indirectly, by inducing TNFα-mediated autocrine signals. However, the underlying death-signaling mechanism has not been directly defined. Consistent with earlier work, TWEAK assembled a proximal signaling complex containing its cognate receptor FN14, the adaptor TRAF2, and cellular inhibitor of apoptosis protein 1 (cIAP1). Neither the death domain adaptor Fas-associated death domain nor the apoptosis-initiating protease caspase-8 associated with this primary complex. Rather, TWEAK induced TNFα secretion and TNF receptor 1-dependent assembly of a death-signaling complex containing receptor-interacting protein 1 (RIP1), FADD, and caspase-8. Knockdown of RIP1 by siRNA prevented TWEAK-induced association of FADD with caspase-8 but not formation of the FN14-TRAF2-cIAP1 complex and inhibited apoptosis activation. Depletion of the RIP1 E3 ubiquitin ligase cIAP1 enhanced assembly of the RIP1-FADD-caspase-8 complex and augmented cell death. Conversely, knockdown of the RIP1 deubiquitinase CYLD inhibited these functions. Depletion of FADD, caspase-8, BID, or BAX and BAK but not RIP3 attenuated TWEAK-induced cell death. Pharmacologic inhibition of the NF-κB pathway or siRNA knockdown of RelA attenuated TWEAK induction of TNFα and association of RIP1 with FADD and caspase-8. These results suggest that TWEAK triggers apoptosis by promoting assembly of a RIP1-FADD-caspse-8 complex via autocrine TNFα-TNFR1 signaling. The proapoptotic activity of TWEAK is modulated by cIAP1 and CYLD and engages both the extrinsic and intrinsic signaling pathways.
Collapse
Affiliation(s)
- Aminah Ikner
- Department of Molecular Oncology, Genentech, South San Francisco, California 94080, USA
| | | |
Collapse
|
152
|
Huang CS, Kawamura T, Peng X, Tochigi N, Shigemura N, Billiar TR, Nakao A, Toyoda Y. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation. Biochem Biophys Res Commun 2011; 408:253-8. [PMID: 21473852 DOI: 10.1016/j.bbrc.2011.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 02/08/2023]
Abstract
We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1h of ventilation and decreased NFκB DNA binding after 2h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway activation during VILI.
Collapse
Affiliation(s)
- Chien-Sheng Huang
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.
Collapse
|
154
|
Pandey AK, Sodhi A. Recombinant YopJ induces apoptotic cell death in macrophages through TLR2. Mol Immunol 2010; 48:392-8. [PMID: 21131052 DOI: 10.1016/j.molimm.2010.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 12/16/2022]
Abstract
Bacterial species evolved evasive maneuvers to bypass their recognition by the receptors primarily TLRs of the innate immune cells. We have reported that 3μg/ml of recombinant YopJ when provided extracellularly induced apoptosis in murine peritoneal macrophages in vitro. The present investigations demonstrate the role of TLR2 in apoptotic signals induced by rYopJ protein in murine peritoneal macrophages. The role of TLR2 in rYopJ induced macrophage apoptosis was shown by neutralization experiments and its co-immunoprecipitation with downstream molecule MyD88. The observed functional consequence of TLR2 neutralization were the inhibition of caspase-8 and caspase-3 activation, change in mitochondrial membrane potential (Δψm) and DNA fragmentation induced by rYopJ in macrophages. Further, rYopJ induced enhanced expression of IRAK-4, FADD, phosphorylation of IκB and p38 MAP kinase in macrophages. Pharmacological inhibitor of p38 MAP kinase and neutralization of TLR2 with neutralizing antibodies significantly inhibited the rYopJ induced caspases activation and DNA fragmentation, suggesting the possible involvement of TLR2 and p38 MAP kinase in rYopJ induced macrophages apoptosis.
Collapse
Affiliation(s)
- Ashok Kumar Pandey
- Faculty of Science, School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
155
|
Kisiswa L, Albon J, Morgan JE, Wride MA. Cellular inhibitor of apoptosis (cIAP1) is down-regulated during Retinal ganglion cell (RGC) maturation. Exp Eye Res 2010; 91:739-47. [DOI: 10.1016/j.exer.2010.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
156
|
Conze DB, Zhao Y, Ashwell JD. Non-canonical NF-κB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase-inactive c-IAP2. PLoS Biol 2010; 8:e1000518. [PMID: 21048983 PMCID: PMC2964333 DOI: 10.1371/journal.pbio.1000518] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/02/2010] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations between loci encoding MALT1 and c-IAP2 are common in MALT lymphomas. The resulting fusion proteins lack the c-IAP2 RING domain, the region responsible for its ubiquitin protein ligase (E3) activity. Ectopic expression of the fusion protein activates the canonical NF-κB signaling cascade, but how it does so is controversial and how it promotes MALT lymphoma is unknown. Considering recent reports implicating c-IAP1 and c-IAP2 E3 activity in repression of non-canonical NF-κB signaling, we asked if the c-IAP2/MALT fusion protein can initiate non-canonical NF-κB activation. Here we show that in addition to canonical activation, the fusion protein stabilizes NIK and activates non-canonical NF-κB. Canonical but not non-canonical activation depended on MALT1 paracaspase activity, and expression of E3-inactive c-IAP2 activated non-canonical NF-κB. Mice in which endogenous c-IAP2 was replaced with an E3-inactive mutant accumulated abnormal B cells with elevated non-canonical NF-κB and had increased numbers of B cells with a marginal zone phenotype, gut-associated lymphoid hyperplasia, and other features of MALT lymphoma. Thus, the c-IAP2/MALT1 fusion protein activates NF-κB by two distinct mechanisms, and loss of c-IAP2 E3 activity in vivo is sufficient to induce abnormalities common to MALT lymphoma.
Collapse
Affiliation(s)
- Dietrich B. Conze
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yongge Zhao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
157
|
TNF superfamily: a growing saga of kidney injury modulators. Mediators Inflamm 2010; 2010. [PMID: 20953353 PMCID: PMC2952810 DOI: 10.1155/2010/182958] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/31/2010] [Accepted: 09/06/2010] [Indexed: 12/30/2022] Open
Abstract
Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF) and Fas ligand regulate renal cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses. TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCl21 and CCL19 expression through NF-kappaB inducing kinase (NIK-) dependent RelB/NF-kappaB2 complexes. In vivo TWEAK promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily cytokines, including multipronged approaches targeting several cytokines should be further explored.
Collapse
|
158
|
Bava SV, Sreekanth CN, Thulasidasan AKT, Anto NP, Cheriyan VT, Puliyappadamba VT, Menon SG, Ravichandran SD, Anto RJ. Akt is upstream and MAPKs are downstream of NF-κB in paclitaxel-induced survival signaling events, which are down-regulated by curcumin contributing to their synergism. Int J Biochem Cell Biol 2010; 43:331-41. [PMID: 20883815 DOI: 10.1016/j.biocel.2010.09.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 11/30/2022]
Abstract
Paclitaxel is the most promising chemotherapeutic agent of plant origin despite its high cost and dose-limiting toxicity. Our earlier report has shown that cervical cancer cells can be sensitized by curcumin to paclitaxel-induced apoptosis through down-regulation of NF-κB and Akt. In the present study we have attempted to decipher the signaling pathways regulating the synergism of paclitaxel and curcumin. The study has clearly proved that Akt and NF-κB function successively in the sequence of paclitaxel induced signaling events where Akt is upstream of NF-κB. While inhibition of NF-κB led to complete inhibition of the synergism of paclitaxel and curcumin, inhibition of Akt brought about only partial reduction of the same, suggesting that, apart from Akt, there are other pathways induced by paclitaxel leading to NF-κB activation, which are also down-regulated by curcumin. Inactivation of NF-κB did not affect the activation of Akt and survivin, while that of Akt significantly inhibited NF-κB and completely inhibited up-regulation of survivin. Up-regulation of Cyclin-D1, Cox-2, XIAP and cIAP1 and phosphorylation of MAPKs, were completely inhibited on inactivation of NF-κB assigning a key regulatory role to NF-κB in the synergistic effect of paclitaxel and curcumin. While up-regulation of survivin by paclitaxel is regulated by Akt, independent of NF-κB, inactivation of neither Akt nor NF-κB produced any change in Bcl-2 level suggesting a distinct pathway for its action. As curcumin could effectively down-regulate all these survival signals induced by paclitaxel, we suggest it as a potent chemosensitizer to improve the therapeutic index of paclitaxel.
Collapse
Affiliation(s)
- Smitha V Bava
- Integrated Cancer Research Program, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695014, India
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Shakibaei M, Sung B, Sethi G, Aggarwal BB. TNF-alpha-induced mitochondrial alterations in human T cells requires FADD and caspase-8 activation but not RIP and caspase-3 activation. Antioxid Redox Signal 2010; 13:821-31. [PMID: 20136500 PMCID: PMC2935348 DOI: 10.1089/ars.2009.3036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although much is known about how TNF-alpha induces apoptosis in the presence of inhibitors of protein synthesis, little is known about how it induces apoptosis without these inhibitors. In this report we investigated temporal sequence of events induced by TNF-alpha in the absence of protein synthesis. Regardless of whether we measured the effects by plasma membrane phosphotidylserine accumulation, by DNA strand breaks, or activation of caspases, significant changes were observed only between 12-24 h of TNF-alpha treatment. One of the earliest changes observed after TNF-alpha treatment was mitochondrial swelling at 10 min; followed by cytochrome c and Smac release at 10-30 min, and then heterochromatin clumping occurred at 60 min. While genetic deletion of receptor-interaction protein (RIP) had no effect on TNF-alpha-induced mitochondrial damage, deletion of Fas-associated death domain (FADD) abolished the TNF-induced mitochondrial swelling. Since pan-caspase inhibitor z-VAD-fmk abolished the TNF-alpha-induced mitochondrial changes, z-DEVD-fmk, an inhibitor of caspase-3 had no effect, suggesting that TNF-alpha-induced mitochondrial changes or cytochrome c and Smac release requires caspase-8 but not caspase-3 activation. Overall, our results indicated that mitochondrial changes are early events in TNF-alpha-induced apoptosis and that these mitochondrial changes require recruitment of FADD and caspase-8 activation, but not caspase-3 activation or RIP recruitment.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | | | | |
Collapse
|
160
|
Hu B, Colletti LM. CXC receptor-2 knockout genotype increases X-linked inhibitor of apoptosis protein and protects mice from acetaminophen hepatotoxicity. Hepatology 2010; 52:691-702. [PMID: 20683965 PMCID: PMC2917773 DOI: 10.1002/hep.23715] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Although acetaminophen is a commonly used analgesic, it can be highly hepatotoxic. This study seeks to further investigate the mechanisms involved in acetaminophen-induced hepatotoxicity and the role of chemokine (C-X-C motif) receptor 2 (CXCR2) receptor/ligand interactions in the liver's response to and recovery from acetaminophen toxicity. The CXC chemokines and their receptor, CXCR2, are important inflammatory mediators and are involved in the control of some types of cellular proliferation. CXCR2 knockout mice exposed to a median lethal dose of acetaminophen had a significantly lower mortality rate than wild-type mice. This difference was at least partially attributable to a significantly decreased rate of apoptosis in CXCR2 knockout mice versus wild-type mice; there were no differences seen in hepatocyte proliferation in wild-type mice versus knockout mice after this injury. CONCLUSION The decreased rate of apoptosis in the knockout mice correlated with an almost undetectable and significantly decreased level of activated caspase-3 and significantly increased levels of X-linked inhibitor of apoptosis protein, which also correlated with increased levels of nuclear factor kappa B p52 and decreased levels of c-Jun N-terminal kinase; this provides a possible mechanism for the decrease in apoptosis seen in CXCR2 knockout mice.
Collapse
Affiliation(s)
- Bin Hu
- University of Michigan, Department of Surgery, Ann Arbor, MI, USA
| | | |
Collapse
|
161
|
Moon DO, Kim MO, Kang SH, Choi YH, Park SY, Kim GY. HA14-1 sensitizes TNF-α-induced apoptosis via inhibition of the NF-κB signaling pathway: Involvement of reactive oxygen species and JNK. Cancer Lett 2010; 292:111-8. [DOI: 10.1016/j.canlet.2009.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/22/2009] [Accepted: 11/19/2009] [Indexed: 01/16/2023]
|
162
|
Li P, Jayarama S, Ganesh L, Mordi D, Carr R, Kanteti P, Hay N, Prabhakar BS. Akt-phosphorylated mitogen-activated kinase-activating death domain protein (MADD) inhibits TRAIL-induced apoptosis by blocking Fas-associated death domain (FADD) association with death receptor 4. J Biol Chem 2010; 285:22713-22. [PMID: 20484047 DOI: 10.1074/jbc.m110.105692] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MADD plays an essential role in cancer cell survival. Abrogation of endogenous MADD expression results in significant spontaneous apoptosis and enhanced susceptibility to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, the regulation of MADD function is largely unknown. Here, we demonstrate that endogenous MADD is phosphorylated at three highly conserved sites by Akt, and only the phosphorylated MADD can directly interact with the TRAIL receptor DR4 thereby preventing Fas-associated death domain recruitment. However, in cells susceptible to TRAIL treatment, TRAIL induces a reduction in MADD phosphorylation levels resulting in MADD dissociation from, and Fas-associated death domain association with DR4, which allows death-inducing signaling complex (DISC) formation leading to apoptosis. Thus, the pro-survival function of MADD is dependent upon its phosphorylation by Akt. Because Akt is active in most cancer cells and phosphorylated MADD confers resistance to TRAIL-induced apoptosis, co-targeting Akt-MADD axis is likely to increase efficacy of TRAIL-based therapies.
Collapse
Affiliation(s)
- Peifeng Li
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Danelishvili L, Yamazaki Y, Selker J, Bermudez LE. Secreted Mycobacterium tuberculosis Rv3654c and Rv3655c proteins participate in the suppression of macrophage apoptosis. PLoS One 2010; 5:e10474. [PMID: 20454556 PMCID: PMC2864267 DOI: 10.1371/journal.pone.0010474] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/29/2010] [Indexed: 11/19/2022] Open
Abstract
Background Inhibition of macrophage apoptosis by Mycobacterium tuberculosis has been proposed as one of the virulence mechanisms whereby the pathogen avoids the host defense. The mechanisms by which M. tuberculosis H37Rv strain suppress apoptosis and escapes human macrophage killing was investigated. Methodology/Principal Findings The screening of a transposon mutant bank identified several mutants, which, in contrast to the wild-type bacterium, had impaired ability to inhibit apoptosis of macrophages. Among the identified genes, Rv3659c (31G12 mutant) belongs to an operon reminiscent of type IV pili. The Rv3654c and Rv3655c putative proteins in a seven-gene operon are secreted into the macrophage cytoplasm and suppress apoptosis by blocking the extrinsic pathway. The operon is highly expressed when the bacterium is within macrophages, compared to the expression level in the extracellular environment. Rv3654c recognizes the polypyrimidine tract binding Protein-associated Splicing Factor (PSF) and cleaves it, diminishing the availability of caspase-8. While M. tuberculosis inhibits apoptosis by the extrinsic pathway, the pathogen does not appear to affect the intrinsic pathway. Inactivation of the intrinsic pathway by pharmacologic agents afftects M. tuberculosis and induces cell necrosis. Likewise, inactivation of PSF by siRNA significantly decreased the level of caspase-8 in macrophages. Conclusion While M. tuberculosis inhibits the extrinsic pathway of apoptosis, it appears to activate the intrinsic pathway leading to macrophage necrosis as a potential exit strategy.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Yoshitaka Yamazaki
- Department of Infectious Diseases and Laboratory Medicine, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Jeannie Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
164
|
Flygare JA, Fairbrother WJ. Small-molecule pan-IAP antagonists: a patent review. Expert Opin Ther Pat 2010; 20:251-67. [PMID: 20100005 DOI: 10.1517/13543770903567077] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The inhibitor of apoptosis (IAP) proteins are critical regulators of cancer cell survival that have become important targets for therapeutic intervention in human malignancies. One strategy for targeting IAP proteins involves agents that mimic the amino terminus of the endogenous IAP protein antagonist second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) and thus block critical IAP protein interactions. AREAS COVERED IN THIS REVIEW This review of the IAP antagonist patent literature covers the period from 2000 to mid-2009. Over 50 patents and patent applications pertaining to IAP antagonists have been published over the past 10 years. In the case of several filings, only the original source is reviewed in this analysis. WHAT THE READER WILL GAIN Readers will gain an overview of IAP protein antagonist scaffolds, with representative examples including monovalent and bivalent Smac mimetics, and an understanding of their structure-activity relationships. TAKE HOME MESSAGE The feasibility of disrupting IAP protein interactions with pro-apoptotic proteins using monovalent and bivalent Smac-derived peptidomimetic compounds has been broadly established. Four such compounds have entered or been approved to enter human clinical trials, which will hopefully allow the utility of this potential therapeutic approach to be evaluated in cancer patients.
Collapse
Affiliation(s)
- John A Flygare
- Genentech, Inc., Department of Medicinal Chemistry, 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
165
|
Lu K, Liang CL, Liliang PC, Yang CH, Cho CL, Weng HC, Tsai YD, Wang KW, Chen HJ. Inhibition of extracellular signal-regulated kinases 1/2 provides neuroprotection in spinal cord ischemia/reperfusion injury in rats: relationship with the nuclear factor-kappaB-regulated anti-apoptotic mechanisms. J Neurochem 2010; 114:237-46. [PMID: 20403072 DOI: 10.1111/j.1471-4159.2010.06747.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previously we demonstrated benefits of inhibiting the extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway in spinal cord ischemia/reperfusion (I/R) injury. To further identify the underlying mechanisms, we investigated the impact of ERK inhibition on apoptosis and cellular protective mechanisms against cell death. Spinal cord I/R injury induced ERK1/2 phosphorylation, followed by neuronal loss through caspase 3-mediated apoptosis. Pre-treatment with U0126, a specific inhibitor of MAPK/ERK kinases 1/2 (MEK1/2), inhibited ERK1/2 phosphorylation, and significantly attenuated apoptosis and increased neuronal survival. MEK/ERK inhibition also induced I-kappaB phosphorylation and enhanced nuclear factor (NF)-kappaB/DNA binding activity, leading to expression of cellular inhibitors of apoptosis protein 2 (c-IAP2), a known nuclear factor-kappaB (NF-kappaB)-regulated endogenous anti-apoptotic molecule. Pyrrolidine dithiocarbamate, an NF-kappaB inhibitor, by blocking I-kappaB phosphorylation, NF-kappaB activation, and c-IAP2 synthesis, abolished the protective effects of U0126. The MEK/ERK pathway appears to mediate cellular death following I/R injury. The U0126 neuroprotection appears related to NF-kappaB-regulated transcriptional control of c-IAP2. MEK/ERK inhibition at the initial stage of I/R injury may cause changes in c-IAP2 gene expression or c-IAP2/caspase 3 interactions, resulting in long lasting therapeutic effects. Future research should focus on the possible cross-talk between the MEK/ERK pathway and the NF-kappaB transcriptional cascade.
Collapse
Affiliation(s)
- Kang Lu
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Karabulut B, Karaca B, Atmaca H, Kisim A, Uzunoglu S, Sezgin C, Uslu R. Regulation of apoptosis-related molecules by synergistic combination of all-trans retinoic acid and zoledronic acid in hormone-refractory prostate cancer cell lines. Mol Biol Rep 2010; 38:249-59. [DOI: 10.1007/s11033-010-0102-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 03/16/2010] [Indexed: 01/01/2023]
|
167
|
Koreth J, Alyea EP, Murphy WJ, Welniak LA. Proteasome inhibition and allogeneic hematopoietic stem cell transplantation: a review. Biol Blood Marrow Transplant 2010; 15:1502-12. [PMID: 19896073 DOI: 10.1016/j.bbmt.2009.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/16/2009] [Indexed: 11/17/2022]
Abstract
The proteasome and its associated ubiquitin protein modification system have proved to be an important therapeutic target in the treatment of multiple myeloma and other cancers. In addition to direct antitumor effects, proteasome inhibition also exerts strong effects on nonneoplastic immune cells. This indicates that proteasome inhibition, through the use of agents like bortezomib, could be used therapeutically to modulate immune responses. In this review we explore the emerging data, both preclinical and clinical, highlighting the importance of proteasome targeting of immunologic responses, primarily in the context of allogeneic hematopoietic stem cell transplantation (HSCT), both for the control of transplant-related toxicities like acute and chronic graft-versus-host disease (aGVHD, cGHVHD), and for improved malignant disease control after allogeneic HSCT.
Collapse
Affiliation(s)
- John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachustts, USA
| | | | | | | |
Collapse
|
168
|
Moon DO, Kim MO, Lee JD, Choi YH, Kim GY. Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Lett 2010; 288:183-91. [PMID: 19619938 DOI: 10.1016/j.canlet.2009.06.033] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 06/26/2009] [Accepted: 06/26/2009] [Indexed: 11/28/2022]
Abstract
Because tumor necrosis factor-alpha (TNF-alpha) is well-known to induce inflammatory responses, thus its clinical use is limited in cancer treatment. Rosmarinic acid (RA), a naturally occurring polyphenol flavonoid, has been reported to inhibit TNF-alpha-induced NF-kappaB activation in human dermal fibroblasts. However, the precise mechanisms of RA have not been well elucidated in TNF-alpha-mediated anti-cancer therapy. In this study, we found that RA treatment significantly sensitizes TNF-alpha-induced apoptosis in human leukemia U937 cells through the suppression of nuclear transcription factor-kappaB (NF-kappaB) and reactive oxygen species (ROS). Activation of caspases in response to TNF-alpha was markedly increased by RA treatment. However, pretreatment with the caspase-3 inhibitor, z-DEVD-fmk, was capable of significantly restoring cell viability in response to combined treatment. RA also suppressed NF-kappaB activation through inhibition of phosphorylation and degradation of IkappaBalpha, and nuclear translocation of p50 and p65. This inhibition was correlated with suppression of NF-kappaB-dependent anti-apoptotic proteins (IAP-1, IAP-2, and XIAP). RA treatment also normalized TNF-alpha-induced ROS generation. Additionally, ectopic Bcl-2 expressing U937 reversed combined treatment-induced cell death, cytochrome c release into cytosol, and collapse of mitochondrial potential. These results demonstrated that RA inhibits TNF-alpha-induced ROS generation and NF-kappaB activation, and enhances TNF-alpha-induced apoptosis.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Marine Life Sciences, Jeju National University, Republic of Korea
| | | | | | | | | |
Collapse
|
169
|
Abstract
The glucocorticoid receptor (GR) is a paradigmatic DNA binding transcription factor and was described over 20 years ago as one of the first proteins identified to bind the enhancer region of genes called "response elements." Since that time, an immense amount of work has revealed that GR transcriptional regulation is controlled at virtually every step of its activity: ligand binding, nuclear translocation, transcriptional cofactor binding, and DNA binding. Just when the major modes of GR regulation appear known, a new study provides yet another mechanism whereby GR transcriptional activity is controlled under conditions of cell growth arrest. In this case, GR activity is repressed by a small noncoding RNA (ncRNA) from the growth arrest-specific transcript 5 gene that folds into a soluble glucocorticoid response element-like sequence and serves as a decoy for GR DNA binding. This unexpected mode of regulation by nucleic acid molecular mimicry is probably not confined to GR and should spark interest in the hunt for other ncRNAs that regulate transcription factor binding to DNA.
Collapse
Affiliation(s)
- Michael J Garabedian
- Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
170
|
Jiménez-Lara AM, Aranda A, Gronemeyer H. Retinoic acid protects human breast cancer cells against etoposide-induced apoptosis by NF-kappaB-dependent but cIAP2-independent mechanisms. Mol Cancer 2010; 9:15. [PMID: 20102612 PMCID: PMC2825243 DOI: 10.1186/1476-4598-9-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/26/2010] [Indexed: 11/10/2022] Open
Abstract
Background Retinoids, through their cognate nuclear receptors, exert potent effects on cell growth, differentiation and apoptosis, and have significant promise for cancer therapy and chemoprevention. These ligands can determine the ultimate fate of target cells by stimulating or repressing gene expression directly, or indirectly through crosstalking with other signal transducers. Results Using different breast cancer cell models, we show here that depending on the cellular context retinoids can signal either towards cell death or cell survival. Indeed, retinoids can induce the expression of pro-apoptotic (i.e. TRAIL, TNF-Related Apoptosis-Inducing Ligand, Apo2L/TNFSF10) and anti-apoptotic (i.e. cIAP2, inhibitor of apoptosis protein-2) genes. Promoter mapping, gel retardation and chromatin immunoprecipitation assays revealed that retinoids induce the expression of this gene mainly through crosstalk with NF-kappaB. Supporting this crosstalk, the activation of NF-kappaB by retinoids in T47D cells antagonizes the apoptosis triggered by the chemotherapeutic drugs etoposide, camptothecin or doxorubicin. Notably apoptosis induced by death ligands (i.e. TRAIL or antiFAS) is not antagonized by retinoids. That knockdown of cIAP2 expression by small interfering RNA does not alter the inhibition of etoposide-induced apoptosis by retinoids in T47D cells reveals that stimulation of cIAP2 expression is not the cause of their anti-apoptotic action. However, ectopic overexpression of a NF-kappaB repressor increases apoptosis by retinoids moderately and abrogates almost completely the retinoid-dependent inhibition of etoposide-induced apoptosis. Our data exclude cIAP2 and suggest that retinoids target other regulator(s) of the NF-kappaB signaling pathway to induce resistance to etoposide on certain breast cancer cells. Conclusions This study shows an important role for the NF-kappaB pathway in retinoic acid signaling and retinoic acid-mediated resistance to cancer therapy-mediated apoptosis in breast cancer cells, independently of cIAP2. Our data support the use of NF-kappaB pathway activation as a marker for screening that will help to develop novel retinoids, or retinoid-based combination therapies with improved efficacy.
Collapse
Affiliation(s)
- Ana M Jiménez-Lara
- Instituto de Investigaciones Biomédicas de Madrid Alberto Sols, CSIC/UAM, Madrid, Spain.
| | | | | |
Collapse
|
171
|
Chiu HHL, Yong TMK, Wang J, Wang Y, Vessella RL, Ueda T, Wang YZ, Sadar MD. Induction of neuronal apoptosis inhibitory protein expression in response to androgen deprivation in prostate cancer. Cancer Lett 2009; 292:176-85. [PMID: 20044205 DOI: 10.1016/j.canlet.2009.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 01/08/2023]
Abstract
A mechanism for survival of prostate cancer cells in an androgen-deprived environment remains elusive. Here, we find that expression of neuronal apoptosis inhibitory protein (NAIP) was significantly increased in vivo and in vitro in response to androgen deprivation therapy (ADT). Increased expression of NAIP corresponded to increased DNA-binding activity of NF-kappaB that physically associated to previously uncharacterized kappaB-like sites in the NAIP locus. Importantly, expression of NAIP was significantly increased (p=0.04) in clinical samples of prostate cancer from patients receiving ADT. Expression of NAIP may be associated with enhanced survival of prostate cancer in response to castration.
Collapse
Affiliation(s)
- Helen H L Chiu
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Miura K, Karasawa H, Sasaki I. cIAP2 as a therapeutic target in colorectal cancer and other malignancies. Expert Opin Ther Targets 2009; 13:1333-45. [PMID: 19793002 DOI: 10.1517/14728220903277256] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer is one of the most common malignancies worldwide and 70% of tumors are resectable, but patients with metastatic diseases cannot be cured with current treatment modalities. Inhibition of the apoptotic pathway is one of the factors that may be responsible for carcinogenesis and drug resistance, and the inhibitor of apoptosis protein (IAP) family is thought to prevent apoptosis through inhibition of direct caspases and pro-caspases. Recently an increasing amount of evidence has been accumulated regarding cIAP2 and other IAP proteins of the antiapoptotic pathway and NF-kappaB signal transduction. IAPs are abnormally regulated and expressed in the majority of human malignancies at elevated levels. As a result, they have recently been reported to be therapeutic targets. The downregulation of cIAP2 efficiently enhances apoptosis through the activation of caspase 3/7 and 5-fluorouracil (5-FU) sensitivity in colorectal cancer cells exposed to 5-FU. This report reviews the evidence for cIAP2 and other IAP molecules as a therapeutic target for malignancies including colorectal cancer. So far, the information on colorectal cancer is limited; so this study includes other malignancies as well, in order to summarize the current knowledge of drug development targeting IAP molecules and provide an overview of the future course.
Collapse
Affiliation(s)
- Koh Miura
- Tohoku University Graduate School of Medicine, Department of Surgery, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| | | | | |
Collapse
|
173
|
Sassá MF, Saturi AET, Souza LF, Ribeiro LCDA, Sgarbi DBDG, Carlos IZ. Response of macrophage Toll-like receptor 4 to a Sporothrix schenckii lipid extract during experimental sporotrichosis. Immunology 2009; 128:301-9. [PMID: 19740386 DOI: 10.1111/j.1365-2567.2009.03118.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors have been implicated in the recognition of various pathogens, including bacteria, viruses, protozoa and fungi. However, no information is available about Toll-like receptor 4 (TLR4) participation in Sporothrix schenckii recognition and the consequent triggering of the immune response to this fungal pathogen. Following activation of TLRs by ligands of microbial origin, several responses are provoked, including reactions in immune cells that may lead them to produce signalling factors that trigger inflammation. The present study was designed to elucidate the role of TLR4 during the host response to S. schenckii. TLR4-deficient (C3H/HeJ) and control mice (C3H/HePas) were infected with S. schenckii yeast cells and immune response was assessed over 10 weeks by assaying production of pro-inflammatory mediator (nitric oxide and tumour necrosis factor-alpha) and anti-inflammatory cytokine (interleukin-10) by peritoneal macrophages and their correlation with apoptosis in peritoneal exudate cells. We found that both pro-inflammatory and anti-inflammatory mediators are reduced in TLR4-deficient mice, suggesting the involvement of this receptor in the recognition of this infectious agent. Translocation into the nucleus of nuclear transcription factor, nuclear factor-kappaB, was also evaluated and showed higher levels in TLR-4 normal mice, consistent with the results found for cytokine production. We are showing here, for the first time, the involvement of TLR4 in S. schenckii recognition. Taken together, our results demonstrate that the activation of peritoneal macrophages in response to S. schenckii lipid extracts has different responses in these two mouse strains which differ in TLR4 expression, suggesting an important role for TLR4 in governing the functions of macrophages in this fungal infection.
Collapse
Affiliation(s)
- Micheli F Sassá
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, UNESP, Araraquara, SP, CEP 14801-902, Brazil.
| | | | | | | | | | | |
Collapse
|
174
|
Chen H, Wu Z, Li J, Chen R, Yu Y, Xu L, Shuai J, Tu YT. Effect of progesterone on gonococci-induced apoptosis and respiratory burst of human polymorphonuclear leukocytes in vitro. Int J Dermatol 2009; 48:1011-6. [PMID: 19702993 DOI: 10.1111/j.1365-4632.2009.04177.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Progesterone may have clinical relevance in females with asymptomatic gonococcal infections. AIM To investigate the regulatory effect of progesterone on apoptosis and oxidative burst activity of polymorphonuclear leukocytes (PMNs) challenged by Neisseria gonorrhoeae in vitro. METHODS Isolated PMNs were incubated with progesterone or staurosporine. Staurosporine was used as a positive control for our in vitro model. Expression levels of inhibitory apoptosis proteins (IAPs), cellular IAP2 (cIAP2), and X-linked IAP (XIAP) were determined by real-time polymerase chain reaction (PCR). In addition, PMN apoptosis at various time points (3, 8, 12, and 24 h) was assayed by flow cytometry. Luminol amplified chemiluminescence methods were used to quantify the oxidative burst function of PMNs challenged with N. gonorrhoeae ST2951. RESULTS cIAP2 was upregulated significantly in PMNs with progesterone treatment in 3 h, and XIAP was upregulated slightly compared with the medium + ST2951 group, whereas cIAP2 was downregulated in staurosporine-challenged PMNs. In addition, we found that progesterone delayed the onset of apoptosis activity in N. gonorrhoeae ST2951-challenged PMNs, notably at 12 h. No statistically significant changes in PMN oxidative burst activity were observed at 10 ng/mL of progesterone. Staurosporine enhanced the production of superoxide anion (respiratory burst) of human PMNs stimulated by N. gonorrhoeae. CONCLUSION Progesterone plays an important regulatory role in the interaction of PMNs and N. gonorrhoeae. Delayed PMN apoptosis induced by progesterone presumably acts as a mechanism for N. gonorrhoeae to avoid the innate immune response and establish long-term, low-level infection in the female reproductive tract.
Collapse
Affiliation(s)
- Hongxiang Chen
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY, Stanculescu A. Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 2009; 69:8918-25. [PMID: 19920189 DOI: 10.1158/0008-5472.can-09-2608] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Estrogen receptors (ER) and nuclear factor-kappaB (NF-kappaB) are known to play important roles in breast cancer, but these factors are generally thought to repress each other's activity. However, we have recently found that ER and NF-kappaB can also act together in a positive manner to synergistically increase gene transcription. To examine the extent of cross-talk between ER and NF-kappaB, a microarray study was conducted in which MCF-7 breast cancer cells were treated with 17beta-estradiol (E(2)), tumor necrosis factor alpha (TNFalpha), or both. Follow-up studies with an ER antagonist and NF-kappaB inhibitors show that cross-talk between E(2) and TNFalpha is mediated by these two factors. We find that although transrepression between ER and NF-kappaB does occur, positive cross-talk is more prominent with three gene-specific patterns of regulation: (a) TNFalpha enhances E(2) action on approximately 30% of E(2)-upregulated genes; (b) E(2) enhances TNFalpha activity on approximately 15% of TNFalpha-upregulated genes; and (c) E(2) + TNFalpha causes a more than additive upregulation of approximately 60 genes. Consistent with their prosurvival roles, ER and NF-kappaB and their target gene, BIRC3, are involved in protecting breast cancer cells against apoptosis. Furthermore, genes positively regulated by E(2) + TNFalpha are clinically relevant because they are enriched in luminal B breast tumors and their expression profiles can distinguish a cohort of patients with poor outcome following endocrine treatment. Taken together, our findings suggest that positive cross-talk between ER and NF-kappaB is more extensive than anticipated and that these factors may act together to promote survival of breast cancer cells and progression to a more aggressive phenotype.
Collapse
Affiliation(s)
- Jonna Frasor
- Department of Physiology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Immunomodulatory drugs (IMiDs) are thalidomide analogues, which possess pleiotropic anti-myeloma properties including immune-modulation, anti-angiogenic, anti-inflammatory and anti-proliferative effects. Their development was facilitated by an improved understanding in myeloma (MM) biology and initiated a profound shift in the therapeutic approach towards MM. Despite the diverse effects of IMiDs in vitro, the relative contribution of each effect towards their ultimate anti-MM activity is still unclear. Based on in vitro data, it appears that anti-proliferative effects and downregulation of crucial cytokines are their most important anti-MM attributes. Although the co-stimulatory effects on T and NK cells have been heralded as a unique and important property of IMiDs towards enhancing anti-MM immune activity, these in vitro effects have yet to be firmly corroborated in vivo. Much is yet to be elucidated regarding the complex interplay of immunomodulatory cytokines that occurs in vivo, which ultimately dictates the net effects of IMiDs in MM-the understanding of which is necessary to facilitate optimal manipulation of these drugs in future MM management.
Collapse
|
177
|
Can BAD pores be good? New insights from examining BAD as a target of RAF kinases. ACTA ACUST UNITED AC 2009; 50:147-59. [PMID: 19895838 DOI: 10.1016/j.advenzreg.2009.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
178
|
Sandur SK, Deorukhkar A, Pandey MK, Pabón AM, Shentu S, Guha S, Aggarwal BB, Krishnan S. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity. Int J Radiat Oncol Biol Phys 2009; 75:534-542. [PMID: 19735878 PMCID: PMC3090721 DOI: 10.1016/j.ijrobp.2009.06.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/07/2009] [Accepted: 06/08/2009] [Indexed: 12/19/2022]
Abstract
PURPOSE Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. METHODS AND MATERIALS Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-kappaB (NF-kappaB) activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. RESULTS Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-kappaB activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-kappaB activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of kappaB alpha, inhibition of inhibitor of kappaB kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-kappaB-regulated gene products (Bcl-2, Bcl-x(L), inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). CONCLUSIONS Our results suggest that transient inducible NF-kappaB activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.
Collapse
Affiliation(s)
- Santosh K. Sandur
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Amit Deorukhkar
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Manoj K. Pandey
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Ana María Pabón
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Shujun Shentu
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sushovan Guha
- Department of Gastrointestinal Medicine and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Bharat B. Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
179
|
Aghajanian C, Blessing JA, Darcy KM, Reid G, DeGeest K, Rubin SC, Mannel RS, Rotmensch J, Schilder RJ, Riordan W. A phase II evaluation of bortezomib in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2009; 115:215-20. [PMID: 19712963 DOI: 10.1016/j.ygyno.2009.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/14/2009] [Accepted: 07/17/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the activity and pharmacodynamics (PD) of bortezomib in platinum-sensitive epithelial ovarian or primary peritoneal cancer (EOC/PPC). PATIENTS AND METHODS Eligible women with recurrent EOC/PPC progressing between 6 and 12 months after initial chemotherapy were treated with bortezomib on days 1, 4, 8, and 11 [1.5 (cohort I) and 1.3 (cohort II) mg/m(2)/dose]. Patients must have had initial chemotherapy only. Response Evaluation Criteria in Solid Tumors (RECIST) was assessed by computed tomography (CT) scan every 2 cycles. 20S proteasome activity was quantified in three pre-treatment and a 1-hour post-treatment (cycle one, day 1) whole blood lysates. RESULTS Initially, 26 evaluable patients were treated at the 1.5 mg/m(2)/dose level. Objective response rate was 3.8% (1/26), a partial response. An additional 10 patients (38.5%) had stable disease. Given concerns that treatment discontinuations due to toxicity limited drug exposure/activity a second cohort of 29 evaluable patients was accrued at 1.3 mg/m(2)/dose. The 1.3 mg/m(2)/dose regimen is currently approved as an indication for multiple myeloma and mantle cell lymphoma. Treatment was more tolerable, although objective responses remained low at 6.9% (2/29, partial responses). Second stage accrual was not warranted at either dose. Bortezomib effectively inhibited 20S proteasome activity in whole blood lysates between 37 and 92% in 24/25 (96%) patients in cohort I, and 14-84% in 27/28 (96%) patients in cohort II who provided satisfactory pre- and post-treatment specimens for testing. CONCLUSION Bortezomib has minimal activity as a single-agent in the treatment of recurrent platinum-sensitive EOC/PPC. Treatment with bortezomib at 1.5 mg/m(2)/dose was not feasible in this patient population due to excess toxicity. Bortezomib was well tolerated at 1.3 mg/m(2)/dose.
Collapse
Affiliation(s)
- Carol Aghajanian
- The Gynecologic Medical Oncology Service, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
cIAP-1 controls innate immunity to C. pneumoniae pulmonary infection. PLoS One 2009; 4:e6519. [PMID: 19657383 PMCID: PMC2716518 DOI: 10.1371/journal.pone.0006519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/08/2009] [Indexed: 01/14/2023] Open
Abstract
The resistance of epithelial cells infected with Chlamydophila pneumoniae for apoptosis has been attributed to the induced expression and increased stability of anti-apoptotic proteins called inhibitor of apoptosis proteins (IAPs). The significance of cellular inhibitor of apoptosis protein-1 (cIAP-1) in C. pneumoniae pulmonary infection and innate immune response was investigated in cIAP-1 knockout (KO) mice using a novel non-invasive intra-tracheal infection method. In contrast to wildtype, cIAP-1 knockout mice failed to clear the infection from their lungs. Wildtype mice responded to infection with a strong inflammatory response in the lung. In contrast, the recruitment of macrophages was reduced in cIAP-1 KO mice compared to wildtype mice. The concentration of Interferon gamma (IFN-γ) was increased whereas that of Tumor Necrosis Factor (TNF-α) was reduced in the lungs of infected cIAP-1 KO mice compared to infected wildtype mice. Ex vivo experiments on mouse peritoneal macrophages and splenocytes revealed that cIAP-1 is required for innate immune responses of these cells. Our findings thus suggest a new immunoregulatory role of cIAP-1 in the course of bacterial infection.
Collapse
|
181
|
Kleinberg L, Davidson B. Cell survival and apoptosis-related molecules in cancer cells in effusions: A comprehensive review. Diagn Cytopathol 2009; 37:613-24. [DOI: 10.1002/dc.21095] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
182
|
Kundu M, Pathak SK, Kumawat K, Basu S, Chatterjee G, Pathak S, Noguchi T, Takeda K, Ichijo H, Thien CBF, Langdon WY, Basu J. A TNF- and c-Cbl-dependent FLIP(S)-degradation pathway and its function in Mycobacterium tuberculosis-induced macrophage apoptosis. Nat Immunol 2009; 10:918-26. [PMID: 19597496 DOI: 10.1038/ni.1754] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 05/14/2009] [Indexed: 11/09/2022]
Abstract
Apoptosis is central to the interaction between pathogenic mycobacteria and host macrophages. Caspase-8-dependent apoptosis of infected macrophages, which requires activation of the mitogen-activated protein (MAP) kinase p38, lowers the spread of mycobacteria. Here we establish a link between the release of tumor necrosis factor (TNF) and mycobacteria-mediated macrophage apoptosis. TNF activated a pathway involving the kinases ASK1, p38 and c-Abl. This pathway led to phosphorylation of FLIP(S), which facilitated its interaction with the E3 ubiquitin ligase c-Cbl. This interaction triggered proteasomal degradation of FLIP(S), which promoted activation of caspase-8 and apoptosis. Our findings identify a previously unappreciated signaling pathway needed for Mycobacterium tuberculosis-triggered macrophage cell death.
Collapse
|
183
|
Abstract
The classical pathway of nuclear factor-kappa B (NF-kappaB) activation by several inducers mainly involves the phosphorylation of IkappaBalpha by a signalsome complex composed of IkappaBalpha kinases (IKKalpha and IKKbeta). However, in some cell types hydrogen peroxide (H2O2) has been shown to activate an alternative pathway that does not involve the classical signalsome activation process. In this study, we demonstrate that H2O2 induced NF-kappaB activation in HeLa cells through phosphorylation and degradation of IkappaB proteins as shown by immunblot analysis. Our studies reveal that a commonly used non-steroid anti-inflammatory drug, acetylsalicylic acid (aspirin) prevents H2O2-induced NF-kappaB activation in a dose-dependent manner through inhibition of phosphorylation and degradation of IkappaBalpha and IkappaBbeta. Differential staining and DNA fragmentation analysis also show that aspirin preloading of HeLa cells also prevents H2O2-induced apoptosis in a dose-dependent manner with maximum efficiency at 10 mM concentration. Additionally, aspirin effectively prevents caspase-3 and caspase-9 (cysteinyl aspartate-specific proteases) activation by H2O2. These results suggest that NF-kappaB activation is involved in H2O2-induced apoptosis and aspirin may inhibit both processes simultaneously.
Collapse
Affiliation(s)
- Ozgur Kutuk
- Biological Sciences and Bioengineering Program, Sabanci University, 34956 Orhanli-Tuzla, Istanbul, Turkey
| | | |
Collapse
|
184
|
Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3. Cell Res 2009; 19:1079-89. [PMID: 19564891 DOI: 10.1038/cr.2009.80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability of death-inducing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to selectively kill a variety of cancer cells has been largely described, but one of the major concerns with the treatment is the occurrence of drug resistance and possible toxic side effects. Here, we report that TRAIL induces apoptosis in Jurkat and SUPT1 T cell lines and in human T-ALL blasts but not in healthy subject-derived peripheral blood mononuclear cells. In parallel, the treatment with TRAIL and Tyrphostin (AG-490), a selective Janus kinase 2 inhibitor, produces an evident enhancement of cytotoxicity, characterized by a significant inhibition of Stat3 phosphorylation compared to controls or to TRAIL alone-treated samples, and associated with a dramatic decrease of both cIAP-1 and cIAP-2 mRNA levels. Downregulation of cIAP-1 and cIAP-2 by specific small interference RNAs significantly amplifies TRAIL-reduced cytotoxicity. All together, these findings strongly indicate that cIAP-1 and cIAP-2 downregulation is a fundamental step in the signaling pathways mediating the combinatorial effect of TRAIL and AG-490 on T cell leukemia. These findings may help to open new routes for the development of less toxic pharmacological strategies in the treatment of patients affected by TRAIL-sensitive leukemias.
Collapse
|
185
|
Murat A, Migliavacca E, Hussain SF, Heimberger AB, Desbaillets I, Hamou MF, Rüegg C, Stupp R, Delorenzi M, Hegi ME. Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS One 2009; 4:e5947. [PMID: 19536297 PMCID: PMC2694268 DOI: 10.1371/journal.pone.0005947] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/20/2009] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma are rapidly proliferating brain tumors in which hypoxia is readily recognizable, as indicated by focal or extensive necrosis and vascular proliferation, two independent diagnostic criteria for glioblastoma. Gene expression profiling of glioblastoma revealed a gene expression signature associated with hypoxia-regulated genes. The correlated gene set emerging from unsupervised analysis comprised known hypoxia-inducible genes involved in angiogenesis and inflammation such as VEGF and BIRC3, respectively. The relationship between hypoxia-modulated angiogenic genes and inflammatory genes was associated with outcome in our cohort of glioblastoma patients treated within prospective clinical trials of combined chemoradiotherapy. The hypoxia regulation of several new genes comprised in this cluster including ZNF395, TNFAIP3, and TREM1 was experimentally confirmed in glioma cell lines and primary monocytes exposed to hypoxia in vitro. Interestingly, the cluster seems to characterize differential response of tumor cells, stromal cells and the macrophage/microglia compartment to hypoxic conditions. Most genes classically associated with the inflammatory compartment are part of the NF-kappaB signaling pathway including TNFAIP3 and BIRC3 that have been shown to be involved in resistance to chemotherapy. Our results associate hypoxia-driven tumor response with inflammation in glioblastoma, hence underlining the importance of tumor-host interaction involving the inflammatory compartment.
Collapse
Affiliation(s)
- Anastasia Murat
- Laboratory of Brain Tumor Biology and Genetics, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Eugenia Migliavacca
- National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - S. Farzana Hussain
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Amy B. Heimberger
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Isabelle Desbaillets
- Laboratory of Brain Tumor Biology and Genetics, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Marie-France Hamou
- Laboratory of Brain Tumor Biology and Genetics, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Curzio Rüegg
- National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
- Division of Experimental Oncology, Centre Pluridisciplinaire d'Oncologie, CHUV and University of Lausanne, Lausanne, Switzerland
| | - Roger Stupp
- Department of Neurosurgery, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mauro Delorenzi
- National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Monika E. Hegi
- Laboratory of Brain Tumor Biology and Genetics, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
186
|
Gionet N, Jansson D, Mader S, Pratt MC. NF-κB and estrogen receptor α interactions: Differential function in estrogen receptor-negative and -positive hormone-independent breast cancer cells. J Cell Biochem 2009; 107:448-59. [DOI: 10.1002/jcb.22141] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
187
|
Mao XR, Moerman-Herzog AM, Chen Y, Barger SW. Unique aspects of transcriptional regulation in neurons--nuances in NFkappaB and Sp1-related factors. J Neuroinflammation 2009; 6:16. [PMID: 19450264 PMCID: PMC2693111 DOI: 10.1186/1742-2094-6-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/18/2009] [Indexed: 12/11/2022] Open
Abstract
The unique physiology and function of neurons create differences in their cellular physiology, including their regulation of gene expression. We began several years ago exploring the relationships between the NFκB transcription factor, neuronal survival, and glutamate receptor activation in telencephalic neurons. These studies led us to conclude that this population of cells is nearly incapable of activating the NFκB that is nonetheless expressed at reasonable levels. A subset of the κB cis elements are instead bound by members of the Sp1 family in neurons. Also surprising was our discovery that Sp1 itself, typically described as ubiquitous, is severely restricted in expression within forebrain neurons; Sp4 seems to be substituted during neuronal differentiation. These findings and their implications for neuronal differentiation – as well as potential dedifferentiation during degenerative processes – are discussed here.
Collapse
Affiliation(s)
- Xianrong R Mao
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
188
|
Choi YE, Butterworth M, Malladi S, Duckett CS, Cohen GM, Bratton SB. The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem 2009; 284:12772-82. [PMID: 19258326 PMCID: PMC2676007 DOI: 10.1074/jbc.m807550200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/25/2009] [Indexed: 11/06/2022] Open
Abstract
Inhibitor of apoptosis (IAP) proteins are widely expressed throughout nature and suppress cell death under a variety of circumstances. X-linked IAP, the prototypical IAP in mammals, inhibits apoptosis largely through direct inhibition of the initiator caspase-9 and the effector caspase-3 and -7. Two additional IAP family members, cellular IAP1 (cIAP1) and cIAP2, were once thought to also inhibit caspases, but more recent studies have suggested otherwise. Here we demonstrate that cIAP1 does not significantly inhibit the proteolytic activities of effector caspases on fluorogenic or endogenous substrates. However, cIAP1 does bind to caspase-3 and -7 and does so, remarkably, at distinct steps prior to or following the removal of their prodomains, respectively. Indeed, cIAP1 bound to an exposed IAP-binding motif, AKPD, on the N terminus of the large subunit of fully mature caspase-7, whereas cIAP1 bound to partially processed caspase-3 in a manner that required its prodomain and cleavage between its large and small subunits but did not involve a classical IAP-binding motif. As a ubiquitin-protein isopeptide ligase, cIAP1 ubiquitinated caspase-3 and -7, concomitant with binding, in a reaction catalyzed by members of the UbcH5 subfamily (ubiquitin carrier protein/ubiquitin-conjugating enzymes), and in the case of caspase-3, differentially by UbcH8. Moreover, wild-type caspase-7 and a chimeric caspase-3 (bearing the AKPD motif) were degraded in vivo in a proteasome-dependent manner. Thus, cIAPs likely suppress apoptosis, at least in part, by facilitating the ubiquitination and turnover of active effector caspases in cells.
Collapse
Affiliation(s)
- Young Eun Choi
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
189
|
Molinero LL, Wang Y, Zhou P, Yagita H, Alegre ML. Fas mediates cardiac allograft acceptance in mice with impaired T-cell-intrinsic NF-kappaB signaling. Transpl Int 2009; 22:845-52. [PMID: 19351347 DOI: 10.1111/j.1432-2277.2009.00875.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transcription factor NF-kappaB is critical for T-cell activation and survival. We have shown that mice expressing a T-cell-restricted NF-kappaB superrepressor (IkappaBalphaDeltaN-Tg) permanently accept heart but not skin allografts. Overexpression of the prosurvival factor Bcl-x(L) in T cells restored heart rejection, suggesting that graft acceptance in IkappaBalphaDeltaN-Tg mice was attributable to deletion of alloreactive T cells.In vitro, the increased death of IkappaBalphaDeltaN-Tg T cells upon TCR stimulation when compared with wildtype T cells was mostly because of Fas/FasL interaction. Similarly, Fas played a key role in cardiac allograft acceptance by IkappaBalphaDeltaN-Tg mice as both genetic and antibody-mediated inhibition of Fas-signaling restored cardiac allograft rejection. Rejection correlated with graft infiltration by T cells and splenic production of IFN-gamma upon allostimulation. These results indicate that T-cell inhibition of NF-kappaB results in cardiac allograft acceptance because of increased susceptibility to Fas-mediated cell death.
Collapse
Affiliation(s)
- Luciana Lorena Molinero
- Department of Medicine, Section of Rheumatology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
190
|
TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB. Oncogene 2009; 28:1584-93. [PMID: 19234489 DOI: 10.1038/onc.2009.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marginal zone mucosa-associated lymphoid tissue (MALT) B-cell lymphoma is the most common extranodal non-Hodgkin lymphoma. The t(11;18)(q21;q21) translocation occurs frequently in MALT lymphomas and creates a chimeric NF-kappaB-activating protein containing the baculoviral IAP repeat (BIR) domains of c-IAP2 (inhibitor of apoptosis protein 2) fused with portions of the MALT1 protein. The BIR1 domain of c-IAP2 interacts directly with TRAF2 (TNFalpha-receptor-associated factor-2), but its role in NF-kappaB activation is still unclear. Here, we investigated the role of TRAF2 in c-IAP2/MALT1-induced NF-kappaB activation. We show the BIR1 domain of c-IAP2 is essential for NF-kappaB activation, whereas BIR2 and BIR3 domains are not. Studies of c-IAP2/MALT1 BIR1 mutant (E47A/R48A) that fails to activate NF-kappaB showed loss of TRAF2 binding, but retention of TRAF6 binding, suggesting that interaction of c-IAP2/MALT1 with TRAF6 is insufficient for NF-kappaB induction. In addition, a dominant-negative TRAF2 mutant or downregulation of TRAF2 achieved by small interfering RNA inhibited NF-kappaB activation by c-IAP2/MALT1 showing that TRAF2 is indispensable. Comparisons of the bioactivity of intact c-IAP2/MALT1 oncoprotein and BIR1 E47A/R48A c-IAP2/MALT1 mutant that cannot bind TRAF2 in a lymphoid cell line provided evidence that TRAF2 interaction is critical for c-IAP2/MALT1-mediated increases in the NF-kappaB activity, increased expression of endogenous NF-kappaB target genes (c-FLIP, TRAF1), and resistance to apoptosis.
Collapse
|
191
|
Martin AG, Trama J, Crighton D, Ryan KM, Fearnhead HO. Activation of p73 and induction of Noxa by DNA damage requires NF-kappa B. Aging (Albany NY) 2009; 1:335-49. [PMID: 20195489 PMCID: PMC2830049 DOI: 10.18632/aging.100026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 01/17/2023]
Abstract
Although the
transcription factor NF-κB is most clearly linked to the inhibition of
extrinsic apoptotic signals such as TNFα by upregulating known anti-apoptotic genes, NF-κB has also been proposed to be required for
p53-induced apoptosis in transformed cells. However, the involvement of NF-κB in this process is poorly understood. Here we investigate this mechanism and show that in
transformed MEFs lacking NF-κB (p65-null cells) genotoxin-induced cytochrome c release is
compromised. To further address how NF-κB contributes to apoptosis, gene
profiling by microarray analysis of MEFs was
performed, revealing that NF-κB is required for
expression of Noxa, a pro-apoptotic BH3-only protein that is induced by
genotoxins and that triggers cytochrome c release. Moreover, we find
that in the absence of NF-κB, genotoxin treatment cannot induce Noxa
mRNA expression. Noxa expression had been shown to be regulated directly by
genes of the p53 family, like p73 and p63, following genotoxin treatment.
Here we show that p73 is activated after genotoxin treatment only in the
presence of NF-κB and that p73 induces Noxa gene
expression through the p53 element in the promoter. Together our data
provides an explanation for how loss of NF-κB abrogates
genotoxin-induced apoptosis.
Collapse
Affiliation(s)
- Angel G Martin
- Apoptosis Section, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
192
|
Hormi-Carver K, Zhang X, Zhang HY, Whitehead RH, Terada LS, Spechler SJ, Souza RF. Unlike esophageal squamous cells, Barrett's epithelial cells resist apoptosis by activating the nuclear factor-kappaB pathway. Cancer Res 2009; 69:672-7. [PMID: 19147583 PMCID: PMC2629390 DOI: 10.1158/0008-5472.can-08-3703] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis is an important mechanism for maintaining tissue homeostasis and for preventing the proliferation of cells with mutations that could result in malignancy. Barrett's epithelium has been reported to be more resistant to apoptosis than normal esophageal squamous epithelium. We have explored the contribution of the nuclear factor-kappaB (NF-kappaB) pathway to apoptotic resistance in non-neoplastic, telomerase-immortalized esophageal squamous (NES) and Barrett's (BAR-T) epithelial cell lines. We exposed these cells to UV-B irradiation in doses known to cause DNA damage and to induce apoptosis in normal cells, and studied apoptosis as well as the expression of phospho-H2AX, NF-kappaB, Bcl-2, XIAP, cIAP-1, and survivin proteins. We also used Bay 11-7085 and siRNAs to NF-kappaB and Bcl-2 to assess the effects of NF-kappaB and Bcl2 inhibition on apoptosis. UV-B irradiation at low doses (50 and 100 J/m(2)) caused DNA damage in both NES and BAR-T cells but significantly increased apoptosis only in NES cells. UV-B irradiation caused a decrease in the levels of NF-kappaB, Bcl-2, cIAP-1, XIAP, and survivin in NES cells but increased the levels of those proteins in BAR-T cells. The resistance of BAR-T cells to apoptosis induced by low-dose UV-B irradiation was abolished by Bay 11-7085 and by siRNA for NF-kappaB and was decreased significantly by siRNA for Bcl-2. We conclude that the ability of Barrett's epithelial cells to activate the NF-kappaB pathway when they have sustained DNA damage allows them to resist apoptosis. This capacity to avoid apoptosis despite genotoxic damage may underlie the persistence and malignant predisposition of Barrett's metaplasia.
Collapse
Affiliation(s)
- Kathy Hormi-Carver
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Xi Zhang
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Hui Ying Zhang
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | | | - Lance S. Terada
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Stuart J. Spechler
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
| | - Rhonda F. Souza
- Departments of Medicine, VA North Texas Health Care System and the University of Texas-Southwestern Medical School, Dallas, TX
- The Harold C. Simmons Comprehensive Cancer Center, University of Texas-Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
193
|
LaCasse EC, Cheung HH, Hunter AM, Plenchette S, Mahoney DJ, Korneluk RG. The Mammalian IAPs: Multifaceted Inhibitors of Apoptosis. ESSENTIALS OF APOPTOSIS 2009:63-93. [DOI: 10.1007/978-1-60327-381-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
194
|
Ishikawa C, Tafuku S, Kadekaru T, Sawada S, Tomita M, Okudaira T, Nakazato T, Toda T, Uchihara JN, Taira N, Ohshiro K, Yasumoto T, Ohta T, Mori N. Anti-adult T-cell leukemia effects of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Int J Cancer 2008; 123:2702-12. [PMID: 18798263 DOI: 10.1002/ijc.23860] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adult T-cell leukemia (ATL) is a fatal malignancy of T lymphocytes caused by human T-cell leukemia virus type 1 (HTLV-1) infection and remains incurable. Carotenoids are a family of natural pigments and have several biological functions. Among carotenoids, fucoxanthin is known to have antitumorigenic activity, but the precise mechanism of action is not elucidated. We evaluated the anti-ATL effects of fucoxanthin and its metabolite, fucoxanthinol. Both carotenoids inhibited cell viability of HTLV-1-infected T-cell lines and ATL cells, and fucoxanthinol was approximately twice more potent than fucoxanthin. In contrast, other carotenoids, beta-carotene and astaxanthin, had mild inhibitory effects on HTLV-1-infected T-cell lines. Importantly, uninfected cell lines and normal peripheral blood mononuclear cells were resistant to fucoxanthin and fucoxanthinol. Both carotenoids induced cell cycle arrest during G(1) phase by reducing the expression of cyclin D1, cyclin D2, CDK4 and CDK6, and inducing the expression of GADD45alpha, and induced apoptosis by reducing the expression of Bcl-2, XIAP, cIAP2 and survivin. The induced apoptosis was associated with activation of caspase-3, -8 and -9. Fucoxanthin and fucoxanthinol also suppressed IkappaBalpha phosphorylation and JunD expression, resulting in inactivation of nuclear factor-kappaB and activator protein-1. Mice with severe combined immunodeficiency harboring tumors induced by inoculation of HTLV-1-infected T cells responded to treatment with fucoxanthinol with suppression of tumor growth, showed extensive tissue distribution of fucoxanthinol, and the presence of therapeutically effective serum concentrations of fucoxanthinol. Our preclinical data suggest that fucoxanthin and fucoxanthinol could be potentially useful therapeutic agents for patients with ATL.
Collapse
Affiliation(s)
- Chie Ishikawa
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Ding K, Su Y, Pang L, Lu Q, Wang Z, Zhang S, Zheng S, Mao J, Zhu Y. Inhibition of apoptosis by downregulation of hBex1, a novel mechanism, contributes to the chemoresistance of Bcr/Abl+ leukemic cells. Carcinogenesis 2008; 30:35-42. [PMID: 19028701 DOI: 10.1093/carcin/bgn251] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Overexpression of multidrug resistance proteins (Mdrs) and enhanced antiapoptotic capability are two of the main mechanisms by which Bcr/Abl(+) chronic myeloid leukemia cells acquire drug resistance; however, it has been shown that Mdr-1 expression provides minimal protection against cell apoptosis induced by chemotherapeutic drugs. The mechanism by which cells acquire an enhanced antiapoptosis capacity in the drug-resistant process needs to be further understood. Here, we identified human brain expressed X-linked 1 (hBex1) as a downstream target of the p75 neurotrophin receptor pathway in imatinib-resistant K562 cells by comparing the gene expression profiles with the parent K562 cells. Silencing hBex1 inhibited imatinib-induced cell apoptosis and overexpression of hBex1-sensitized cells to imatinib-induced apoptosis. Further investigation revealed that hBex1 associates with protocadherin 10 (PCDH10). Silencing of pcdh10 attenuated apoptosis induced by imatinib in hBex1 transfected cells, suggesting that, in addition to Mdr and Bcl-2 family members, reduced expression of hBex1 can also inhibit imatinib-induced apoptosis. These data provide evidence that expression of hBex1 in leukemic cells is a novel mechanism by which chemoresistance is achieved and suggests that hBex1 is a potential molecular target for the development of novel leukemia treatments.
Collapse
Affiliation(s)
- Kefeng Ding
- Cancer Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene 2008; 27:6252-75. [PMID: 18931692 DOI: 10.1038/onc.2008.302] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage, chromosomal abnormalities, oncogene activation, viral infection, substrate detachment and hypoxia can all trigger apoptosis in normal cells. However, cancer cells acquire mutations that allow them to survive these threats that are part and parcel of the transformation process or that may affect the growth and dissemination of the tumor. Eventually, cancer cells accumulate further mutations that make them resistant to apoptosis mediated by standard cytotoxic chemotherapy or radiotherapy. The inhibitor of apoptosis (IAP) family members, defined by the presence of a baculovirus IAP repeat (BIR) protein domain, are key regulators of cytokinesis, apoptosis and signal transduction. Specific IAPs regulate either cell division, caspase activity or survival pathways mediated through binding to their BIR domains, and/or through their ubiquitin-ligase RING domain activity. These protein-protein interactions and post-translational modifications are the subject of intense investigations that shed light on how these proteins contribute to oncogenesis and resistance to therapy. In the past several years, we have seen multiple approaches of IAP antagonism enter the clinic, and the rewards of such strategies are about to reap benefit. Significantly, small molecule pan-IAP antagonists that mimic an endogenous inhibitor of the IAPs, called Smac, have demonstrated an unexpected ability to sensitize cancer cells to tumor necrosis factor-alpha and to promote autocrine or paracrine production of this cytokine by the tumor cell and possibly, other cells too. This review will focus on these and other developmental therapeutics that target the IAPs in cancer.
Collapse
Affiliation(s)
- E C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
197
|
Ramachandran A, Jha S, Lefer DJ. REVIEW paper: pathophysiology of myocardial reperfusion injury: the role of genetically engineered mouse models. Vet Pathol 2008; 45:698-706. [PMID: 18725477 DOI: 10.1354/vp.45-5-698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coronary heart disease is the leading cause of death worldwide, affecting millions of men and women each year. Following an acute myocardial infarction, early and successful reperfusion therapy with thrombolytic therapy or primary percutaneous coronary intervention plays an important role in minimizing tissue injury associated with cessation of blood flow. The process of restoring blood flow to the ischemic myocardium, however, can induce additional injury. This phenomenon, termed myocardial ischemia-reperfusion (MI-R) injury, can paradoxically reduce the beneficial effects of myocardial reperfusion. MI-R injury is characterized by the formation of oxygen radicals upon reintroduction of molecular oxygen to the ischemic tissue, resulting in widespread lipid and protein oxidative modifications, mitochondrial injury, and cell death. In addition, studies have shown that MI-R is characterized by an inappropriate immune response in the microcirculation, resulting in leukocyte-endothelial cell interactions mediated by the upregulation of both leukocyte and endothelial cell adhesion molecules. Furthermore, MI-R ameliorates the production of certain cardioprotective factors such as nitric oxide. Advances in the generation of genetically modified mouse models enable researchers to identify the functional importance of genes involved in these processes.
Collapse
Affiliation(s)
- A Ramachandran
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)
| | | | | |
Collapse
|
198
|
Hosotani Y, Kashiwamura SI, Kimura-Shimmyo A, Sekiyama A, Ueda H, Ikeda T, Mimura O, Okamura H. Interleukin-18 prevents apoptosis via PI3K/Akt pathway in normal human keratinocytes. J Dermatol 2008; 35:514-24. [PMID: 18789072 DOI: 10.1111/j.1346-8138.2008.00513.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Interleukin-18 (IL-18) is a pleiotropic cytokine expressed in both immune and non-immune cells. In the present study, we demonstrate an anti-apoptotic role of IL-18 in normal human neonatal foreskin epidermal keratinocytes (NHEK-F). Cultured NHEK-F spontaneously produced the active form of IL-18. Treatment of NHEK-F cells with anti-IL-18 receptor alpha-chain neutralizing antibody increased apoptosis and caspase-3 activity. Exogenous IL-18 augmented phosphorylation of Akt and activation of NF-kappaB. The promotion of Akt phosphorylation by IL-18 was abolished by LY294002, a PI3K inhibitor, but not SN50, an NF-kappaB inhibitor, indicating that IL-18 functions via the PI3K/Akt pathway and independently of NF-kappaB. In addition, IL-18 was found to augment expression of anti-apoptotic proteins, Bcl-2, XIAP and glucose regulated protein78/BiP, while anti-IL-18 receptor alpha-chain neutralizing antibody suppressed expression of Bcl-2, XIAP, glucose regulated protein94 and protein disulfide isomerase. Taken together, these results indicate that IL-18 plays an important role in keratinocyte survival.
Collapse
Affiliation(s)
- Yuka Hosotani
- Department of Ophthalmology, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Jansen KM, Pavlath GK. Prostaglandin F2alpha promotes muscle cell survival and growth through upregulation of the inhibitor of apoptosis protein BRUCE. Cell Death Differ 2008; 15:1619-28. [PMID: 18566603 PMCID: PMC2704066 DOI: 10.1038/cdd.2008.90] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During skeletal muscle growth and regeneration, the majority of differentiating myoblasts undergoes cell-cell fusion to form multinucleated myofibers, whereas a proportion of myoblasts undergoes apoptosis. The treatment of myoblasts with prostaglandin F2alpha (PGF2alpha) during myogenesis in vitro leads to the formation of large myotubes, but the mechanism by which PGF2alpha promotes myotube growth has not been investigated. Here, we demonstrate that PGF2alpha reduces cell death during myogenesis in vitro and in vivo. In addition, we show that PGF2alpha increases expression of the inhibitor of apoptosis protein (IAP) BRUCE through a pathway dependent on the nuclear factor of activated T cell 2 transcription factor. Importantly, PGF2alpha-mediated reduction in muscle cell death is dependent on BRUCE, and overexpression of BRUCE is sufficient to promote muscle cell survival and growth. These results establish a previously unrecognized link between NFAT signaling and regulation of IAP expression and are the first to identify a signaling pathway that increases BRUCE expression. In addition, our results provide evidence that increasing the pool of muscle cells available for fusion by inhibiting cell death enhances myotube growth.
Collapse
Affiliation(s)
- K M Jansen
- Department of Pharmacology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
200
|
Rumble JM, Bertrand MJ, Csomos RA, Wright CW, Albert L, Mak TW, Barker PA, Duckett CS. Apoptotic sensitivity of murine IAP-deficient cells. Biochem J 2008; 415:21-5. [PMID: 18684108 PMCID: PMC2676106 DOI: 10.1042/bj20081188] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although numerous studies have implicated the IAPs (inhibitor of apoptosis proteins) in the control of apoptotic cell death, analyses of murine Iap-targeted cells have not revealed significant differences in their susceptibility to apoptosis. In the present study, we show that, under defined conditions, murine cells lacking XIAP (X-linked inhibitor of apoptosis) and c-IAP (cellular IAP) 2, but not c-IAP1, exhibit heightened apoptotic sensitivity to both intrinsic and extrinsic apoptotic stimuli.
Collapse
Affiliation(s)
- Julie M. Rumble
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Mathieu J.M. Bertrand
- Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Rebecca A. Csomos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Casey W. Wright
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lori Albert
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Ontario, M5G 2C1, Canada
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Ontario, M5G 2C1, Canada
| | - Philip A. Barker
- Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Colin S. Duckett
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|