151
|
Loetscher H, Niederhauser O, Kemp J, Gill R. Is caspase-3 inhibition a valid therapeutic strategy in cerebral ischemia? Drug Discov Today 2001; 6:671-680. [PMID: 11427377 DOI: 10.1016/s1359-6446(01)01826-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurodegenerative diseases are characterized by progressive impairment of brain function as a consequence of ongoing neuronal cell death. Apoptotic mechanisms have been implicated in this process and a major involvement of caspase-3, a typical pro-apoptotic executioner protease, has been claimed. In this review, the role of caspase-3 in neuronal cell loss in animal models of stroke is discussed and critically evaluated. In summary, it is concluded that the biochemical evidence favoring caspase-3 as a therapeutic target in cerebral ischemia is not convincing, and the development of selective caspase-3 inhibitors for the treatment of human stroke must be viewed as high risk.
Collapse
Affiliation(s)
- H Loetscher
- F.Hoffmann-La Roche AG, Pharma Research Basel, Central Nervous System Diseases, CH-4070, Basel, Switzerland
| | | | | | | |
Collapse
|
152
|
Abstract
Cell death is critical for the development and orderly maintenance of cellular homeostasis in metazoans. Developmental genetics in model systems, including Caenorhabditis elegans and Drosophila melanogaster, have helped to identify and order the components of cell-death pathways. An even more complex network of apoptotic pathways has evolved in higher organisms that possess homologs within each set of cell-death regulators. Whereas biochemical studies provide details of molecular mechanisms, genetic models reveal the essential physiologic roles. Transgenic and gene-ablated mice have helped to elucidate mammalian apoptotic pathways and identify the principal effect of each cell death regulator. Here, we review the details of the apoptotic machinery as revealed by mice deficient in critical components of cell-death pathways; we concentrate on cell-death regulators classified as members of the caspase and Bcl2 families or, broadly, as adaptors and mitochondrial released factors.
Collapse
Affiliation(s)
- A M Ranger
- Howard Hughes Medical Institute, Department of Pathology and Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | |
Collapse
|
153
|
Ura S, Masuyama N, Graves JD, Gotoh Y. MST1-JNK promotes apoptosis via caspase-dependent and independent pathways. Genes Cells 2001; 6:519-30. [PMID: 11442632 DOI: 10.1046/j.1365-2443.2001.00439.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND MST1 is an upstream kinase of the JNK and p38 MAPK pathways whose expression induces apoptotic morphological changes such as nuclear condensation. During apoptosis, caspase cleavage of MST1 removes a C-terminal regulatory domain, increasing the kinase activity of the MST1 N-terminal domain. Downstream pathways of MST1 in the induction of apoptosis remain to be clarified. RESULTS In this study, we found that the expression of MST1 resulted in caspase-3 activation. Therefore, MST1 is not only a target of caspases but also an activator of caspases. This caspase activation and apoptotic changes occur through JNK, since the co-expression of a dominant-negative mutant of JNK inhibited MST1-induced morphological changes as well as caspase activation. In contrast, neither a dominant-negative p38 nor the p38 inhibitor SB203580 inhibited them. MST1 induced nucleosomal DNA fragmentation, which was suppressed by caspase inhibitors or ICAD (Inhibitor of Caspase-Activated DNase). Surprisingly, however, other changes such as membrane blebbing and chromatin condensation were not inhibited by caspase inhibitors. CONCLUSION These results suggest that MST1 most likely promotes two events through JNK activation; first, MST1 induces the activation of caspases, resulting in CAD-mediated DNA fragmentation, and second, MST1 induces chromatin condensation and membrane blebbing without utilizing downstream caspases.
Collapse
Affiliation(s)
- S Ura
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
154
|
Matikainen T, Perez GI, Zheng TS, Kluzak TR, Rueda BR, Flavell RA, Tilly JL. Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology 2001; 142:2468-80. [PMID: 11356696 DOI: 10.1210/endo.142.6.8078] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have proposed the involvement of caspase-3, a downstream executioner enzyme common to many paradigms of programmed cell death (PCD), in mediating the apoptosis of both germ and somatic cells in the ovary. Herein we used caspase-3 gene knockout mice to directly test for the functional requirement of this protease in oocyte and/or granulosa cell demise. Using both in vivo and in vitro approaches, we determined that oocyte death initiated as a result of either developmental cues or pathological insults was unaffected by the absence of caspase-3. However, granulosa cells of degenerating antral follicles in both mouse and human ovaries showed a strong immunoreaction using an antibody raised against the cleaved (activated) form of caspase-3. Furthermore, caspase-3 mutant female mice possessed aberrant atretic follicles containing granulosa cells that failed to be eliminated by apoptosis, as confirmed by TUNEL (terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling) analysis of DNA cleavage and 4',6-diamidino-2-phenylindole staining of nuclear morphology (pyknosis). These in vivo results were supported by findings from in vitro cultures of wild-type and caspase-3-deficient antral follicles or isolated granulosa cells. Contrasting the serum starvation-induced occurrence of apoptosis in wild-type granulosa cells, caspase-3-null granulosa cells deprived of hormonal support were TUNEL-negative, showed attenuated chromatin condensation by 4',6-diamidino-2-phenylindole staining and exhibited delayed internucleosomal DNA cleavage. Such ex vivo findings underscore the existence of a cell autonomous (granulosa cell intrinsic) defect in apoptosis execution resulting from caspase-3 deficiency. We conclude that caspase-3 is functionally required for granulosa cell apoptosis during follicular atresia, but that the enzyme is dispensable for germ cell apoptosis in the female.
Collapse
Affiliation(s)
- T Matikainen
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital/Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
van der Werff ten Bosch J, Otten J, Thielemans K. Autoimmune lymphoproliferative syndrome type III, an indefinite disorder. Leuk Lymphoma 2001; 41:501-11. [PMID: 11378568 DOI: 10.3109/10428190109060341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Autoimmune Lymphoproliferative Syndrome (ALPS) is a childhood disorder characterized by chronic nonmalignant lymphoproliferation and autoimmunity. Although the pathogenesis is not fully understood, deficient Fas mediated apoptosis appears to be an important factor. This deficiency can be caused by a mutation of the APTI gene (ALPS type Ia), of the FasL gene (ALPS type Ib), or of the Caspase-10 gene (ALPS type II). In one sub population of patients, no mutations have been identified as yet (ALPS type III). According to published data, the latter group is much smaller than the group of patients with ALPS type Ia. However, because of the variability of the clinical presentation and the absence of a known genetic defect, this disease is difficult to diagnose, the more so as few data have been reported on these patients. Thus, ALPS type III could be more common than believed until now. In this review we provide evidence for this hypothesis.
Collapse
|
156
|
|
157
|
Sebbagh M, Renvoizé C, Hamelin J, Riché N, Bertoglio J, Bréard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001; 3:346-52. [PMID: 11283607 DOI: 10.1038/35070019] [Citation(s) in RCA: 696] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Increased phosphorylation of myosin light chain (MLC) is necessary for the dynamic membrane blebbing that is observed at the onset of apoptosis. Here we identify ROCK I, an effector of the small GTPase Rho, as a new substrate for caspases. ROCK I is cleaved by caspase-3 at a conserved DETD1113/G sequence and its carboxy-terminal inhibitory domain is removed, resulting in deregulated and constitutive kinase activity. ROCK proteins are known to regulate MLC-phosphorylation, and apoptotic cells exhibit a gradual increase in levels of phosphorylated MLC concomitant with ROCK I cleavage. This phosphorylation, as well as membrane blebbing, is abrogated by inhibition of caspases or ROCK proteins, but both processes are independent of Rho activity. We also show that expression of active truncated ROCK I induces cell blebbing. Thus, activation of ROCK I by caspase-3 seems to be responsible for bleb formation in apoptotic cells.
Collapse
Affiliation(s)
- M Sebbagh
- INSERM U461, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
158
|
Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 2001; 276:7320-6. [PMID: 11058599 DOI: 10.1074/jbc.m008363200] [Citation(s) in RCA: 778] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is orchestrated by a family of cysteine proteases known as the caspases. Fourteen mammalian caspases have been identified, three of which (caspase-3, -6, and -7) are thought to coordinate the execution phase of apoptosis by cleaving multiple structural and repair proteins. However, the relative contributions that the "executioner" caspases make to the demolition of the cell remains speculative. Here we have used cell-free extracts immuno-depleted of either caspase-3, -6, or -7 to examine the caspase requirements for apoptosis-associated proteolysis of 14 caspase substrates as well as nuclear condensation, chromatin margination, and DNA fragmentation. We show that caspase-3 is the primary executioner caspase in this system, necessary for cytochrome c/dATP-inducible cleavage of fodrin, gelsolin, U1 small nuclear ribonucleoprotein, DNA fragmentation factor 45 (DFF45)/inhibitor of caspase-activated DNase (ICAD), receptor-interacting protein (RIP), X-linked inhibitor of apoptosis protein (X-IAP), signal transducer and activator of transcription-1 (STAT1), topoisomerase I, vimentin, Rb, and lamin B but not for cleavage of poly(ADP-ribose) polymerase (PARP) or lamin A. In addition, caspase-3 was also essential for apoptosis-associated chromatin margination, DNA fragmentation, and nuclear collapse in this system. Surprisingly, although caspase-6 and -7 are considered to be important downstream effector caspases, depletion of either caspase had minimal impact on any of the parameters investigated, calling into question their precise role during the execution phase of apoptosis.
Collapse
Affiliation(s)
- E A Slee
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
159
|
Kolasa K, Harrell LE. Apoptotic protein expression and activation of caspases is changed following cholinergic denervation and hippocampal sympathetic ingrowth in rat hippocampus. Neuroscience 2001; 101:541-6. [PMID: 11113303 DOI: 10.1016/s0306-4522(00)00406-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following cholinergic denervation of the hippocampus by medial septal lesions, an unusual neuronal reorganization occurs in which peripheral adrenergic fibers arising from superior cervical ganglia grow into the hippocampus (hippocampal sympathetic ingrowth). Recent studies suggest that a similar process, in which sympathetic noradrenergic axons invade the hippocampus, can occur in Alzheimer's disease patients. In the last few years, the occurrence of apoptotic cell death has been studied in Alzheimer's disease patients and in animal models of this disorder. Several studies suggest that the hippocampus is an important area to be considered for apoptotic cell death. In our studies in the rat hippocampus, we have measured the expression of inducers and blockers of apoptosis in membrane, cytosolic and mitochondrial fractions, and the activity of caspases. The level of cytosolic Fas was increased in cholinergic denervation compared to control and hippocampal sympathetic ingrowth groups. The membrane Fas ligand expression was significantly increased in hippocampal sympathetic ingrowth and in cholinergic denervation compared to the control group. The level of caspase-3 (CPP32) was increased in the cholinergic denervation group compared to control and hippocampal sympathetic ingrowth groups. The cytosolic expression of bcl-x was increased in hippocampal sympathetic ingrowth compared to control and cholinergic denervation. The cytosolic activity of caspase-3 appeared to be significantly decreased in hippocampal sympathetic ingrowth and increased in cholinergic denervation groups compared to control and cholinergic denervation/hippocampal sympathetic ingrowth, respectively. From the present results, we suggest that cholinergic denervation may be responsible for pro-apoptotic responses, while hippocampal sympathetic ingrowth may protect neurons from apoptosis in rat dorsal hippocampus.
Collapse
Affiliation(s)
- K Kolasa
- Alzheimer's Disease Center, Department of Neurology, VA Medical Center, 975 Sparks Center, University of Alabama at Birmingham, AL 35294-0017, USA.
| | | |
Collapse
|
160
|
Van Der Werff Ten Bosch J, Otten J, Thielemans K. Autoimmune lymphoproliferative syndrome type III: an indefinite disorder. Leuk Lymphoma 2001; 41:55-65. [PMID: 11342357 DOI: 10.3109/10428190109057954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Autoimmune Lymphoproliferative Syndrome (ALPS) is a childhood disorder characterized by chronic nonmalignant lymphoproliferation and autoimmunity. Although the pathogenesis is not fully understood, deficient Fas mediated apoptosis appears to be an important factor. This deficiency can be caused by a mutation of the APT1 gene (ALPS type Ia), of the FasL gene (ALPS type Ib), or of the Caspase-10 gene (ALPS type II). In one sub population of patients, no mutations have been identified as yet (ALPS type III). According to published data, the latter group is much smaller than the group of patients with ALPS type Ia. However, because of the variability of the clinical presentation and the absence of a known genetic defect, this disease is difficult to diagnose, the more so as few data have been reported on these patients. Thus, ALPS type III could be more common than believed until now. In this review we provide evidence for this hypothesis.
Collapse
Affiliation(s)
- J Van Der Werff Ten Bosch
- Department of Pediatrics of the Free University of Brussels; Vrije Universiteit Brussel, Laarbeeklaan 103/E-room 234, 1090 Brussels, Belgium.
| | | | | |
Collapse
|
161
|
Xue LY, Chiu SM, Oleinick NL. Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res 2001; 263:145-55. [PMID: 11161713 DOI: 10.1006/excr.2000.5108] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photodynamic therapy (PDT) causes mitochondrial damage and induces apoptosis through release of cytochrome c and activation of caspase-3. To test whether caspase 3 is the sole executioner of apoptosis and its role in overall cell lethality, we compared the response of MCF-7c3 cells that express a stably transfected CASP-3 gene to that of parental MCF-7:SW8 cells transfected with vector alone (MCF-7v). Following photosensitization with the phthalocyanine Pc 4 and red light, cytochrome c was released from the mitochondria to equivalent extents in the two cell lines. However, the appearance of apoptotic indicators, such as active caspase-3 (DEVDase), cleavage of poly(ADP-ribose) polymerase, and oligonucleosomal DNA fragmentation, was observed only in MCF-7c3 cells during the first 6 h after photosensitization. Although production of 50-kb DNA fragments and chromatin condensation were found in PDT-treated MCF-7v cells by 20-24 h posttreatment, the rate and extent of apoptosis were much less than in MCF-7c3 cells. MCF-7c3 cells were more sensitive to photosensitization than were MCF-7v cells when assayed for loss of viability by reduction of a tetrazolium dye. However, the two cell lines were equally sensitive to photodynamic killing when evaluated by a clonogenic assay. These results show (a) the importance of assessing overall cell death by clonogenic assay; (b) that the critical lethal event is independent of caspase-3, perhaps at or near the release of cytochrome c from mitochondria; and (c) that the caspase-3-mediated events appear to be irrelevant in determining overall killing of cells.
Collapse
Affiliation(s)
- L Y Xue
- Department of Radiation Oncology, and CWRU/Ireland Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
162
|
Segawa Y, Tsuzuike N, Itokazu Y, Omata T, Inoue N, Nagasawa M, Nishioka H, Nakano Y, Kobayashi T, Kanda T. Effects of a novel hepatoprotective drug, ZNC-2381, on fas-induced hepatocellular caspase-3 activity and apoptosis in mice. Pharmacology 2001; 62:80-6. [PMID: 11174076 DOI: 10.1159/000056075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the effects of ZNC-2381 (1-(4-aminophenyl)methyl-3-(3-nitrophenyl)-1,3-dihydroimidazo[4,5-b] pyridine-2-one), a new oral hepatoprotective agent, on hepatocellular caspase-3 activity and apoptosis induced by anti-mouse Fas antibody (anti-Fas ab) in mice. Oral ZNC-2381, administered at doses of 10, 30 and 100 mg/kg 1 h before inducing hepatic injury with anti-Fas ab, dose-dependently inhibited the increase in serum alanine aminotransferase (s-ALT) activity 8 h after injection of anti-Fas ab. Increases in DNA fragmentation (nucleosome assay) and caspase-3 activity in the liver 2 h after injection of anti-Fas ab were also inhibited by ZNC-2381 in a dose-dependent manner. As shown by histopathological examination, ZNC-2381 dose-dependently inhibited the appearance of TUNEL-positive apoptotic cells in the liver. Moreover, in studies in vitro, ZNC-2381 (1- 100 micromol/l) concentration-dependently inhibited increases in DNA fragmentation and caspase-3 activity caused by anti-Fas ab in isolated mouse hepatocytes. N- Acetyl-Asp-Glu-Val-Asp aldehyde (Ac-DEVD-cho), a caspase-3-specific inhibitor, inhibited hepatocellular apoptosis caused by anti-Fas ab both in vivo and in vitro, as well as the increase in s-ALT activity in vivo. These results demonstrate that orally administered ZNC-2381 inhibits hepatocellular apoptosis induced by anti-Fas ab and presents the progression of hepatic injury. We propose that the mechanism of action of ZNC-2381 may involve blockade of the signal transduction pathway (caspase-3) of apoptosis mediated by anti-Fas ab.
Collapse
Affiliation(s)
- Y Segawa
- Central Research Laboratories, Zeria Pharmaceutical Co., Kohnan-machi, Ohsato-gun, Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
D'Sa-Eipper C, Leonard JR, Putcha G, Zheng TS, Flavell RA, Rakic P, Kuida K, Roth KA. DNA damage-induced neural precursor cell apoptosis requires p53 and caspase 9 but neither Bax nor caspase 3. Development 2001; 128:137-46. [PMID: 11092819 DOI: 10.1242/dev.128.1.137] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Programmed cell death (apoptosis) is critical for normal brain morphogenesis and may be triggered by neurotrophic factor deprivation or irreparable DNA damage. Members of the Bcl2 and caspase families regulate neuronal responsiveness to trophic factor withdrawal; however, their involvement in DNA damage-induced neuronal apoptosis is less clear. To define the molecular pathway regulating DNA damage-induced neural precursor cell apoptosis, we have examined the effects of drug and gamma-irradiation-induced DNA damage on telencephalic neural precursor cells derived from wild-type embryos and mice with targeted disruptions of apoptosis-associated genes. We found that DNA damage-induced neural precursor cell apoptosis, both in vitro and in vivo, was critically dependent on p53 and caspase 9, but neither Bax nor caspase 3 expression. Neural precursor cell apoptosis was also unaffected by targeted disruptions of Bclx and Bcl2, and unlike neurotrophic factor-deprivation-induced neuronal apoptosis, was not associated with a detectable loss of cytochrome c from mitochondria. The apoptotic pathway regulating DNA damage-induced neural precursor cell death is different from that required for normal brain morphogenesis, which involves both caspase 9 and caspase 3 but not p53, indicating that additional apoptotic stimuli regulate neural precursor cell numbers during telencephalic development.
Collapse
Affiliation(s)
- C D'Sa-Eipper
- Department of Pathology, Division of Neuropathology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Li QS, Tanaka S, Kisenge RR, Toyoda H, Azuma E, Komada Y. Activation-induced T cell death occurs at G1A phase of the cell cycle. Eur J Immunol 2000; 30:3329-37. [PMID: 11093149 DOI: 10.1002/1521-4141(200011)30:11<3329::aid-immu3329>3.0.co;2-#] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peripheral negative selection of cycling T cells after TCR engagement and deletion of activated T cells after an immune response occur by an apoptotic process termed activation-induced cell death (AICD). The cross-linking of TCR-CD3 complex with anti-CD3 monoclonal antibody led to significant apoptotic cell death in peripheral blood T cells. To further define cell cycle restriction points for triggering AICD in T cells, we evaluated the association between cell cycle progression and death signal transduction. Simultaneous DNA / RNA quantification analysis revealed that T cells entering G1A phase of the cell cycle may acquire sensitivity to AICD. The activation of caspase-3 was induced when T cells entered G1A phase. Up-regulation of cyclin-dependent kinases (Cdk4 and Cdk6) and cyclin D3 was initiated in TCR-stimulated T cells entering G1A phase and expression of these markers steadily increased as T cells progressed from G1A into G1B phase. Interestingly, caspase-3 inhibitors could inhibit the up-regulation of these G1 cell cycle regulators and induce G0 / G1A arrest as well as the inhibition of AICD. On the basis of these results, AICD signals are most likely transduced into TCR-stimulated T cells entering G1A phase. T cells that fail to progress from G1A into G1B phase undergo AICD.
Collapse
Affiliation(s)
- Q S Li
- Department of Pediatrics, Mie University School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | |
Collapse
|
165
|
Shain KH, Landowski TH, Dalton WS. The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol 2000; 12:557-63. [PMID: 11085455 DOI: 10.1097/00001622-200011000-00008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The influence of the microenvironment in the pathogenesis and progression of human cancer has traditionally been considered in the context of solid tumors. More recently, evidence has been accumulating to support the role of the bone marrow microenvironment in hematologic malignancies as well, particularly in multiple myeloma. This review focuses on myeloma as a model to demonstrate that the bone marrow microenvironment provides a sanctuary against programmed cell death and promotes tumor cell survival and progression. Additionally, the protective effects of the bone marrow milieu may confer a protection from cytotoxic drugs, allowing the emergence of drug-resistant tumors. These advances may assist in the design of novel therapeutic approaches to enhance the efficacy of standard chemotherapeutic drugs.
Collapse
Affiliation(s)
- K H Shain
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | |
Collapse
|
166
|
Zheng TS, Hunot S, Kuida K, Momoi T, Srinivasan A, Nicholson DW, Lazebnik Y, Flavell RA. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 2000; 6:1241-7. [PMID: 11062535 DOI: 10.1038/81343] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dysregulation of apoptosis contributes to the pathogenesis of many human diseases. As effectors of the apoptotic machinery, caspases are considered potential therapeutic targets. Using an established in vivo model of Fas-mediated apoptosis, we demonstrate here that elimination of certain caspases was compensated in vivo by the activation of other caspases. Hepatocyte apoptosis and mouse death induced by the Fas agonistic antibody Jo2 required proapoptotic Bcl-2 family member Bid and used a Bid-mediated mitochondrial pathway of caspase activation; deficiency in caspases essential for this pathway, caspase-9 or caspase-3, unexpectedly resulted in rapid activation of alternate caspases after injection of Jo2, and therefore failed to protect mice against Jo2 toxicity. Moreover, both ultraviolet and gamma irradiation, two established inducers of the mitochondrial caspase-activation pathway, also elicited compensatory activation of caspases in cultured caspase-3(-/-) hepatocytes, indicating that the compensatory caspase activation was mediated through the mitochondria. Our findings provide direct experimental evidence for compensatory pathways of caspase activation. This issue should therefore be considered in developing caspase inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- T S Zheng
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Yang JC, Kahn A, Cortopassi G. Bcl-2 does not inhibit the permeability transition pore in mouse liver mitochondria. Toxicology 2000; 151:65-72. [PMID: 11074301 DOI: 10.1016/s0300-483x(00)00298-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanism by which the mitochondrially-localized Bcl-2 protein inhibits apoptosis is still unclear. Some authors have proposed that apoptosis is dependent on induction of the mitochondrial permeability transition pore (PTP), and that activators of apoptosis such as Bax work through activation of PTP, whereas inhibitors of apoptosis such as Bcl-2 work through inhibition of PTP, and the consequent activation or inhibition of PTP-dependent release of mitochondrial apoptotic factors, including cytochrome c. PTP opening is classically measured by a light-scattering assay of large-amplitude swelling of rodent liver mitochondria in sucrose media. Thus to test the hypothesis that Bcl-2 inhibits either the PTP or the PTP-dependent release of cytochrome c, the rate and extent of PTP, and PTP-dependent release of cytochrome c were compared in liver mitochondria from control and Bcl-2 transgenic mice. We demonstrated that Bcl-2 protein was expressed to high levels in mitochondria of transgenics versus controls. We confirmed that while control mice undergo massive hepatic cell death upon exposure to anti-Fas antibody, the Bcl-2 transgenic livers were resistant, by the criteria of gross morphology, serum enzyme release, and caspase 3 activity. We purified mitochondria from livers of the Bcl-2 transgenics and measured PTP directly by the mitochondrial swelling assay. Purified mitochondria from both transgenics and controls were induced to undergo large-amplitude swelling that was dependent on the classical PTP inducers calcium ion (Ca(2+)), t-butyl hydroperoxide (tBOOH) and atractyloside (Atr); and as expected, pretreatment of mitochondria with cyclosporin A (CsA) completely abolished mitochondrial swelling. However, there was no difference in the rate or final extent of PTP induction in Bcl-2 overexpressors versus control mitochondria. Furthermore, there was no difference in the PTP dependent release of cytochrome c from Bcl-2 overexpressors versus control mitochondria. Therefore, while we observe a strong inhibition of Fas-dependent apoptosis by Bcl-2 overexpression in mouse liver, we observe no effect of Bcl-2 overexpression on either the rate or extent of mitochondrial PTP, or upon the release of cytochrome c from mitochondria in which the PTP has been induced. The simplest explanation of these results is that Bcl-2 inhibits neither PTP nor PTP-dependent release of cytochrome c, however, other possibilities are discussed.
Collapse
Affiliation(s)
- J C Yang
- Department of Urology, University of California, 95616, Davis, CA, USA
| | | | | |
Collapse
|
168
|
Vanderluit JL, McPhail LT, Fernandes KJ, McBride CB, Huguenot C, Roy S, Robertson GS, Nicholson DW, Tetzlaff W. Caspase-3 is activated following axotomy of neonatal facial motoneurons and caspase-3 gene deletion delays axotomy-induced cell death in rodents. Eur J Neurosci 2000; 12:3469-80. [PMID: 11029616 DOI: 10.1046/j.1460-9568.2000.00241.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this report, we examined the possible functions of the cell death protease, caspase-3, in the axotomy-induced apoptosis of facial motoneurons in newborn rodents. Using in situ hybridization and Western blot, we found higher levels of caspase-3 mRNA and pro-caspase-3 protein expression in motoneurons of neonatal and 2-week-old rats than adult rats. Following facial motoneuron axotomy, caspase-3 mRNA and protein expression increased in motoneurons of both neonatal and adult rats. However, using an antibody directed to the activated form of the caspase-3 protease, we found that catalytically active caspase-3 was present only in axotomized neonatal motoneurons. As motoneurons in neonatal but not adult rodents are susceptible to axotomy-induced apoptosis, we hypothesized that caspase-3 may play a role in their demise. To determine the necessity of caspase-3 activation in axotomy-induced apoptosis, we counted the number of surviving motoneurons at 4 and 7 days following axotomy in wild type mice and caspase-3 gene-deleted mice. There were nearly three times more surviving motoneurons in caspase-3 gene-deleted mice than in wild type mice at both 4 days (mean 1074 vs. 464, P<0.005) and 7 days (mean 469 vs. 190, P<0.005) following injury, indicating a slower rate of death. Examination of the dying motoneurons using TUNEL staining (for fragmented DNA) and bisbenzimide staining (for nuclear morphology) revealed incomplete nuclear condensation in caspase-3-deficient motoneurons. These results demonstrate that caspase-3 activation plays important roles in the rapid demise of axotomized neonatal motoneurons.
Collapse
Affiliation(s)
- J L Vanderluit
- CORD (Collaboration on Repair Discoveries), University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Coelho D, Holl V, Weltin D, Lacornerie T, Magnenet P, Dufour P, Bischoff P. Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells. Br J Cancer 2000; 83:642-9. [PMID: 10944606 PMCID: PMC2363500 DOI: 10.1054/bjoc.2000.1322] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Caspases, a family of cysteine proteases, play a central role in the pathways leading to apoptosis. Recently, it has been reported that a broad spectrum inhibitor of caspases, the tripeptide Z-VAD-fmk, induced a switch from apoptosis to necrosis in dexamethasone-treated B lymphocytes and thymocytes. As such a cell death conversion could increase the efficiency of radiation therapy and in order to identify the caspases involved in this cell death transition, we investigated the effects of caspase-3-related proteases inhibition in irradiated MOLT-4 cells. Cells were pretreated with Ac-DEVD-CHO, an inhibitor of caspase-3-like activity, and submitted to X-rays at doses ranging from 1 to 4 Gy. Our results show that the inhibition of caspase-3-like activity prevents completely the appearance of the classical hallmarks of apoptosis such as internucleosomal DNA fragmentation or hypodiploid particles formation and partially the externalization of phosphatidylserine. However, this was not accompanied by any persistent increase in cell survival. Instead, irradiated cells treated by this inhibitor exhibited characteristics of a necrotic cell death. Therefore, functional caspase-3-subfamily not only appears as key proteases in the execution of the apoptotic process, but their activity may also influence the type of cell death following an exposure to ionizing radiation.
Collapse
Affiliation(s)
- D Coelho
- Laboratoire de Cancérologie Expérimentale et de Radiobiologie, IRCAD, Hôpitaux Universitaires, BP 426, Strasbourg Cedex, F-67091, France
| | | | | | | | | | | | | |
Collapse
|
170
|
Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prévost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G. Two distinct pathways leading to nuclear apoptosis. J Exp Med 2000; 192:571-80. [PMID: 10952727 PMCID: PMC2193229 DOI: 10.1084/jem.192.4.571] [Citation(s) in RCA: 554] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2000] [Accepted: 06/13/2000] [Indexed: 11/08/2022] Open
Abstract
Apaf-1(-/-) or caspase-3(-/-) cells treated with a variety of apoptosis inducers manifest apoptosis-associated alterations including the translocation of apoptosis-inducing factor (AIF) from mitochondria to nuclei, large scale DNA fragmentation, and initial chromatin condensation (stage I). However, when compared with normal control cells, Apaf-1(-/-) or caspase-3(-/-) cells fail to exhibit oligonucleosomal chromatin digestion and a more advanced pattern of chromatin condensation (stage II). Microinjection of such cells with recombinant AIF only causes peripheral chromatin condensation (stage I), whereas microinjection with activated caspase-3 or its downstream target caspase-activated DNAse (CAD) causes a more pronounced type of chromatin condensation (stage II). Similarly, when added to purified HeLa nuclei, AIF causes stage I chromatin condensation and large-scale DNA fragmentation, whereas CAD induces stage II chromatin condensation and oligonucleosomal DNA degradation. Furthermore, in a cell-free system, concomitant neutralization of AIF and CAD is required to suppress the nuclear DNA loss caused by cytoplasmic extracts from apoptotic wild-type cells. In contrast, AIF depletion alone suffices to suppress the nuclear DNA loss contained in extracts from apoptotic Apaf-1(-/-) or caspase-3(-/-) cells. As a result, at least two redundant parallel pathways may lead to chromatin processing during apoptosis. One of these pathways involves Apaf-1 and caspases, as well as CAD, and leads to oligonucleosomal DNA fragmentation and advanced chromatin condensation. The other pathway, which is caspase-independent, involves AIF and leads to large-scale DNA fragmentation and peripheral chromatin condensation.
Collapse
Affiliation(s)
- S A Susin
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Wang LS, Liu HJ, Xia ZB, Broxmeyer HE, Lu L. Expression and activation of caspase-3/CPP32 in CD34(+) cord blood cells is linked to apoptosis after growth factor withdrawal. Exp Hematol 2000; 28:907-15. [PMID: 10989191 DOI: 10.1016/s0301-472x(00)00485-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Caspase-3/CPP32, a member of the interleukin-1 converting enzyme (ICE) family, is considered an executioner protease in mammalian cells during apoptosis. Although expression and activation of caspase-3/CPP32 protein have been studied in many tissues and leukemia cell lines, this has not been explored in primitive hematopoietic CD34(+) cells. In this study, we evaluated expression and activation of caspase-3/CPP32 protein in CD34(+) cells from cord blood (CB) during apoptosis induced by growth factor deprivation. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, and flow cytometry analysis were used in this study to determine the expression of caspase-3/CPP32 in CD34(+) CB cells during apoptosis. Our results demonstrated that caspase-3/CPP32 mRNA was constitutively expressed at a very low level in freshly isolated CD34(+) cells. Expression of caspase-3/CPP32 mRNA and protein was upregulated when these cells were first expanded in suspension culture with growth factors for 3 days. However, only the 32 kDa inactive caspase-3/CPP32 proenzyme was detected in the freshly isolated CD34(+) cells and after 3 days expansion with cytokines. Within 12 hours after growth factor withdrawal from expanded cells caspase-3/CPP32 was activated and a cleavage 20 kDa protein was detected; a poly(ADP-ribose) polymerase (PARP) was cleaved by activated caspase-3/CPP32. Activation of caspase-3/CPP32 and apoptosis upon growth factor withdrawal were inhibited/reduced by the caspase inhibitors, z-VAD-fmk and DEVD-CHO. These results demonstrate that caspase-3/CPP32 is involved in apoptosis of primitive CB CD34(+) cells but may not be the only mechanism involved.
Collapse
Affiliation(s)
- L S Wang
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5254, USA
| | | | | | | | | |
Collapse
|
172
|
Lechardeur D, Drzymala L, Sharma M, Zylka D, Kinach R, Pacia J, Hicks C, Usmani N, Rommens JM, Lukacs GL. Determinants of the nuclear localization of the heterodimeric DNA fragmentation factor (ICAD/CAD). J Cell Biol 2000; 150:321-34. [PMID: 10908575 PMCID: PMC2180231 DOI: 10.1083/jcb.150.2.321] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Programmed cell death or apoptosis leads to the activation of the caspase-activated DNase (CAD), which degrades chromosomal DNA into nucleosomal fragments. Biochemical studies revealed that CAD forms an inactive heterodimer with the inhibitor of caspase-activated DNase (ICAD), or its alternatively spliced variant, ICAD-S, in the cytoplasm. It was initially proposed that proteolytic cleavage of ICAD by activated caspases causes the dissociation of the ICAD/CAD heterodimer and the translocation of active CAD into the nucleus in apoptotic cells. Here, we show that endogenous and heterologously expressed ICAD and CAD reside predominantly in the nucleus in nonapoptotic cells. Deletional mutagenesis and GFP fusion proteins identified a bipartite nuclear localization signal (NLS) in ICAD and verified the function of the NLS in CAD. The two NLSs have an additive effect on the nuclear targeting of the CAD-ICAD complex, whereas ICAD-S, lacking its NLS, appears to have a modulatory role in the nuclear localization of CAD. Staurosporine-induced apoptosis evoked the proteolysis and disappearance of endogenous and exogenous ICAD from the nuclei of HeLa cells, as monitored by immunoblotting and immunofluorescence microscopy. Similar phenomenon was observed in the caspase-3-deficient MCF7 cells upon expressing procaspase-3 transiently. We conclude that a complex mechanism, involving the recognition of the NLSs of both ICAD and CAD, accounts for the constitutive accumulation of CAD/ICAD in the nucleus, where caspase-3-dependent regulation of CAD activity takes place.
Collapse
Affiliation(s)
- Delphine Lechardeur
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
| | - Luke Drzymala
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
| | - Manu Sharma
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Danuta Zylka
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
| | - Robert Kinach
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
| | - Joanna Pacia
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
| | - Christopher Hicks
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
| | - Nawaid Usmani
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
| | - Johanna M. Rommens
- Program in Genetics and Genomics Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Gergely L. Lukacs
- Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G 1X8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
173
|
Abstract
Abstract
The actin regulatory protein gelsolin cleaves actin filaments in a calcium- and polyphosphoinositide-dependent manner. Gelsolin has recently been described as a novel substrate of the cysteinyl protease caspase-3, an effector protease activated during apoptosis. Cleavage by caspase-3 generates an amino-terminal fragment of gelsolin that can sever actin filaments independently of calcium regulation. The disruption of the actin cytoskeleton by cleaved gelsolin is hypothesized to mediate many of the downstream morphological changes associated with apoptosis. In contrast, overexpression of full-length gelsolin has also been reported to inhibit apoptotic cell death upstream of the activation of caspase-3, suggesting that gelsolin may also act prior to commitment to cell death. The authors previously observed that actin stabilization by the cell permeant agent jasplakinolide enhanced cell death upon interleukin (IL)-2 or IL-3 withdrawal from growth-factor–dependent lymphocyte cell lines, and hypothesized that actin polymerization could alter the activity of gelsolin, thus enhancing apoptosis. Here the authors show that constitutive overexpression of gelsolin did not, however, inhibit or dramatically enhance apoptotic cell death upon growth-factor withdrawal, nor did it modify sensitivity to jasplakinolide. In contrast to previous reports, overexpression of gelsolin in Jurkat T cells did not prevent or delay apoptosis induced by Fas ligation or ceramide treatment. Overexpressed gelsolin protein was cleaved during apoptosis, as seen previously in this and other cell types. In these model systems, therefore, the level of gelsolin expression was not a rate-limiting determinant in commitment to or time to the morphological changes of apoptosis.
Collapse
|
174
|
Failure of gelsolin overexpression to regulate lymphocyte apoptosis. Blood 2000. [DOI: 10.1182/blood.v95.11.3483.011k05_3483_3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The actin regulatory protein gelsolin cleaves actin filaments in a calcium- and polyphosphoinositide-dependent manner. Gelsolin has recently been described as a novel substrate of the cysteinyl protease caspase-3, an effector protease activated during apoptosis. Cleavage by caspase-3 generates an amino-terminal fragment of gelsolin that can sever actin filaments independently of calcium regulation. The disruption of the actin cytoskeleton by cleaved gelsolin is hypothesized to mediate many of the downstream morphological changes associated with apoptosis. In contrast, overexpression of full-length gelsolin has also been reported to inhibit apoptotic cell death upstream of the activation of caspase-3, suggesting that gelsolin may also act prior to commitment to cell death. The authors previously observed that actin stabilization by the cell permeant agent jasplakinolide enhanced cell death upon interleukin (IL)-2 or IL-3 withdrawal from growth-factor–dependent lymphocyte cell lines, and hypothesized that actin polymerization could alter the activity of gelsolin, thus enhancing apoptosis. Here the authors show that constitutive overexpression of gelsolin did not, however, inhibit or dramatically enhance apoptotic cell death upon growth-factor withdrawal, nor did it modify sensitivity to jasplakinolide. In contrast to previous reports, overexpression of gelsolin in Jurkat T cells did not prevent or delay apoptosis induced by Fas ligation or ceramide treatment. Overexpressed gelsolin protein was cleaved during apoptosis, as seen previously in this and other cell types. In these model systems, therefore, the level of gelsolin expression was not a rate-limiting determinant in commitment to or time to the morphological changes of apoptosis.
Collapse
|
175
|
Kim DK, Cho ES, Um HD. Caspase-dependent and -independent events in apoptosis induced by hydrogen peroxide. Exp Cell Res 2000; 257:82-8. [PMID: 10854056 DOI: 10.1006/excr.2000.4868] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To define the role of caspase-3 in H2O2-induced apoptosis, we introduced caspase-3 cDNA into MCF-7 breast carcinoma cells that otherwise lack caspase-3 expression. H2O2 treatment induced DNA fragmentation and nuclear condensation in the caspase-3-expressing cells, but not in the caspase-3-deficient cells. This indicated that caspase-3 is essential for nuclear events. However, H2O2 induced an externalization of membrane phosphatidylserine (PS) and cell death regardless of caspase-3 expression. These events were not suppressed by Ac-DEVD-CHO and Z-VAD-fmk, which inhibit DEVD-specific caspases and a broad spectrum of caspases, respectively. In Jurkat T cells, these inhibitors abolished H2O2-induced PS relocalization, but not cell death. Therefore, caspases appear to be dispensable for lethality by H2O2, but required for PS redistribution in a cell-type-specific manner.
Collapse
Affiliation(s)
- D K Kim
- Laboratory of Cell Biology, Yonsei Medical Research Center, Seoul, Korea
| | | | | |
Collapse
|
176
|
Abstract
Caspases are critical mediators of apoptosis, the principle mechanism by which extra and harmful cells are eliminated to ensure proper development and maintain cellular homeostasis in all multicellular organisms. While compelling evidence suggests that the activation of these otherwise latent intracellular proteases is required for the execution of most, if not all apoptosis in mammals, the presence of more than a dozen caspases presents a major challenge to our understanding of the precise function of individual caspases in vivo. Using a genetic approach, several groups have generated transgenic mice deficient in various caspases so as to investigate their physiological functions. In this review, we will discuss what these studies have revealed about the role of individual caspase in development, apoptosis, and inflammation, with a particular focus on the predictable phenotypes versus the surprises based on in vitro results, as well as the implications of these findings.
Collapse
Affiliation(s)
- T S Zheng
- Biogen, Inc., Department of Inflammation, Immunology and Cell Biology, 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
177
|
Abstract
Degradation of nuclear DNA into nucleosomal units is one of the hallmarks of apoptotic cell death. It occurs in response to various apoptotic stimuli in a wide variety of cell types. Molecular characterization of this process identified a specific DNase (CAD, caspase-activated DNase) that cleaves chromosomal DNA in a caspase-dependent manner. CAD is synthesized with the help of ICAD (inhibitor of CAD), which works as a specific chaperone for CAD and is found complexed with ICAD in proliferating cells. When cells are induced to undergo apoptosis, caspases-in particular caspase 3-cleave ICAD to dissociate the CAD:ICAD complex, allowing CAD to cleave chromosomal DNA. Cells that lack ICAD or that express caspase-resistant mutant ICAD thus do not show DNA fragmentation during apoptosis, although they do exhibit some other features of apoptosis and die. In this review, the molecular mechanism of and the physiological roles played by apoptotic DNA fragmentation will be discussed.
Collapse
Affiliation(s)
- S Nagata
- Department of Genetics, Osaka University Medical School and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
178
|
|
179
|
Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 2000; 275:9725-33. [PMID: 10734125 DOI: 10.1074/jbc.275.13.9725] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Little is known about the role of Rho proteins in apoptosis produced by stimuli evolved specifically to produce apoptosis, such as granzymes from cytotoxic T lymphocytes (CTLs) and Fas. Here we demonstrate that all three Rho family members are involved in CTL- and Fas-induced killing. Dominant-negative mutants of each Rho family member and Clostridium difficile toxin B, an inhibitor of all family members, strongly inhibited the susceptibility of cells to CTL- and Fas-induced apoptosis. Fas-induced caspase-3 activation was inhibited by C. difficile toxin. Activated mutants of each GTPase increased susceptibility to apoptosis, and activation of Cdc42 increased within 5 min of Fas stimulation. In contrast, during the time required for CTL and Fas killing, no apoptosis was produced by dominant-negative or activated mutants or by C. difficile toxin alone. Inhibition of actin polymerization using latrunculin A reduced the ability of constitutively active GTPase mutants to stimulate apoptosis and blocked Fas-induced activation of caspase-3. Furthermore, the ability of Rac to enhance apoptosis was decreased by point mutations reported to block Rac induction of actin polymerization. Rho family proteins may regulate apoptosis through their effects on the actin cytoskeleton.
Collapse
Affiliation(s)
- M C Subauste
- Department of Cell Biology, Division of Virology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
180
|
MacFarlane M, Merrison W, Dinsdale D, Cohen GM. Active caspases and cleaved cytokeratins are sequestered into cytoplasmic inclusions in TRAIL-induced apoptosis. J Cell Biol 2000; 148:1239-54. [PMID: 10725337 PMCID: PMC2174305 DOI: 10.1083/jcb.148.6.1239] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL) -induced apoptosis, in transformed human breast epithelial MCF-7 cells, resulted in a time-dependent activation of the initiator caspases-8 and -9 and the effector caspase-7. Cleavage of caspase-8 and its preferred substrate, Bid, preceded processing of caspases-7 and -9, indicating that caspase-8 is the apical initiator caspase in TRAIL-induced apoptosis. Using transient transfection of COOH-terminal-tagged green fluorescent protein fusion constructs, caspases-3, -7, and -8 were localized throughout the cytoplasm of MCF-7 cells. TRAIL-induced apoptosis resulted in activation of caspases-3 and -7, and the redistribution of most of their detectable catalytically active small subunits into large spheroidal cytoplasmic inclusions, which lacked a limiting membrane. These inclusions, which were also induced in untransfected cells, contained cytokeratins 8, 18, and 19, together with both a phosphorylated form and a caspase-cleavage fragment of cytokeratin 18. Similarly, in untransfected breast HBL100 and lung A549 epithelial cells, TRAIL induced the formation of cytoplasmic inclusions that contained cleaved cytokeratin 18 and colocalized with active endogenous caspase-3. We propose that effector caspase-mediated cleavage of cytokeratins, resulting in disassembly of the cytoskeleton and formation of cytoplasmic inclusions, may be a characteristic feature of epithelial cell apoptosis.
Collapse
Affiliation(s)
- Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Wendy Merrison
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - David Dinsdale
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Gerald M. Cohen
- Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
181
|
Samejima K, Earnshaw WC. Differential localization of ICAD-L and ICAD-S in cells due to removal of a C-terminal NLS from ICAD-L by alternative splicing. Exp Cell Res 2000; 255:314-20. [PMID: 10694446 DOI: 10.1006/excr.2000.4801] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CAD/CPAN/DFF40 is an apoptotic nuclease that is associated with the regulatory subunit ICAD/DFF in healthy cells. ICAD has two forms, ICAD-L/DFF45 and ICAD-S/DFF35, which are transcribed from a single gene by alternative splicing. They differ at the C-terminus: 70 amino acids of ICAD-L are replaced by 4 different amino acids in ICAD-S. We previously showed that both transfected and endogenous ICAD-L are nuclear; however, the localization of ICAD and CAD remains controversial and an important issue to clarify. Here we present the evidence that ICAD-L is nuclear due to the presence of an autonomous nuclear localization signal located in the C-terminal 20 amino acids. This NLS is missing from ICAD-S, which is distributed throughout the cell. We also showed that a GFP:CAD fusion protein is located in the nucleus of transfected cells.
Collapse
Affiliation(s)
- K Samejima
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, Scotland, EH9 3JR, United Kingdom
| | | |
Collapse
|
182
|
Xu SQ, El-Deiry WS. p21(WAF1/CIP1) inhibits initiator caspase cleavage by TRAIL death receptor DR4. Biochem Biophys Res Commun 2000; 269:179-90. [PMID: 10694497 DOI: 10.1006/bbrc.2000.2247] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Death receptors of the Tumor Necrosis Factor (TNF) family form membrane-bound self-activating signaling complexes that initiate apoptosis through cleavage of proximal caspases including CASP8 and 10. Here we show that overexpression of the cytoplasmic domain (CD) of the DR4 TRAIL receptor (TNFRSF10A, TRAIL R1) in human breast, lung, and colon cancer cell lines, using an adenovirus vector (Ad-DR4-CD), leads to p53-independent apoptotic cell death involving cleavage of CASP8 and 10 proximally and CASP3, 6, and 7 distally. DR4-CD overexpression also leads to cleavage of poly(ADP-ribose) polymerase (PARP) and the DNA fragmentation factor (DFF45; ICAD). Importantly, normal lung fibroblasts are resistant to DR4-CD overexpression and show no evidence of PARP-, CASP8- or CASP3-cleavage despite similar levels of adenovirus-delivered DR4-CD protein as the cancer cells. These results suggest that DR4 may signal death through known caspases and that further studies are required to evaluate Ad-DR4-CD as a novel anti-cancer agent. Finally, we show that overexpression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (CDKN1A), or its N-terminal 91 amino acids containing cell cycle-inhibitory activity, inhibits DR4-CD-dependent proximal caspase cleavage. The blockage of initiator caspase activation provides a novel insight into how p21 may suppress apoptosis and enhance cell survival.
Collapse
Affiliation(s)
- S Q Xu
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Departments of Medicine, Genetics, Cancer Center, Howard Hughes Medical Institute, Institute for Human Gene Therapy, 437 CRB, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
183
|
Abstract
The induction of apoptosis, or controlled cell death, by various stimuli has been shown to activate a cascade of endoproteases, called caspases, that cleave numerous cellular proteins necessary for cellular homeostasis. This review discusses this family of proteases together with a variety of mammalian and viral regulatory proteins that act to control this activation.
Collapse
Affiliation(s)
- D K Miller
- Department of Immunology and Rheumatology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| |
Collapse
|
184
|
Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci 2000; 113 ( Pt 5):753-7. [PMID: 10671365 DOI: 10.1242/jcs.113.5.753] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Caspases are a group of cysteine proteases critical for apoptosis of eukaryotic cells. Deletion of genes that encode murine caspases suggests that caspases are involved not only in apoptosis but also in cytokine maturation and cell growth and differentiation. Among them, caspase-1 and caspase-11 are primarily involved in the processing of pro-inflammatory cytokines. Caspase-3 and caspase-9 are essential for apoptosis during brain development. Caspase-8 is required for the development of heart muscle, cell proliferation in the hematopoietic lineage and death-receptor-mediated apoptosis. These studies suggest that caspases function in cell signaling events including apoptosis, cell growth and differentiation.
Collapse
Affiliation(s)
- J Wang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N311, MSC 1892, Bethesda, MD 20892-18892, USA.
| | | |
Collapse
|
185
|
Kipp M, Schwab BL, Przybylski M, Nicotera P, Fackelmayer FO. Apoptotic cleavage of scaffold attachment factor A (SAF-A) by caspase-3 occurs at a noncanonical cleavage site. J Biol Chem 2000; 275:5031-6. [PMID: 10671544 DOI: 10.1074/jbc.275.7.5031] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the caspase family of cysteine proteases play essential roles in the disintegration of cellular architecture during apoptosis. Caspases have been grouped into subfamilies according to their preferred cleavage sites, with the "apoptotic executioner" caspase-3 as the prototype of DEXD-dependent proteases. We show here that caspase-3 is more tolerant to variations of the cleavage site than previously anticipated and present an example of a noncanonical recognition site that is efficiently cleaved by caspase-3 in vitro and in vivo. The new cleavage site was identified in human scaffold attachment factor A, one of the major scaffold attachment region DNA-binding proteins of human cells thought to be involved in nuclear architecture by fastening chromatin loops to a proteinaceous nuclear skeleton, the so-called nuclear matrix or scaffold. Using an amino-terminal recombinant construct of scaffold attachment factor A and recombinant caspase-3, we have mapped the cleavage site by matrix-assisted laser desorption ionization/time of flight mass spectrometry and Edman sequencing. We find that cleavage occurs after Asp-100 in a sequence context (SALD) that does not conform to the hitherto accepted DEXD consensus sequence of caspase-3. A point mutation, D100A, abrogates cleavage by recombinant caspase-3 in vitro and during apoptosis in vivo, confirming SALD as a novel caspase-3 cleavage site.
Collapse
Affiliation(s)
- M Kipp
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
186
|
Herrera PL, Harlan DM, Vassalli P. A mouse CD8 T cell-mediated acute autoimmune diabetes independent of the perforin and Fas cytotoxic pathways: possible role of membrane TNF. Proc Natl Acad Sci U S A 2000; 97:279-84. [PMID: 10618409 PMCID: PMC26654 DOI: 10.1073/pnas.97.1.279] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Double transgenic mice [rat insulin promoter (RIP)-tumor necrosis factor (TNF) and RIP-CD80] whose pancreatic beta cells release TNF and bear CD80 all develop an acute early (6 wk) and lethal diabetes mediated by CD8 T cells. The first ultrastructural changes observed in beta cells, so far unreported, are focal lesions of endoplasmic reticulum swelling at the points of contact with islet-infiltrating lymphoblasts, followed by cytoplasmic, but not nuclear, apoptosis. Such double transgenic mice were made defective in either the perforin, Fas, or TNF pathways. Remarkably, diabetes was found to be totally independent of perforin and Fas. Mice lacking TNF receptor (TNFR) II had no or late diabetes, but only a minority had severe insulitis. Mice lacking the TNF-lymphotoxin (LTalpha) locus (whose sole source of TNF are the beta cells) all had insulitis comparable to that of nondefective mice, but no diabetes or a retarded and milder form, with lesions suggesting different mechanisms of injury. Because both TNFR II and TNF-LTalpha mutations have complex effects on the immune system, these data do not formally incriminate membrane TNF as the major T cell mediator of this acute autoimmune diabetes; nevertheless, in the absence of involvement of the perforin or Fas cytotoxic pathways, membrane TNF appears to be the likeliest candidate.
Collapse
Affiliation(s)
- P L Herrera
- Department of Morphology, University of Geneva Medical School, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
187
|
Roth KA, Kuan C, Haydar TF, D'Sa-Eipper C, Shindler KS, Zheng TS, Kuida K, Flavell RA, Rakic P. Epistatic and independent functions of caspase-3 and Bcl-X(L) in developmental programmed cell death. Proc Natl Acad Sci U S A 2000; 97:466-71. [PMID: 10618441 PMCID: PMC26686 DOI: 10.1073/pnas.97.1.466] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/1999] [Indexed: 12/29/2022] Open
Abstract
The number of neurons in the mammalian brain is determined by a balance between cell proliferation and programmed cell death. Recent studies indicated that Bcl-X(L) prevents, whereas Caspase-3 mediates, cell death in the developing nervous system, but whether Bcl-X(L) directly blocks the apoptotic function of Caspase-3 in vivo is not known. To examine this question, we generated bcl-x/caspase-3 double mutants and found that caspase-3 deficiency abrogated the increased apoptosis of postmitotic neurons but not the increased hematopoietic cell death and embryonic lethality caused by the bcl-x mutation. In contrast, caspase-3, but not bcl-x, deficiency changed the normal incidence of neuronal progenitor cell apoptosis, consistent with the lack of expression of Bcl-X(L) in the proliferative population of the embryonic cortex. Thus, although Caspase-3 is epistatically downstream to Bcl-X(L) in postmitotic neurons, it independently regulates apoptosis of neuronal founder cells. Taken together, these results establish a role of programmed cell death in regulating the size of progenitor population in the central nervous system, a function that is distinct from the classic role of cell death in matching postmitotic neuronal population with postsynaptic targets.
Collapse
Affiliation(s)
- K A Roth
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
D'Mello SR, Kuan CY, Flavell RA, Rakic P. Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(20000101)59:1<24::aid-jnr4>3.0.co;2-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
189
|
Woo M, Hakem A, Elia AJ, Hakem R, Duncan GS, Patterson BJ, Mak TW. In Vivo Evidence That Caspase-3 Is Required for Fas-Mediated Apoptosis of Hepatocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.9.4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Caspase-3 is essential for Fas-mediated apoptosis in vitro. We investigated the role of caspase-3 in Fas-mediated cell death in vivo by injecting caspase-3-deficient mice with agonistic anti-Fas Ab. Wild-type controls died rapidly of fulminant hepatitis, whereas the survival of caspase-3−/− mice was increased due to a delay in hepatocyte cell death. Bcl-2 expression in the liver was dramatically decreased in wild-type mice following anti-Fas injection, but was unchanged in caspase-3−/− mice. Hepatocytes from anti-Fas-injected wild-type, but not caspase-3−/−, mice released cytochrome c into the cytoplasm. Western blotting confirmed the lack of caspase-3-mediated cleavage of Bcl-2. Presumably the presence of intact Bcl-2 in caspase-3−/− hepatocytes prevents the release of cytochrome c from the mitochondria, a required step for the mitochondrial death pathway. We also show by Western blot that Bcl-xL, caspase-9, caspase-8, and Bid are processed by caspase-3 in injected wild-type mice but that this processing does not occur in caspase-3−/− mice. This study thus provides novel in vivo evidence that caspase-3, conventionally known for its downstream effector function in apoptosis, also modifies Bcl-2 and other upstream proteins involved in the regulation of Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Minna Woo
- *Amgen Institute and Ontario Cancer Institute and
| | - Anne Hakem
- *Amgen Institute and Ontario Cancer Institute and
| | | | | | | | - Bruce J. Patterson
- ‡Ontario Cancer Institute, Department of Oncologic Pathology, Toronto, Ontario, Canada
| | - Tak W. Mak
- *Amgen Institute and Ontario Cancer Institute and
- †Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
190
|
Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 1999; 274:30651-6. [PMID: 10521451 DOI: 10.1074/jbc.274.43.30651] [Citation(s) in RCA: 369] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-3 initiates apoptotic DNA fragmentation by proteolytically inactivating DFF45 (DNA fragmentation factor-45)/ICAD (inhibitor of caspase-activated DNase), which releases active DFF40/CAD (caspase-activated DNase), the inhibitor's associated endonuclease. Here, we examined whether other apoptotic proteinases initiated DNA fragmentation via DFF45/ICAD inactivation. In a cell-free assay, caspases-3, -6, -7, -8, and granzyme B initiated benzoyloxycarbonyl-Asp-Glu-Val-Asp (DEVD) cleaving caspase activity, DFF45/ICAD inactivation, and DNA fragmentation, but calpain and cathepsin D failed to initiate these events. Strikingly, only the DEVD cleaving caspases, caspase-3 and caspase-7, inactivated DFF45/ICAD and promoted DNA fragmentation in an in vitro DFF40/CAD assay, suggesting that granzyme B, caspase-6, and caspase-8 promote DFF45/ICAD inactivation and DNA fragmentation indirectly by activating caspase-3 and/or caspase-7. In vitro, however, caspase-3 inactivated DFF45/ICAD and promoted DNA fragmentation more effectively than caspase-7 and endogenous levels of caspase-7 failed to inactivate DFF45/ICAD in caspase-3 null MCF7 cells and extracts. Together, these data suggest that caspase-3 is the primary inactivator of DFF45/ICAD and therefore the primary activator of apoptotic DNA fragmentation.
Collapse
Affiliation(s)
- B B Wolf
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
191
|
Harada J, Sugimoto M. Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res 1999; 842:311-23. [PMID: 10526127 DOI: 10.1016/s0006-8993(99)01808-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amyloid beta protein (Abeta) has been thought to participate in the neurodegeneration associated with Alzheimer's disease. We here report on caspase-3 activation by Abeta-treatment of cultured neurons. Treatment of rat primary cortical culture with Abeta 25-35, an active fragment of Abeta, induced neuronal death as determined by a decrease in neuron-specific microtubule-associated protein 2 (MAP2)-like immunoreactivity and by the release of cellular lactate dehydrogenase (LDH). Abeta 25-35 also induced elevation of caspase-3-like Ac-DEVD-MCA cleavage activity in advance of neuronal death with similar concentration-dependency for neuronal death. Inhibitor sensitivity of the Abeta-induced proteolytic activity was similar to that of human recombinant caspase-3. Cleavage of pro-caspase-3 and cleavage of its endogenous substrates, poly (ADP-ribose) polymerase (PARP) and alpha-fodrin, were produced by Abeta-treatment. A caspase-3 inhibitor, Ac-DEVD-CHO, prevented Abeta-induced DNA fragmentation and cleavage of alpha-fodrin, but not of PARP. Caspase inhibitor of broad specificity, Z-VAD-CH(2)-DCB, additionally prevented Abeta-induced cleavage of PARP and some early loss of cell membrane integrity measured by LDH release. However, Abeta-induced condensation of nuclear chromatin and most of the late disintegration of cell membranes were not prevented in the presence of these caspase inhibitors. These results suggest that activation of both caspase-3 and caspase(s) other than caspase-3 play distinct roles in Abeta-induced apoptosis of rat cortical neurons. Furthermore, in the presence of caspase inhibitors, Abeta-induced neuronal death still occurred with different morphological features.
Collapse
Affiliation(s)
- J Harada
- Neuroscience Research Laboratories, Sankyo Co. Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan.
| | | |
Collapse
|
192
|
|
193
|
Tsutsui H, Kayagaki N, Kuida K, Nakano H, Hayashi N, Takeda K, Matsui K, Kashiwamura S, Hada T, Akira S, Yagita H, Okamura H, Nakanishi K. Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity 1999; 11:359-67. [PMID: 10514014 DOI: 10.1016/s1074-7613(00)80111-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IL-18, produced as a biologically inactive precursor, is processed by caspase-1 in LPS-activated macrophages. Here, we investigated caspase-1-independent processing of IL-18 in Fas ligand (FasL)-stimulated macrophages and its involvement in liver injury. Administration of Propionibacterium acnes (P. acnes) upregulated functional Fas expression on macrophages in an IFNgamma-dependent manner, and these macrophages became competent to secrete mature IL-18 upon stimulation with FasL. This was also the case for caspase-1-deficient mice. Administration of recombinant soluble FasL (rFasL) after P. acnes priming induced comparable elevation of serum IL-18 in parallel with elevated serum liver enzyme levels. However, liver injury was not induced in IL-18-deficient mice after rFasL administration. These results indicate a caspase-1-independent pathway of IL-18 secretion from FasL-stimulated macrophages and its critical involvement in FasL-induced liver injury.
Collapse
Affiliation(s)
- H Tsutsui
- Department of Immunology and Medical Zoology, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Mills JC, Stone NL, Pittman RN. Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 1999; 146:703-8. [PMID: 10459006 PMCID: PMC2156138 DOI: 10.1083/jcb.146.4.703] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- J C Mills
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
195
|
Faraco PR, Ledgerwood EC, Vandenabeele P, Prins JB, Bradley JR. Tumor necrosis factor induces distinct patterns of caspase activation in WEHI-164 cells associated with apoptosis or necrosis depending on cell cycle stage. Biochem Biophys Res Commun 1999; 261:385-92. [PMID: 10425195 DOI: 10.1006/bbrc.1999.1042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TNF is unusual among the death receptor ligands in being able to induce either apoptotic or necrotic cell death. We have observed that in WEHI 164 fibrosarcoma, cells the mode of TNF-induced cell death is dependent on the stage of the cell cycle. Cells arrested in G(0)/G(1) undergo necrosis, while those progressing through the cell cycle undergo apoptosis. TNF induces caspase activity in both settings, and the broad spectrum caspase inhibitor zVAD-fmk inhibits this activity and blocks both TNF-induced apoptosis and necrosis. Inhibition of oxygen radical accumulation does not block cytotoxicity. The presence and activation of specific caspases were examined by Western blotting. The procaspase-8a isoform was down-regulated in proliferating cells. Procaspases-8b and -7 were cleaved during TNF-induced apoptosis but not necrosis. Thus, a different pattern of caspase expression and activation occurs dependent on the cell cycle and which may determine the mode of cell death.
Collapse
Affiliation(s)
- P R Faraco
- Department of Clinical Biochemistry, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd., Cambridge, CB2 2QQ, United Kingdom
| | | | | | | | | |
Collapse
|
196
|
Bortner CD, Cidlowski JA. Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 1999; 274:21953-62. [PMID: 10419518 DOI: 10.1074/jbc.274.31.21953] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The loss of cell volume is a fundamental feature of apoptosis. We have previously shown that DNA degradation and caspase activity occur only in cells which have shrunken as a result of potassium and sodium efflux (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436-32442). Furthermore, maintaining a normal intracellular potassium concentration represses the cell death process by inhibiting the activity of apoptotic nucleases and suppressing the activation of effector caspases (Hughes, F. M., Jr., Bortner, C. D. Purdy, G. D., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 30567-30576). We have now investigated the relationship between cell shrinkage, ion efflux, and changes in the mitochondrial membrane potential, in addition to the role of caspases in these apoptotic events. Treatment of Jurkat cells with a series of inducers which act via distinct signal transduction pathways, resulted in all of the cell death characteristics including loss of cell viability, cell shrinkage, K(+) efflux, altered mitochondrial membrane potential, and DNA fragmentation. Interestingly, only cells which shrunk had a loss of mitochondrial membrane potential and the other apoptotic characteristics. Treatment of Jurkat cells with an anti-Fas antibody in the presence of the general caspase inhibitor z-VAD, abrogated these features. In contrast, when Jurkat cells were treated with either the calcium ionophore A23187 or thapsigargin, z-VAD failed to prevent cell shrinkage, K(+) efflux, or changes in the mitochondrial membrane potential, while effectively inhibiting DNA degradation. Treatment of Jurkat cells with various apoptotic agents in the presence of either the caspase-3 inhibitor DEVD, or the caspase-8 inhibitor IETD also blocked DNA degradation, but failed to prevent other characteristics of apoptosis. Together these data suggest that the cell shrinkage, K(+) efflux, and changes in the mitochondrial membrane potential are tightly coupled, but occur independent of DNA degradation, and can be largely caspase independent depending on the particular signal transduction pathway.
Collapse
Affiliation(s)
- C D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
197
|
Changes in expression of the DNA repair protein complex DNA-dependent protein kinase after ischemia and reperfusion. J Neurosci 1999. [PMID: 10366606 DOI: 10.1523/jneurosci.19-12-04727.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.
Collapse
|
198
|
Shackelford DA, Tobaru T, Zhang S, Zivin JA. Changes in expression of the DNA repair protein complex DNA-dependent protein kinase after ischemia and reperfusion. J Neurosci 1999; 19:4727-38. [PMID: 10366606 PMCID: PMC6782663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.
Collapse
Affiliation(s)
- D A Shackelford
- Department of Neurosciences, University of California at San Diego, La Jolla, California 92093-0624, USA
| | | | | | | |
Collapse
|
199
|
Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 1999; 10:629-39. [PMID: 10403638 DOI: 10.1016/s1074-7613(00)80062-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Los
- Department of Internal Medicine I, Medical Clinics, University of Tübingen, Germany
| | | | | |
Collapse
|
200
|
Kano A, Haruyama T, Akaike T, Watanabe Y. IRF-1 is an essential mediator in IFN-gamma-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochem Biophys Res Commun 1999; 257:672-7. [PMID: 10208842 DOI: 10.1006/bbrc.1999.0276] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IFN-gamma induces cell cycle arrest and p53-independent apoptosis in primary cultured hepatocytes. However, it is not yet understood what molecules regulate the mechanism. We report here that interferon regulatory factor 1 (IRF-1) is an essential molecule in these phenomena. Hepatocytes from IRF-1-deficient mice were completely resistant to IFN-gamma in apoptosis indicated by three different hallmarks such as LDH release, DNA fragmentation and the activation of caspase-3 family. Caspase-1 expression was little detected in hepatocytes, and constitutive and IFN-gamma-induced mRNA expression of Fas or caspase-3 did not change in between wild type and IRF-1-deficient hepatocytes. Expression of IFN-gamma-inducible caspase, caspase-11, did not change either. Thus, it is unlikely that these molecules directly regulate the mechanisms. Interestingly, IRF-1-deficient hepatocytes were also resistant to IFN-gamma-induced cell cycle arrest despite IFN-gamma-induced cell cycle arrest and apoptosis are regulated by independent pathways. Results by Northern blot analysis showed that IFN-gamma-induced but not constitutive p53 mRNA expression was regulated by IRF-1. In fact, IFN-gamma did not induce cell cycle arrest in p53-deficient hepatocytes. Taken together, IRF-1 mediates IFN-gamma signaling into primary hepatocytes for cell cycle arrest via p53 expression and for apoptosis.
Collapse
Affiliation(s)
- A Kano
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku, Yokohama, 226-0026, Japan
| | | | | | | |
Collapse
|