151
|
Affiliation(s)
- Paul R Carey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
152
|
Priyakumar UD, MacKerell AD. Computational approaches for investigating base flipping in oligonucleotides. Chem Rev 2006; 106:489-505. [PMID: 16464016 DOI: 10.1021/cr040475z] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- U Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 21201, USA
| | | |
Collapse
|
153
|
Berti PJ, McCann JAB. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem Rev 2006; 106:506-55. [PMID: 16464017 DOI: 10.1021/cr040461t] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Paul J Berti
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
154
|
Krueger A, Protozanova E, Frank-Kamenetskii MD. Sequence-dependent base pair opening in DNA double helix. Biophys J 2006; 90:3091-9. [PMID: 16500982 PMCID: PMC1432109 DOI: 10.1529/biophysj.105.078774] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preservation of genetic information in DNA relies on shielding the nucleobases from damage within the double helix. Thermal fluctuations lead to infrequent events of the Watson-Crick basepair opening, or DNA "breathing", thus making normally buried groups available for modification and interaction with proteins. Fluctuational basepair opening implies the disruption of hydrogen bonds between the complementary bases and flipping of the base out of the helical stack. Prediction of sequence-dependent basepair opening probabilities in DNA is based on separation of the two major contributions to the stability of the double helix: lateral pairing between the complementary bases and stacking of the pairs along the helical axis. The partition function calculates the basepair opening probability at every position based on the loss of two stacking interactions and one base-pairing. Our model also includes a term accounting for the unfavorable positioning of the exposed base, which proceeds through a formation of a highly constrained small loop, or a ring. Quantitatively, the ring factor is found as an adjustable parameter from the comparison of the theoretical basepair opening probabilities and the experimental data on short DNA duplexes measured by NMR spectroscopy. We find that these thermodynamic parameters suggest nonobvious sequence dependent basepair opening probabilities.
Collapse
Affiliation(s)
- Andrew Krueger
- Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
155
|
Krusong K, Carpenter EP, Bellamy SRW, Savva R, Baldwin GS. A Comparative Study of Uracil-DNA Glycosylases from Human and Herpes Simplex Virus Type 1. J Biol Chem 2006; 281:4983-92. [PMID: 16306042 DOI: 10.1074/jbc.m509137200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil-DNA glycosylase (UNG) is the key enzyme responsible for initiation of base excision repair. We have used both kinetic and binding assays for comparative analysis of UNG enzymes from humans and herpes simplex virus type 1 (HSV-1). Steady-state fluorescence assays showed that hUNG has a much higher specificity constant (k(cat)/K(m)) compared with the viral enzyme due to a lower K(m). The binding of UNG to DNA was also studied using a catalytically inactive mutant of UNG and non-cleavable substrate analogs (2'-deoxypseudouridine and 2'-alpha-fluoro-2'-deoxyuridine). Equilibrium DNA binding revealed that both human and HSV-1 UNG enzymes bind to abasic DNA and both substrate analogs more weakly than to uracil-containing DNA. Structure determination of HSV-1 D88N/H210N UNG in complex with uracil revealed detailed information on substrate binding. Together, these results suggest that a significant proportion of the binding energy is provided by specific interactions with the target uracil. The kinetic parameters for human UNG indicate that it is likely to have activity against both U.A and U.G mismatches in vivo. Weak binding to abasic DNA also suggests that UNG activity is unlikely to be coupled to the subsequent common steps of base excision repair.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | | | | | | | | |
Collapse
|
156
|
|
157
|
Huffman JL, Sundheim O, Tainer JA. DNA base damage recognition and removal: new twists and grooves. Mutat Res 2005; 577:55-76. [PMID: 15941573 DOI: 10.1016/j.mrfmmm.2005.03.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 11/24/2022]
Abstract
The discoveries of nucleotide excision repair and transcription-coupled repair led by Phil Hanawalt and a few colleagues sparked a dramatic evolution in our understanding of DNA and molecular biology by revealing the intriguing systems of DNA repair essential to life. In fact, modifications of the cut-and-patch principles identified by Phil Hanawalt and colleagues underlie many of the common themes for the recognition and removal of damaged DNA bases outlined in this review. The emergence of these common themes and a unified understanding have been greatly aided from the direct visualizations of repair proteins and their interactions with damaged DNA by structural biology. These visualizations of DNA repair structures have complemented the increasing wealth of biochemical and genetic information on DNA base damage responses by revealing general themes for the recognition of damaged bases, such as sequence-independent DNA recognition motifs, minor groove reading heads for initial damage recognition, and nucleotide flipping from the major groove into active-site pockets for high specificity of base damage recognition and removal. We know that repair intermediates are as harmful as the initial damage itself, and that these intermediates are protected from one repair step to the next by the enzymes involved, such that pathway-specific handoffs must be efficiently coordinated. Here we focus on the structural biology of the repair enzymes and proteins that recognize specific base lesions and either initiate the base excision repair pathway or directly repair the damage in one step. This understanding of the molecular basis for DNA base integrity is fundamental to resolving key scientific, medical, and public health issues, including the evaluation of the risks from inherited repair protein mutations, environmental toxins, and medical procedures.
Collapse
Affiliation(s)
- Joy L Huffman
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
158
|
Zharkov DO, Grollman AP. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Mutat Res 2005; 577:24-54. [PMID: 15939442 DOI: 10.1016/j.mrfmmm.2005.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/28/2005] [Accepted: 03/29/2005] [Indexed: 11/24/2022]
Abstract
DNA glycosylases, the pivotal enzymes in base excision repair, are faced with the difficult task of recognizing their substrates in a large excess of unmodified DNA. We present here a kinetic analysis of DNA glycosylase substrate specificity, based on the probability of error. This novel approach to this subject explains many features of DNA surveillance and catalysis of lesion excision by DNA glycosylases. This approach also is applicable to the general issue of substrate specificity. We discuss determinants of substrate specificity in damaged DNA and in the enzyme, as well as methods by which these determinants can be identified.
Collapse
Affiliation(s)
- Dmitry O Zharkov
- Laboratory of Repair Enzymes, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | | |
Collapse
|
159
|
Abstract
The discoveries of DNA mimicry by proteins inspired by Ugi experiments led by Dale Mosbaugh and his colleagues have sparked dramatic insights for our understanding of DNA and protein interactions. Currently only a small number protein mimics of DNA are known or suspected, including Ugi, HI1450, Ocr, TAF1, MfpA, and Dinl. These proteins are structurally diverse, but together they share common themes we define here. These mimics tend to resemble distorted rather than normal B-DNA, possibly to prevent cross-reactions with other DNA metabolizing proteins that should not be inhibited. Side-chain carboxylates of glutamates and aspartates functionally replace phosphates and thereby generate an overall charge pattern resembling the DNA phosphate backbone. Most protein mimics of DNA have strikingly hydrophobic cores that likely stabilize the protein fold despite substantial charge localization and a relatively small internal volume enforced by the restrictions from DNA size. These common characteristics for protein mimicry of DNA should prove useful for future identifications of DNA mimics, which seem likely to be found in bacteriophages, conjugative plasmids, eukaryotic viruses, and transcription machinery. We also suggest approaches to the design of novel DNA mimics to inhibit specific pathways and could be important for basic science applications and for use as therapeutic agents. Moreover, mimicry in general is of critical importance in that it provides an elegant mechanism by which interfaces can be reused to force sequential rather than simultaneous complex formations such as seen in systems involving polar protein assemblies and DNA repair machinery.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, 92093-0669, USA
| | | |
Collapse
|
160
|
Chen CY, Mosbaugh DW, Bennett SE. Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase. DNA Repair (Amst) 2005; 4:793-805. [PMID: 15970468 PMCID: PMC3039872 DOI: 10.1016/j.dnarep.2005.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 04/07/2005] [Accepted: 04/12/2005] [Indexed: 11/25/2022]
Abstract
To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the K(d) of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The k(cat) of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, k(cat) on double-stranded DNA substrate was reduced 4-12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase.
Collapse
Affiliation(s)
- Cheng-Yao Chen
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331-7301, USA
| | - Dale W. Mosbaugh
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301, USA
- The Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331-7301, USA
| | - Samuel E. Bennett
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301, USA
- The Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331-7301, USA
- Corresponding author. Tel.: +1 541 737 1797; fax: +1 541 737 0497. (S.E. Bennett)
| |
Collapse
|
161
|
Olufsen M, Smalås AO, Moe E, Brandsdal BO. Increased Flexibility as a Strategy for Cold Adaptation. J Biol Chem 2005; 280:18042-8. [PMID: 15749696 DOI: 10.1074/jbc.m500948200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil DNA glycosylase (UDG) is a DNA repair enzyme in the base excision repair pathway and removes uracil from the DNA strand. Atlantic cod UDG (cUDG), which is a cold-adapted enzyme, has been found to be up to 10 times more catalytically active in the temperature range 15-37 degrees C as compared with the warm-active human counterpart. The increased catalytic activity of cold-adapted enzymes as compared with their mesophilic homologues are partly believed to be caused by an increase in the structural flexibility. However, no direct experimental evidence supports the proposal of increased flexibility of cold-adapted enzymes. We have used molecular dynamics simulations to gain insight into the structural flexibility of UDG. The results from these simulations show that an important loop involved in DNA recognition (the Leu(272) loop) is the most flexible part of the cUDG structure and that the human counterpart has much lower flexibility in the Leu(272) loop. The flexibility in this loop correlates well with the experimental k(cat)/K(m) values. Thus, the data presented here add strong support to the idea that flexibility plays a central role in adaptation to cold environments.
Collapse
Affiliation(s)
- Magne Olufsen
- Norwegian Structural Biology Centre, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
162
|
Jiang YL, Cao C, Stivers JT, Song F, Ichikawa Y. The merits of bipartite transition-state mimics for inhibition of uracil DNA glycosylase. Bioorg Chem 2005; 32:244-62. [PMID: 15210339 DOI: 10.1016/j.bioorg.2004.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Indexed: 10/26/2022]
Abstract
The glycosidic bond hydrolysis reaction of the enzyme uracil DNA glycosylase (UDG) occurs by a two-step mechanism involving complete bond breakage to the uracil anion leaving group in the first step, formation of a discrete glycosyl cation-uracil anion intermediate, followed by water attack in a second transition-state leading to the enzyme-bound products of uracil and abasic DNA. We have synthesized and determined the binding affinities of unimolecular mimics of the substrate and first transition-state (TS1) in which the uracil base is covalently attached to the sugar, and in addition, bimolecular mimics of the second addition transition state (TS2) in which the base and sugar are detached. We find that the bipartite mimics of TS2 are superior to the TS1 mimics. These results indicate that bipartite TS2 inhibitors could be useful for inhibition of glycosylases that proceed by stepwise reaction mechanisms.
Collapse
Affiliation(s)
- Yu Lin Jiang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | | | | | |
Collapse
|
163
|
Cao C, Jiang YL, Stivers JT, Song F. Dynamic opening of DNA during the enzymatic search for a damaged base. Nat Struct Mol Biol 2004; 11:1230-6. [PMID: 15558051 DOI: 10.1038/nsmb864] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 10/20/2004] [Indexed: 11/09/2022]
Abstract
Uracil DNA glycosylase (UDG) removes uracil from U.A or U.G base pairs in genomic DNA by extruding the aberrant uracil from the DNA base stack. A question in enzymatic DNA repair is whether UDG and related glycosylases also use an extrahelical recognition mechanism to inspect the integrity of undamaged base pairs. Using NMR imino proton exchange measurements we find that UDG substantially increases the equilibrium constant for opening of T-A base pairs by almost two orders of magnitude relative to free B-DNA. This increase is brought about by enzymatic stabilization of an open state of the base pair without increasing the rate constant for spontaneous base pair opening. These findings indicate a passive search mechanism in which UDG uses the spontaneous opening dynamics of DNA to inspect normal base pairs in a rapid genome-wide search for uracil in DNA.
Collapse
Affiliation(s)
- Chunyang Cao
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
164
|
Matsubara M, Tanaka T, Terato H, Ohmae E, Izumi S, Katayanagi K, Ide H. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Res 2004; 32:5291-302. [PMID: 15466595 PMCID: PMC521670 DOI: 10.1093/nar/gkh859] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1), previously thought to be a backup enzyme for uracil-DNA glycosylase, has recently been shown to excise 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU) bearing an oxidized group at ring C5 as well as an uracil. In the present study, we used site-directed mutagenesis to construct a series of mutants of human SMUG1 (hSMUG1), and tested their activity for uracil, hoU, hmU, fU and other bases to elucidate the catalytic and damage-recognition mechanism of hSMUG1. The functional analysis of the mutants, together with the homology modeling of the hSMUG1 structure based on that determined recently for Xenopus laevis SMUG1, revealed the crucial residues for the rupture of the N-glycosidic bond (Asn85 and His239), discrimination of pyrimidine rings through pi-pi stacking to the base (Phe98) and specific hydrogen bonds to the Watson-Crick face of the base (Asn163) and exquisite recognition of the C5 substituent through water-bridged (uracil) or direct (hoU, hmU and fU) hydrogen bonds (Gly87-Met91). Integration of the present results and the structural data elucidates how hSMUG1 accepts uracil, hoU, hmU and fU as substrates, but not other oxidized pyrimidines such as 5-hydroxycytosine, 5-formylcytosine and thymine glycol, and intact pyrimidines such as thymine and cytosine.
Collapse
Affiliation(s)
- Mayumi Matsubara
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Chen CY, Mosbaugh DW, Bennett SE. Mutational analysis of arginine 276 in the leucine-loop of human uracil-DNA glycosylase. J Biol Chem 2004; 279:48177-88. [PMID: 15339922 PMCID: PMC3040516 DOI: 10.1074/jbc.m407836200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.
Collapse
Affiliation(s)
- Cheng-Yao Chen
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331-7301
| | - Dale W. Mosbaugh
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-7301
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331-7301
| | - Samuel E. Bennett
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-7301
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331-7301
- To whom correspondence should be addressed: Dept. of Environmental and Molecular Toxicology, ALS 1007, Oregon State University, Corvallis, OR 97331-7301. Tel.: 541-737-1797; Fax: 541-737-0497;
| |
Collapse
|
166
|
Stivers JT. Site-specific DNA damage recognition by enzyme-induced base flipping. ACTA ACUST UNITED AC 2004; 77:37-65. [PMID: 15196890 DOI: 10.1016/s0079-6603(04)77002-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD 21205 USA
| |
Collapse
|
167
|
Abstract
We measured the kinetics of DNA bending by M.EcoRI using DNA labeled at both 5'-ends and observed changes in fluorescence resonance energy transfer. Although known to bend its cognate DNA site, energy transfer is decreased upon enzyme binding. This unanticipated effect is shown to be robust because we observe the identical decrease with different dye pairs, when the dye pairs are placed on the respective 3'-ends, the effect is cofactor- and protein-dependent, and the effect is observed with duplexes ranging from 14 through 17 base pairs. The same labeled DNA shows the anticipated increased energy transfer with EcoRV endonuclease, which also bends this sequence, and no change in energy transfer with EcoRI endonuclease, which leaves this sequence unbent. We interpret these results as evidence for an increased end-to-end distance resulting from M.EcoRI binding, mediated by a mechanism novel for DNA methyltransferases, combining DNA bending and an overall expansion of the DNA duplex. The M.EcoRI protein sequence is poorly accommodated into well defined classes of DNA methyltransferases, both at the level of individual motifs and overall alignment. Interestingly, M.EcoRI has an intercalation motif observed in the FPG DNA glycosylase family of repair enzymes. Enzyme-dependent changes in anisotropy and fluorescence resonance energy transfer have similar rate constants, which are similar to the previously determined rate constant for base flipping; thus, the three processes are nearly coincidental. Similar fluorescence resonance energy transfer experiments following AdoMet-dependent catalysis show that the unbending transition determines the steady state product release kinetics.
Collapse
Affiliation(s)
- Ben B Hopkins
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
168
|
Acharya N, Talawar RK, Purnapatre K, Varshney U. Use of sequence microdivergence in mycobacterial ortholog to analyze contributions of the water-activating loop histidine of Escherichia coli uracil-DNA glycosylase in reactant binding and catalysis. Biochem Biophys Res Commun 2004; 320:893-9. [PMID: 15240132 DOI: 10.1016/j.bbrc.2004.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Indexed: 10/26/2022]
Abstract
Uracil-DNA glycosylase (Ung), a DNA repair enzyme, pioneers uracil excision repair pathway. Structural determinations and mutational analyses of the Ung class of proteins have greatly facilitated our understanding of the mechanism of uracil excision from DNA. More recently, a hybrid quantum-mechanical/molecular mechanical analysis revealed that while the histidine (H67 in EcoUng) of the GQDPYH motif (omega loop) in the active site pocket is important in positioning the reactants, it makes an unfavorable energetic contribution (penalty) in achieving the transition state intermediate. Mutational analysis of this histidine is unavailable from any of the Ung class of proteins. A complication in demonstrating negative role of a residue, especially when located within the active site pocket, is that the mutants with enhanced activity are rarely obtained. Interestingly, unlike the most Ung proteins, the H67 equivalent in the omega loop in mycobacterial Ung is represented by P67. Exploiting this natural diversity to maintain structural integrity of the active site, we transplanted an H67P mutation in EcoUng. Uracil inhibition assays and binding of a proteinaceous inhibitor, Ugi (a transition state substrate mimic), with the mutant (H67P) revealed that its active site pocket was not perturbed. The catalytic efficiency (Vmax/Km) of the mutant was similar to that of the wild type Ung. However, the mutant showed increased Km and Vmax. Together with the data from a double mutation H67P/G68T, these observations provide the first biochemical evidence for the proposed diverse roles of H67 in catalysis by Ung.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
169
|
Lima WF, Nichols JG, Wu H, Prakash TP, Migawa MT, Wyrzykiewicz TK, Bhat B, Crooke ST. Structural requirements at the catalytic site of the heteroduplex substrate for human RNase H1 catalysis. J Biol Chem 2004; 279:36317-26. [PMID: 15205459 DOI: 10.1074/jbc.m405035200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human RNase H1 cleaves RNA exclusively in an RNA/DNA duplex; neither double-strand DNA nor double-strand RNA is a viable substrate. Previous studies suggest that the helical geometry and sugar conformation of the DNA and RNA may play a role in the selective recognition of the heteroduplex substrate by the enzyme. We systematically evaluated the influence of sugar conformation, minor groove bulk, and conformational flexibility of the heteroduplex on enzyme efficiency. Modified nucleotides were introduced into the oligodeoxyribonucleotide at the catalytic site of the heteroduplex and consisted of southern, northern, and eastern biased sugars with and without 2'-substituents, non-hydrogen bonding base modifications, abasic deoxyribonucleotides, intranucleotide hydrocarbon linkers, and a ganciclovir-modified deoxyribonucleotide. Heteroduplexes containing modifications exhibiting strong northern or southern conformational biases with and without a bulky 2'-substituent were cleaved at a significantly slower rate than the unmodified substrate. Modifications imparting the greatest degree of conformational flexibility were the poorest substrates, resulting in dramatically slower cleavage rates for the ribonucleotide opposing the modification and the surrounding ribonucleotides. Finally, modified heteroduplexes containing modifications predicted to mimic the sugar pucker and conformational flexibility of the deoxyribonucleotide exhibited cleavage rates comparable with those of the unmodified substrate. These data suggest that sugar conformation, minor groove width, and the relative positions of the intra- and internucleotide phosphates are the crucial determinants in the selective recognition of the heteroduplex substrate by human RNase H1 and offer immediate steps to improve the performance of DNA-like antisense oligonucleotides.
Collapse
Affiliation(s)
- Walt F Lima
- Department of Molecular and Structural Biology, Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, CA 92008, USA.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Estabrook RA, Lipson R, Hopkins B, Reich N. The coupling of tight DNA binding and base flipping: identification of a conserved structural motif in base flipping enzymes. J Biol Chem 2004; 279:31419-28. [PMID: 15143064 DOI: 10.1074/jbc.m402950200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Val(121) is positioned immediately above the extrahelical cytosine in HhaI DNA C(5)-cytosine methyltransferase, and replacement with alanine dramatically interferes with base flipping and catalysis. DNA binding and k(cat) are decreased 10(5)-fold for the Val(121) --> Ala mutant that has a normal circular dichroism spectrum and AdoMet affinity. The magnitude of this loss of function is comparable with removal of the essential catalytic Cys(81). Surprisingly, DNA binding is completely recovered (increase of 10(5)-fold) with a DNA substrate lacking the target cytosine base (abasic). Thus, interfering with the base flipping transition results in a dramatic loss of binding energy. Our data support an induced fit mechanism in which tight DNA binding is coupled to both base flipping and protein loop rearrangement. The importance of the proximal protein segment (His(127)-Thr(132)) in maintaining this critical interaction between Val(121) and the flipped cytosine was probed with single site alanine substitutions. None of these mutants are significantly altered in secondary structure, AdoMet or DNA affinity, k(methylation), k(inactivation), or k(cat). Although Val(121) plays a critical role in both extrahelical base stabilization and catalysis, its position and mobility are not influenced by individual residues in the adjacent peptide region. Structural comparisons with other DNA methyltransferases and DNA repair enzymes that stabilize extrahelical nucleotides reveal a motif that includes a positively charged or polar side chain and a hydrophobic residue positioned adjacent to the target DNA base and either the 5'- or 3'-phosphate.
Collapse
Affiliation(s)
- R August Estabrook
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
171
|
Avalos JL, Boeke JD, Wolberger C. Structural basis for the mechanism and regulation of Sir2 enzymes. Mol Cell 2004; 13:639-48. [PMID: 15023335 DOI: 10.1016/s1097-2765(04)00082-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 01/16/2004] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
Sir2 proteins form a family of NAD(+)-dependent protein deacetylases required for diverse biological processes, including transcriptional silencing, suppression of rDNA recombination, control of p53 activity, regulation of acetyl-CoA synthetase, and aging. Although structures of Sir2 enzymes in the presence and absence of peptide substrate or NAD(+) have been determined, the role of the enzyme in the mechanism of deacetylation and NAD(+) cleavage is still unclear. Here, we present additional structures of Sir2Af2 in several differently complexed states: in a productive complex with NAD(+), in a nonproductive NAD(+) complex with bound ADP-ribose, and in the unliganded state. We observe a new mode of NAD(+) binding that seems to depend on acetyl-lysine binding, in which the nicotinamide ring of NAD(+) is buried in the highly conserved "C" pocket of the enzyme. We propose a detailed structure-based mechanism for deacetylation and nicotinamide inhibition of Sir2 consistent with mutagenesis and enzymatic studies.
Collapse
Affiliation(s)
- José L Avalos
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA
| | | | | |
Collapse
|
172
|
Koval VV, Kuznetsov NA, Zharkov DO, Ishchenko AA, Douglas KT, Nevinsky GA, Fedorova OS. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase. Nucleic Acids Res 2004; 32:926-35. [PMID: 14769949 PMCID: PMC373384 DOI: 10.1093/nar/gkh237] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Formamidopyrimidine-DNA-glycosylase (Fpg protein, MutM) catalyses excision of 8-oxoguanine (8-oxoG) and other oxidatively damaged purines from DNA in a glycosylase/apurinic/apyrimidinic-lyase reaction. We report pre-steady-state kinetic analysis of Fpg action on oligonucleotide duplexes containing 8-oxo-2'-deoxyguanosine, natural abasic site or tetrahydrofuran (an uncleavable abasic site analogue). Monitoring Fpg intrinsic tryptophan fluorescence in stopped-flow experiments reveals multiple conformational transitions in the protein molecule during the catalytic cycle. At least four and five conformational transitions occur in Fpg during the interaction with abasic and 8-oxoG-containing substrates, respectively, within 2 ms to 10 s time range. These transitions reflect the stages of enzyme binding to DNA and lesion recognition with the mutual adjustment of DNA and enzyme structures to achieve catalytically competent conformation. Unlike these well-defined binding steps, catalytic stages are not associated with discernible fluorescence events. Only a single conformational change is detected for the cleavable substrates at times exceeding 10 s. The data obtained provide evidence that several fast sequential conformational changes occur in Fpg after binding to its substrate, converting the protein into a catalytically active conformation.
Collapse
Affiliation(s)
- Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
173
|
Cao C, Kwon K, Jiang YL, Drohat AC, Stivers JT. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I. J Biol Chem 2003; 278:48012-20. [PMID: 13129925 DOI: 10.1074/jbc.m307500200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific recognition mechanisms of DNA repair glycosylases that remove cationic alkylpurine bases in DNA are not well understood partly due to the absence of structures of these enzymes with their cognate bases. Here we report the solution structure of 3-methyladenine DNA glycosylase I (TAG) in complex with its 3-methyladenine (3-MeA) cognate base, and we have used chemical perturbation of the base in combination with mutagenesis of the enzyme to evaluate the role of hydrogen bonding and pi-cation interactions in alkylated base recognition by this DNA repair enzyme. We find that TAG uses hydrogen bonding with heteroatoms on the base, van der Waals interactions with the 3-Me group, and conventional pi-pi stacking with a conserved Trp side chain to selectively bind neutral 3-MeA over the cationic form of the base. Discrimination against binding of the normal base adenine is derived from direct sensing of the 3-methyl group, leading to an induced-fit conformational change that engulfs the base in a box defined by five aromatic side chains. These findings indicate that base specific recognition by TAG does not involve strong pi-cation interactions, and suggest a novel mechanism for alkylated base recognition and removal.
Collapse
Affiliation(s)
- Chunyang Cao
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | |
Collapse
|
174
|
Zaika EI, Perlow RA, Matz E, Broyde S, Gilboa R, Grollman AP, Zharkov DO. Substrate discrimination by formamidopyrimidine-DNA glycosylase: a mutational analysis. J Biol Chem 2003; 279:4849-61. [PMID: 14607836 DOI: 10.1074/jbc.m310262200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a primary participant in the repair of 8-oxoguanine, an abundant oxidative DNA lesion. Although the structure of Fpg has been established, amino acid residues that define damage recognition have not been identified. We have combined molecular dynamics and bioinformatics approaches to address this issue. Site-specific mutagenesis coupled with enzyme kinetics was used to test our predictions. On the basis of molecular dynamics simulations, Lys-217 was predicted to interact with the O8 of extrahelical 8-oxoguanine accommodated in the binding pocket. Consistent with our computational studies, mutation of Lys-217 selectively reduced the ability of Fpg to excise 8-oxoguanine from DNA. Dihydrouracil, also a substrate for Fpg, served as a nonspecific control. Other residues involved in damage recognition (His-89, Arg-108, and Arg-109) were identified by combined conservation/structure analysis. Arg-108, which forms two hydrogen bonds with cytosine in Fpg-DNA, is a major determinant of opposite-base specificity. Mutation of this residue reduced excision of 8-oxoguanine from thermally unstable mispairs with guanine or thymine, while excision from the stable cytosine and adenine base pairs was less affected. Mutation of His-89 selectively diminished the rate of excision of 8-oxoguanine, whereas mutation of Arg-109 nearly abolished binding of Fpg to damaged DNA. Taken together, these results suggest that His-89 and Arg-109 form part of a reading head, a structural feature used by the enzyme to scan DNA for damage. His-89 and Lys-217 help determine the specificity of Fpg in recognizing the oxidatively damaged base, while Arg-108 provides specificity for bases positioned opposite the lesion.
Collapse
Affiliation(s)
- Elena I Zaika
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Hoseki J, Okamoto A, Masui R, Shibata T, Inoue Y, Yokoyama S, Kuramitsu S. Crystal Structure of a Family 4 Uracil-DNA Glycosylase from Thermus thermophilus HB8. J Mol Biol 2003; 333:515-26. [PMID: 14556741 DOI: 10.1016/j.jmb.2003.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.
Collapse
Affiliation(s)
- Jun Hoseki
- RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Until recently, the Fpg family was the only major group of DNA glycosylases for which no structural data existed. Prototypical members of this family, found in eukaryotes as well as prokaryotes, have now been crystallized as free proteins and as complexes with DNA. In this review, we analyze the available structural information for formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei). Special emphasis is placed on mechanisms by which these enzymes recognize and selectively excise cognate lesions from oxidatively damaged DNA. The problem of lesion recognition is considered in two parts: how the enzyme efficiently locates a single lesion embedded in a vast excess of DNA; and how the lesion is accommodated in a pocket near the active site of the enzyme. Although all crystal structures reported to date for the Fpg family lack the damaged base, functionally important residues that participate in DNA binding and enzyme catalysis have been clearly identified and other residues, responsible for substrate specificity, have been inferred.
Collapse
Affiliation(s)
- Dmitry O Zharkov
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
177
|
Abstract
The development of kinetic isotope effect methods for enzymatic reactions has resulted in the systematic determination of enzymatic transition state structure for several distinct chemical reaction mechanisms. Although it is early in the experimental development of the method, examples of concerted nucleophilic displacements (A(N)D(N) or S(N)2), aromatic nucleophilic displacements (A(N)D(N) or S(N)Ar), and both concerted and stepwise dissociative nucleophilic displacements (D(N)A(N) and D(N)A(N); S(N)1 reactions) have been exemplified. The transition state for each reaction exhibits a characteristic extent of bond-breaking and bond-making, defined here as transition state poise. Thus, concerted nucleophilic displacements (S(N)2 or D(N)A(N)) exhibit various extents of residual bond order to the leaving group and to the attacking nucleophile at the transition state. Aromatic nucleophilic displacements reach their rate-limiting transition states before or after formation of the tetrahedral intermediate. Several concerted, symmetric nucleophilic displacements at carbon have been described. Enzymatic transition state poise is summarized in a single diagram of bond orders using the terminology of Jencks. The analysis reveals enzymatic contributions to transition state poise, provides precedent for assignment of reaction types, and summarizes the current status of the experimental characterization of enzymatic transition states. Binding strengths of transition state analogues are readily correlated with transition state poise.
Collapse
Affiliation(s)
- Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|
178
|
Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev 2003; 103:2729-59. [PMID: 12848584 DOI: 10.1021/cr010219b] [Citation(s) in RCA: 380] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
179
|
Hopfner KP, Parikh SS, Tainer JA. Envisioning the fourth dimension of the genetic code: the structural biology of macromolecular recognition and conformational switching in DNA repair. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:113-26. [PMID: 12760026 DOI: 10.1101/sqb.2000.65.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K P Hopfner
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
180
|
Freisinger E, Fernandes A, Grollman AP, Kisker C. Crystallographic characterization of an exocyclic DNA adduct: 3,N4-etheno-2'-deoxycytidine in the dodecamer 5'-CGCGAATTepsilonCGCG-3'. J Mol Biol 2003; 329:685-97. [PMID: 12787670 DOI: 10.1016/s0022-2836(03)00445-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exocyclic DNA adducts are formed from metabolites of chemical carcinogens and have also been detected as endogenous lesions in human DNA. The exocyclic adduct 3,N(4)-etheno-2'-deoxycytidine (epsilon dC), positioned opposite deoxyguanosine in the B-form duplex of the dodecanucleotide d(CGCGAATTepsilonCGCG), has been crystallographically characterized at 1.8A resolution. This self-complementary oligomer crystallizes in space group P3(2)12, containing a single strand in the asymmetric unit. The crystal structure was solved by isomorphous replacement with the corresponding unmodified dodecamer structure. Exposure of both structures to identical crystal packing forces allows a detailed investigation of the influence of the exocyclic base adduct on the overall helical structure and local geometry. Structural changes are limited to the epsilon C:G and adjacent T:A and G:C base-pairs. The standard Watson-Crick base-pairing scheme, retained in the T:A and G:C base-pairs, is blocked by the etheno bridge in the epsilon C:G pair. In its place, a hydrogen bond involving O2 of epsilon C and N1 of G is present. Comparison with an epsilon dC-containing NMR structure confirms the general conformation reported for epsilon C:G, including the hydrogen bonding features. Superposition with the crystal structure of a DNA duplex containing a T:G wobble pair shows similar structural changes imposed by both mismatches. Evaluation of the hydration shell of the duplex with bond valence calculations reveals two sodium ions in the crystal.
Collapse
Affiliation(s)
- Eva Freisinger
- Department of Pharmacological Sciences, Center for Structural Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5115, USA
| | | | | | | |
Collapse
|
181
|
Minetti CASA, Remeta DP, Zharkov DO, Plum GE, Johnson F, Grollman AP, Breslauer KJ. Energetics of lesion recognition by a DNA repair protein: thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes. J Mol Biol 2003; 328:1047-60. [PMID: 12729740 DOI: 10.1016/s0022-2836(03)00365-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of an overall effort to map the energetic landscape of the base excision repair pathway, we report the first thermodynamic characterization of repair enzyme binding to lesion-containing duplexes. Isothermal titration calorimetry (ITC) in conjunction with spectroscopic measurements and protease protection assays have been employed to characterize the binding of Escherichia coli formamidopyrimidine-glycosylase (Fpg), a bifunctional repair enzyme, to a series of 13-mer DNA duplexes. To resolve energetically the binding and the catalytic events, several of these duplexes are constructed with non-hydrolyzable lesion analogs that mimic the natural 8-oxo-dG substrate and the abasic-like intermediates. Specifically, one of the duplexes contains a central, non-hydrolyzable, tetrahydrofuran (THF) abasic site analog, while another duplex contains a central, carbocyclic substrate analog (carba-8-oxo-dG). ITC-binding studies conducted between 5.0 degrees C and 15.0 degrees C reveal that Fpg association with the THF-containing duplex is characterized by binding free energies that are relatively invariant to temperature (deltaG approximately -9.5 kcalmol(-1)), in contrast to both the reaction enthalpy and entropy that are strongly temperature-dependent. Complex formation between Fpg and the THF-containing duplex at 15 degrees C exhibits an unfavorable association enthalpy (deltaH=+7.5 kcalmol(-1)) that is compensated by a favorable association entropy (TdeltaS=+17.0 kcalmol(-1)). The entropic nature of the binding interaction, coupled with the large negative heat capacity (deltaC(p)=-0.67 kcaldeg(-1)mol(-1)), is consistent with Fpg complexation to the THF-containing duplex involving significant burial of non-polar surface areas. By contrast, under the high ionic strength buffer conditions employed herein (200 mM NaCl), no appreciable Fpg affinity for the carba-8-oxo-dG substrate analog is detected. Our results suggest that initial Fpg recognition of a damaged DNA site is predominantly electrostatic in nature, and does not involve large contact interfaces. Subsequent base excision presumably facilitates accommodation of the resulting lesion site into the binding pocket, as the enzyme interaction with the THF-containing duplex is characterized by high affinity and a large negative heat capacity change. Our data are consistent with a pathway in which Fpg glycosylase activity renders the base excision product a preferred ligand relative to the natural substrate, thereby ensuring the fidelity of removing highly reactive and potentially mutagenic abasic-like intermediates through catalytic elimination reactions.
Collapse
Affiliation(s)
- Conceição A S A Minetti
- Department of Chemistry and Chemical Biology, Rutgers University, Wright Chemistry Bldg, 610 Taylor Road Rm 0156, Piscataway, NJ 08854-8087, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Kwon K, Jiang YL, Stivers JT. Rational engineering of a DNA glycosylase specific for an unnatural cytosine:pyrene base pair. CHEMISTRY & BIOLOGY 2003; 10:351-9. [PMID: 12725863 DOI: 10.1016/s1074-5521(03)00077-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel site-specific cytosine DNA glycosylase has been rationally engineered from the active site scaffold of the DNA repair enzyme uracil DNA glycosylase (UDG). UDG, which operates by a nucleotide flipping mechanism, was first converted into a sequence nonspecific cytosine DNA glycosylase (CDG) by altering the base-specific hydrogen bond donor-acceptor groups in the active site. A second mutation that renders UDG defective in nucleotide flipping was then introduced, and the double mutant was rescued using a substrate with a "preflipped" cytosine base. Substrate-assisted flipping was engineered by incorporation of an unnatural pyrene nucleotide wedge (Y) into the DNA strand opposite to the target cytosine. This new enzyme, CYDG, can be used to target cleavage of specific cytosine residues in the context of a C/Y base pair in any DNA fragment.
Collapse
Affiliation(s)
- Keehwan Kwon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
183
|
Abstract
Uracil in DNA results from deamination of cytosine, resulting in mutagenic U : G mispairs, and misincorporation of dUMP, which gives a less harmful U : A pair. At least four different human DNA glycosylases may remove uracil and thus generate an abasic site, which is itself cytotoxic and potentially mutagenic. These enzymes are UNG, SMUG1, TDG and MBD4. The base excision repair process is completed either by a short patch- or long patch pathway, which largely use different proteins. UNG2 is a major nuclear uracil-DNA glycosylase central in removal of misincorporated dUMP in replication foci, but recent evidence also indicates an important role in repair of U : G mispairs and possibly U in single-stranded DNA. SMUG1 has broader specificity than UNG2 and may serve as a relatively efficient backup for UNG in repair of U : G mismatches and single-stranded DNA. TDG and MBD4 may have specialized roles in the repair of U and T in mismatches in CpG contexts. Recently, a role for UNG2, together with activation induced deaminase (AID) which generates uracil, has been demonstrated in immunoglobulin diversification. Studies are now underway to examine whether mice deficient in Ung develop lymphoproliferative malignancies and have a different life span.
Collapse
Affiliation(s)
- Hans E Krokan
- Institute of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | | | |
Collapse
|
184
|
Spies MA, Schowen RL. The trapping of a spontaneously "flipped-out" base from double helical nucleic acids by host-guest complexation with beta-cyclodextrin: the intrinsic base-flipping rate constant for DNA and RNA. J Am Chem Soc 2002; 124:14049-53. [PMID: 12440903 DOI: 10.1021/ja012272n] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-cyclodextrin, which forms stable host-guest complexes with purine bases, induces the melting of RNA and DNA duplexes below their normal melting temperatures. Alpha-cyclodextrin, which does not form stable complexes, has no effect on either RNA or DNA. Gamma-cyclodextrin, which forms weaker complexes, has no effect on RNA and a smaller effect than beta-cyclodextrin on DNA. The rate of melting is kinetically first-order in duplex and, above about 20 mM beta-cyclodextrin, is independent of the beta-cyclodextrin concentration with a first-order rate constant, common to both RNA and DNA, of (3.5 +/- 0.5) x 10(-3) s(-1) at 61 degrees C (DNA) and at 50 degrees C (RNA). This is taken to be the rate constant for spontaneous "flipping out" of a base from within the duplex structure of the nucleic acids, the exposed base being rapidly trapped by beta-cyclodextrin. Like beta-cyclodextrin, nucleic acid methyltransferases bind the target base for methylation in a site that requires it to have flipped out of its normal position in the duplex. The spontaneous flip-out rate constant of around 10(-3) s(-1) is near the value of k(cat) for the methyltransferases (ca. 10(-3) to 10(-1) s(-1)). In principle, the enzymes, therefore, need effect little or no catalysis of the flipping-out reaction. Nevertheless, the flip-out rate in enzyme/DNA complexes is much faster. This observation suggests that the in vivo circumstances may differ from in vitro models or that factors other than a simple drive toward higher catalytic power have been influential in the evolution of these enzymes.
Collapse
Affiliation(s)
- M Ashley Spies
- Department of Molecular Biosciences, Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
185
|
Fuxreiter M, Luo N, Jedlovszky P, Simon I, Osman R. Role of base flipping in specific recognition of damaged DNA by repair enzymes. J Mol Biol 2002; 323:823-34. [PMID: 12417196 DOI: 10.1016/s0022-2836(02)00999-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA repair enzymes induce base flipping in the process of damage recognition. Endonuclease V initiates the repair of cis, syn thymine dimers (TD) produced in DNA by UV radiation. The enzyme is known to flip the base opposite the damage into a non-specific binding pocket inside the protein. Uracil DNA glycosylase removes a uracil base from G.U mismatches in DNA by initially flipping it into a highly specific pocket in the enzyme. The contribution of base flipping to specific recognition has been studied by molecular dynamics simulations on the closed and open states of undamaged and damaged models of DNA. Analysis of the distributions of bending and opening angles indicates that enhanced base flipping originates in increased flexibility of the damaged DNA and the lowering of the energy difference between the closed and open states. The increased flexibility of the damaged DNA gives rise to a DNA more susceptible to distortions induced by the enzyme, which lowers the barrier for base flipping. The free energy profile of the base-flipping process was constructed using a potential of mean force representation. The barrier for TD-containing DNA is 2.5 kcal mol(-1) lower than that in the undamaged DNA, while the barrier for uracil flipping is 11.6 kcal mol(-1) lower than the barrier for flipping a cytosine base in the undamaged DNA. The final barriers for base flipping are approximately 10 kcal mol(-1), making the rate of base flipping similar to the rate of linear scanning of proteins on DNA. These results suggest that damage recognition based on lowering the barrier for base flipping can provide a general mechanism for other DNA-repair enzymes.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Institute of Enzymology, H-1113, Budapest, Karolina ut 29, Hungary
| | | | | | | | | |
Collapse
|
186
|
Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 2002; 277:39926-36. [PMID: 12161446 DOI: 10.1074/jbc.m207107200] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
hUNG2 and hSMUG1 are the only known glycosylases that may remove uracil from both double- and single-stranded DNA in nuclear chromatin, but their relative contribution to base excision repair remains elusive. The present study demonstrates that both enzymes are strongly stimulated by physiological concentrations of Mg2+, at which the activity of hUNG2 is 2-3 orders of magnitude higher than of hSMUG1. Moreover, Mg2+ increases the preference of hUNG2 toward uracil in ssDNA nearly 40-fold. APE1 has a strong stimulatory effect on hSMUG1 against dsU, apparently because of enhanced dissociation of hSMUG1 from AP sites in dsDNA. hSMUG1 also has a broader substrate specificity than hUNG2, including 5-hydroxymethyluracil and 3,N(4)-ethenocytosine. hUNG2 is excluded from, whereas hSMUG1 accumulates in, nucleoli in living cells. In contrast, only hUNG2 accumulates in replication foci in the S-phase. hUNG2 in nuclear extracts initiates base excision repair of plasmids containing either U:A and U:G in vitro. Moreover, an additional but delayed repair of the U:G plasmid is observed that is not inhibited by neutralizing antibodies against hUNG2 or hSMUG1. We propose a model in which hUNG2 is responsible for both prereplicative removal of deaminated cytosine and postreplicative removal of misincorporated uracil at the replication fork. We also provide evidence that hUNG2 is the major enzyme for removal of deaminated cytosine outside of replication foci, with hSMUG1 acting as a broad specificity backup.
Collapse
Affiliation(s)
- Bodil Kavli
- Institute of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
The three-dimensional structure of glycosidases and of their complexes and the study of transition-state mimics reveal structural details that correlate with mechanism. Of particular interest are the transition-state conformations harnessed by individual enzymes and the substrate distortion observed in enzyme-ligand complexes. 3D-structure in synergy with transition-state mimicry opens the way for mechanistic interpretation of enzyme inhibition and for the development of therapeutic agents.
Collapse
Affiliation(s)
- Andrea Vasella
- Laboratorium für Organische Chemie, ETH Hönggerberg, HCI H317, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
188
|
Sakano K, Oikawa S, Hiraku Y, Kawanishi S. Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage. Free Radic Biol Med 2002; 33:703-14. [PMID: 12208357 DOI: 10.1016/s0891-5849(02)00969-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carcinogenic urethane (ethyl carbamate) forms DNA adduct via epoxide, whereas carcinogenic methyl carbamate can not. To clarify a mechanism independent of DNA adduct formation, we examined DNA damage induced by N-hydroxyurethane, a urethane metabolite, using 32P-5'-end-labeled DNA fragments. N-hydroxyurethane induced Cu(II)-mediated DNA damage especially at thymine and cytosine residues. DNA damage was inhibited by both catalase and bathocuproine, suggesting a role for H(2)O(2) and Cu(I) in DNA damage. Free (*) OH scavengers did not inhibit the DNA damage, although methional did inhibit it. These results suggest that reactive species, such as the Cu(I)-hydroperoxo complex, cause DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) was increased by N-hydroxyurethane in the presence of Cu(II). When treated with esterase, N-hydroxyurethane induced 8-oxodG formation to a similar extent as that induced by hydroxylamine. Enhancement of DNA cleavages by endonuclease IV suggests that hydroxylamine induced depurination. Furthermore, hydroxylamine induced a significant increase in 8-oxodG formation in HL-60 cells but not in its H(2)O(2)-resistant clone HP 100 cells. o-Phenanthroline significantly inhibited the 8-oxodG formation in HL-60 cells, confirming the involvement of metal ions in the 8-oxodG formation by hydroxylamine. Electron spin resonance spectroscopy, utilizing Fe[N-(dithiocarboxy)sarcosine](3), demonstrated that nitric oxide (NO) was generated from hydroxylamine and esterase-treated N-hydroxyurethane. It is concluded that urethane may induce carcinogenesis through oxidation and, to a lesser extent, depurination of DNA by its metabolites.
Collapse
Affiliation(s)
- Katsuhisa Sakano
- Department of Hygiene, Mie University School of Medicine, Mie, Japan
| | | | | | | |
Collapse
|
189
|
Kurinovich MA, Lee JK. The acidity of uracil and uracil analogs in the gas phase: four surprisingly acidic sites and biological implications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:985-995. [PMID: 12216739 DOI: 10.1016/s1044-0305(02)00410-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The gas phase acidities of a series of uracil derivatives (1-methyluracil, 3-methyluracil, 6-methyluracil, 5,6-dimethyluracil, and 1,3-dimethyluracil) have been bracketed to provide an understanding of the intrinsic reactivity of uracil. The experiments indicate that in the gas phase, uracil has four sites more acidic than water. Among the uracil analogs, the N1-H sites have deltaH(acid) values of 331-333 kcal mol(-1); the acidity of the N3 sites fall between 347-352 kcal mol(-1). The vinylic C6 in 1-methyluracil and 3-methyluracil brackets to 363 kcal mol(-1), and 369 kcal mol(-1) in 1,3-dimethyluracil; the C5 of 1,3-dimethyluracil brackets to 384 kcal mol(-1). Calculations conducted at B3LYP/6-31+G* are in agreement with the experimental values. The bracketing of several of these sites involved utilization of an FTMS protocol to measure the less acidic site in a molecule that has more than one acidic site, establishing the generality of this method. In molecules with multiple acidic sites, only the two most acidic sites were bracketable, which is attributable to a kinetic effect. The measured acidities are in direct contrast to in solution, where the two most acidic sites of uracil (N1 and N3) are indifferentiable. The vinylic C6 site is also particularly acidic, compared to acrolein and pyridine. The biological implications of these results, particularly with respect to enzymes for which uracil is a substrate, are discussed.
Collapse
Affiliation(s)
- Mary Ann Kurinovich
- Department of Chemistry, Rutgers University, The State University of New Jersey, Piscataway 08854, USA
| | | |
Collapse
|
190
|
Handa P, Acharya N, Varshney U. Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate. Nucleic Acids Res 2002; 30:3086-95. [PMID: 12136091 PMCID: PMC135746 DOI: 10.1093/nar/gkf425] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, excises uracil from DNA. Crystal structures of several UDGs have identified residues important for their exquisite specificity in detection and removal of uracil. Of these, Y66 and N123 in Escherichia coli UDG have been proposed to restrict the entry of non-uracil residues into the active site pocket. In this study, we show that the uracil excision activity of the Y66F mutant was similar to that of the wild-type protein, whereas the activities of the other mutants (Y66C, Y66S, N123D, N123E and N123Q) were compromised approximately 1000-fold. The latter class of mutants showed an increased dependence on the substrate chain length and suggested the existence of long-range interactions of the substrate with UDG. Investigation of the phosphate interactions by the ethylation interference assay reaffirmed the key importance of the -1, +1 and +2 phosphates (with respect to the scissile uracil) to the enzyme activity. Interestingly, this assay also revealed an additional interference at the -5 position phosphate, whose presence in the substrate had a positive effect on substrate utilisation by the mutants that do not possess a full complement of interactions in the active site pocket. Such long-range interactions may be crucial even for the wild-type enzyme under in vivo conditions. Further, our results suggest that the role of Y66 and N123 in UDG is not restricted merely to preventing the entry of non-uracil residues. We discuss their additional roles in conferring stability to the transition state enzyme-substrate complex and/or enhancing the leaving group quality of the uracilate anion during catalysis.
Collapse
Affiliation(s)
- Priya Handa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
191
|
Sartori AA, Fitz-Gibbon S, Yang H, Miller JH, Jiricny J. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J 2002; 21:3182-91. [PMID: 12065430 PMCID: PMC126064 DOI: 10.1093/emboj/cdf309] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Uracil-DNA glycosylases (UDGs) catalyse the removal of uracil by flipping it out of the double helix into their binding pockets, where the glycosidic bond is hydrolysed by a water molecule activated by a polar amino acid. Interestingly, the four known UDG families differ in their active site make-up. The activating residues in UNG and SMUG enzymes are aspartates, thermostable UDGs resemble UNG-type enzymes, but carry glutamate rather than aspartate residues in their active sites, and the less active MUG/TDG enzymes contain an active site asparagine. We now describe the first member of a fifth UDG family, Pa-UDGb from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum, the active site of which lacks the polar residue that was hitherto thought to be essential for catalysis. Moreover, Pa-UDGb is the first member of the UDG family that efficiently catalyses the removal of an aberrant purine, hypoxanthine, from DNA. We postulate that this enzyme has evolved to counteract the mutagenic threat of cytosine and adenine deamination, which becomes particularly acute in organisms living at elevated temperatures.
Collapse
Affiliation(s)
| | - Sorel Fitz-Gibbon
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Hanjing Yang
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Jeffrey H. Miller
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Josef Jiricny
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland and
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA Corresponding author e-mail:
| |
Collapse
|
192
|
Zharkov DO, Grollman AP. Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases. Free Radic Biol Med 2002; 32:1254-63. [PMID: 12057763 DOI: 10.1016/s0891-5849(02)00828-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An essential function of DNA glycosylases is the recognition and excision of damaged bases in DNA, thereby preserving genomic integrity. Lesion recognition is a multistep process, which is only partially revealed by structural analysis of the catalytically competent complex. The functional role of additional residues can be predicted by combining structural data with analysis of amino acid conservation. The following postulate underlies this approach: if a family or superfamily can be broken into subgroups with different substrate specificities, residues highly conserved between these subgroups represent those important for enzyme catalysis and structure maintenance while residues highly conserved within a subgroup but not between subgroups represent residues important for substrate specificity. We review the bioinformatics approach used for this quantitative analysis and describe its application to the Nth superfamily and Fpg family of DNA glycosylases. These results serve as a starting point in planning site-directed mutagenesis experiments to elucidate the functional role of similar and dissimilar residues in DNA repair and other proteins.
Collapse
Affiliation(s)
- Dmitry O Zharkov
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794, USA
| | | |
Collapse
|
193
|
Wong I, Lundquist AJ, Bernards AS, Mosbaugh DW. Presteady-state analysis of a single catalytic turnover by Escherichia coli uracil-DNA glycosylase reveals a "pinch-pull-push" mechanism. J Biol Chem 2002; 277:19424-32. [PMID: 11907039 DOI: 10.1074/jbc.m201198200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Uracil-DNA glycosylase catalyzes the excision of uracils from DNA via a mechanism where the uracil is extrahelically flipped out of the DNA helix into the enzyme active site. A conserved leucine is inserted into the DNA duplex space vacated by the uracil leading to the paradigmatic "push-pull" mechanism of nucleotide flipping. However, the order of these two steps during catalysis has not been conclusively established. We report a complete kinetic analysis of a single catalytic turnover using a hydrolyzable duplex oligodeoxyribonucleotide substrate containing a uracil:2-aminopurine base pair. Rapid chemical-quenched-flow methods defined the kinetics of excision at the active site during catalysis. Stopped-flow fluorometry monitoring the 2-aminopurine fluorescence defined the kinetics of uracil flipping. Parallel experiments detecting the protein fluorescence showed a slower Leu(191) insertion step occurring after nucleotide flipping but before excision. The inserted Leu(191) acts as a doorstop to prevent the return of the flipped-out uracil residue, thereby facilitating the capture of the uracil in the active site and does not play a direct role in "pushing" the uracil out of the DNA helix. The results define for the first time the proper sequence of events during a catalytic cycle and establish a "pull-push", as opposed to a "push-pull", mechanism for nucleotide flipping.
Collapse
Affiliation(s)
- Isaac Wong
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | | | |
Collapse
|
194
|
Starkuviene V, Fritz HJ. A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res 2002; 30:2097-102. [PMID: 12000829 PMCID: PMC115290 DOI: 10.1093/nar/30.10.2097] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spontaneous hydrolytic deamination of DNA cytosine and 5-methyl-cytosine residues is an abundant source of C/G (5-meC/G) to T/A transition mutations. As a result of this pressure, at least six different families of enzymes have evolved that initiate repair at U/G (T/G) mispairs, the relevant pre-mutagenic intermediates. The necessarily higher rate of the process at elevated temperatures must pose a correspondingly accentuated problem to contemporary thermophilic organisms and may have been a serious bottleneck in early evolution when life passed through a phase of very high ambient temperatures. Here we show that Thermus thermophilus, an aerobic, Gram-negative eubacterium thriving at up to 85 degrees C, harbors two uracil-DNA glycosylases (UDGs), termed TTUDGA and TTUDGB. According to both amino acid sequence and enzymatic properties, TTUDGA clearly belongs to the family of 'thermostable UDGs'. TTUDGB shares with TTUDGA 23% sequence identity, but differs from it in profound functional aspects. TTUDGB, unlike TTUDGA, does not act upon uracil residues in the context of single-stranded DNA whereas both enzymes process various double-stranded substrates, albeit with different preferences. TTUDGB shows a number of sequence features characteristic of the UDG superfamily, but surprisingly lacks any polar residue within its so-called motif 1 (GLAPG-X(10)-F). This finding is in conflict with a previously assumed crucial catalytic role of motif 1 in water activation and supports a more recently suggested alternative of a dissociative ('S(N)1-type') reaction mechanism. Together, the characteristics of TTUDGB and its homologs in other organisms define a novel family of UDG repair enzymes.
Collapse
Affiliation(s)
- Vytaute Starkuviene
- Abteilung Molekulare Genetik und Präparative Molekularbiologie and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
195
|
Abstract
The mechanisms by which various DNA glycosylases initiate the base excision repair pathways are discussed. Fundamental distinctions are made between "simple glycosylases," that do not form DNA single-strand breaks, and "glycosylases/abasic site lyases," that do form single-strand breaks. Several groupings of BER substrate sites are defined and some interactions between these groupings and glycosylase mechanisms discussed. Two characteristics are proposed to be common among all BER glycosylases: a nucleotide flipping step that serves to expose the scissile glycosyl bond to catalysis, and a glycosylase transition state characterized by substantial tetrahedral character at the base glycosyl atom.
Collapse
Affiliation(s)
- M L Dodson
- The Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX , USA
| | | |
Collapse
|
196
|
Zharkov DO, Golan G, Gilboa R, Fernandes AS, Gerchman SE, Kycia JH, Rieger RA, Grollman AP, Shoham G. Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate. EMBO J 2002; 21:789-800. [PMID: 11847126 PMCID: PMC125349 DOI: 10.1093/emboj/21.4.789] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endonuclease VIII (Nei) of Escherichia coli is a DNA repair enzyme that excises oxidized pyrimidines from DNA. Nei shares with formamidopyrimidine-DNA glycosylase (Fpg) sequence homology and a similar mechanism of action: the latter involves removal of the damaged base followed by two sequential beta-elimination steps. However, Nei differs significantly from Fpg in substrate specificity. We determined the structure of Nei covalently crosslinked to a 13mer oligodeoxynucleotide duplex at 1.25 A resolution. The crosslink is derived from a Schiff base intermediate that precedes beta-elimination and is stabilized by reduction with NaBH(4). Nei consists of two domains connected by a hinge region, creating a DNA binding cleft between domains. DNA in the complex is sharply kinked, the deoxyribitol moiety is bound covalently to Pro1 and everted from the duplex into the active site. Amino acids involved in substrate binding and catalysis are identified. Molecular modeling and analysis of amino acid conservation suggest a site for recognition of the damaged base. Based on structural features of the complex and site-directed mutagenesis studies, we propose a catalytic mechanism for Nei.
Collapse
Affiliation(s)
- Dmitry O. Zharkov
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Gali Golan
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Rotem Gilboa
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Andrea S. Fernandes
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Sue Ellen Gerchman
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Jadwiga H. Kycia
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Robert A. Rieger
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Arthur P. Grollman
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| | - Gil Shoham
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia, Department of Inorganic Chemistry and Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel, Laboratory of Chemical Biology, Department of Pharmacological Sciences, SUNY Stony Brook, Stony Brook, NY 11794 and Department of Biology, Brookhaven National Laboratories, Upton, NY 11973, USA Corresponding author e-mail: D.O.Zharkov and G.Golan contributed equally to this work
| |
Collapse
|
197
|
Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. J Mol Biol 2002; 315:373-84. [PMID: 11786018 DOI: 10.1006/jmbi.2001.5264] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 A resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base approximately 90 degrees away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.
Collapse
Affiliation(s)
- Clifford D Mol
- Department of Molecular Biology MB4, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
198
|
Berti PJ, Tanaka KS. Transition State Analysis Using Multiple Kinetic Isotope Effects: Mechanisms of Enzymatic and Non-enzymatic Glycoside Hydrolysis and Transfer. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2002. [DOI: 10.1016/s0065-3160(02)37004-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
199
|
Abstract
The recognition and removal of damaged bases in the genome is the province of a highly specialized assemblage of enzymes known as DNA glycosylases. In recent years, structural and mechanistic studies have rapidly moved forward such that in some cases, the high-resolution structures of all stable complexes along the reaction pathway are available. In parallel, advances in isotopic labeling of DNA have allowed the determination of a transition state structure of a DNA repair glycosylase using kinetic isotope effect methods. The use of stable substrate analogs and fluorescent probes have provided methods for real time measurement of the critical step of damaged base flipping. Taken together, these synergistic structural and chemical approaches have elevated our understanding of DNA repair enzymology to the level previously attained in only a select few enzymatic systems. This review summarizes recent studies of the paradigm enzyme, uracil DNA glycosylase, and discusses future areas for investigation in this field.
Collapse
Affiliation(s)
- J T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
200
|
Jiang YL, Kwon K, Stivers JT. Turning On uracil-DNA glycosylase using a pyrene nucleotide switch. J Biol Chem 2001; 276:42347-54. [PMID: 11551943 DOI: 10.1074/jbc.m106594200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Base flipping is a highly conserved process by which enzymes swivel an entire nucleotide from the DNA base stack into their active site pockets. Uracil DNA glycosylase (UDG) is a paradigm enzyme that uses a base flipping mechanism to catalyze the hydrolysis of the N-glycosidic bond of 2'-deoxyuridine (2'-dUrd) in DNA as the first step in uracil base excision repair. Flipping of 2'-dUrd by UDG has been proposed to follow a "pushing" mechanism in which a completely conserved leucine side chain (Leu-191) is inserted into the DNA minor groove to expel the uracil. Here we report a novel implementation of the "chemical rescue" approach to show that the weak binding affinity and low catalytic activity of L191A or L191G can be completely or partially restored by substitution of a pyrene (Y) nucleotide wedge on the DNA strand opposite to the uracil base (U/A to U/Y). These results indicate that pyrene acts both as a wedge to push the uracil from the base stack in the free DNA and as a "plug" to hinder its reinsertion after base flipping. Pyrene rescue should serve as a useful and novel tool to diagnose the functional roles of other amino acid side chains involved in base flipping.
Collapse
Affiliation(s)
- Y L Jiang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|