151
|
Li H, van der Linden WA, Verdoes M, Florea BI, McAllister FE, Govindaswamy K, Elias JE, Bhanot P, Overkleeft HS, Bogyo M. Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes. ACS Chem Biol 2014; 9:1869-76. [PMID: 24918547 PMCID: PMC4136710 DOI: 10.1021/cb5001263] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The ubiquitin-proteasome system (UPS)
is a potential pathway for
therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature
of this proteolytic pathway, proteasome inhibitors must avoid inhibition
of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational
design of inhibitors that induce selective parasite killing difficult.
In this study, we developed a chemical probe that labels all catalytic
sites of the Plasmodium proteasome. Using this probe,
we identified several subunit selective small molecule inhibitors
of the parasite enzyme complex. Treatment with an inhibitor that is
specific for the β5 subunit during blood stage schizogony led
to a dramatic decrease in parasite replication while short-term inhibition
of the β2 subunit did not affect viability. Interestingly, coinhibition
of both the β2 and β5 catalytic subunits resulted in enhanced
parasite killing at all stages of the blood stage life cycle and reduced
parasite levels in vivo to barely detectable levels.
Parasite killing was achieved with overall low host toxicity, something
that has not been possible with existing proteasome inhibitors. Our
results highlight differences in the subunit dependency of the parasite
and human proteasome, thus providing a strategy for development of
potent antimalarial drugs with overall low host toxicity.
Collapse
Affiliation(s)
| | | | | | - Bogdan I. Florea
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Kavitha Govindaswamy
- Microbiology
and Molecular Genetics, Rutgers—New Jersey Medical School, 225 Warren Street E340B, Newark, New Jersey 07103, United States
| | | | - Purnima Bhanot
- Microbiology
and Molecular Genetics, Rutgers—New Jersey Medical School, 225 Warren Street E340B, Newark, New Jersey 07103, United States
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | |
Collapse
|
152
|
Carbone JW, Pasiakos SM, Vislocky LM, Anderson JM, Rodriguez NR. Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults. Appl Physiol Nutr Metab 2014; 39:960-8. [DOI: 10.1139/apnm-2013-0433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of short-term energy deficit (ED) on direct measures of muscle proteolysis and the intracellular mechanisms by which muscle proteins are degraded at rest and following aerobic exercise are not well described. This study evaluated the effects of a short-term diet-induced ED, on muscle fractional breakdown rate (FBR), intramuscular 26S proteasome activity, caspase-3 activation, and PSMA2 and MAFbx expression at rest, in the postabsorptive state, and following a single bout of moderate aerobic exercise (45 min at 65% peak oxygen uptake). Six men and 4 women participated in two 10-day diet interventions: weight maintenance (WM) followed by ED (80% estimated energy requirements). Dietary protein (1.5 g·kg−1·day−1) intake was constant for WM and ED. Mixed muscle FBR, proteasome activity, and intracellular proteolytic factor expression were measured using stable isotope methodology, fluorescent enzyme activity assays, and Western blotting, respectively. Overall, FBR and caspase-3 activation increased 60% and 11%, respectively, in response to ED (P < 0.05), but were not influenced by exercise. During ED, 26S proteasome α-subunit PSMA2 expression was 25% higher (P < 0.05) after exercise compared with rest. Exercise did not influence PSMA2 expression during WM, and MAFbx expression and 26S proteasome activity were not affected by ED or exercise. These data illustrate the effects of short-term, moderate ED on muscle protein degradation. In the context of skeletal muscle integrity during weight loss interventions, this work demonstrates a need for further investigations aimed at mitigating muscle loss associated with energy deficit imposed for intentional reduction of total body weight.
Collapse
Affiliation(s)
- John W. Carbone
- School of Health Sciences, 312 Marshall Building, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Stefan M. Pasiakos
- US Amy Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Lisa M. Vislocky
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | - Nancy R. Rodriguez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
153
|
Beck P, Heinemeyer W, Späth AL, Elnakady Y, Müller R, Groll M. Interactions of the natural product kendomycin and the 20S proteasome. J Mol Biol 2014; 426:3108-3117. [PMID: 25038530 DOI: 10.1016/j.jmb.2014.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/13/2014] [Accepted: 06/26/2014] [Indexed: 01/05/2023]
Abstract
Natural products are a valuable source for novel lead structures in drug discovery, but for the majority of isolated bioactive compounds, the cellular targets are unknown. The structurally unique ansa-polyketide kendomycin (KM) was reported to exert its potent cytotoxic effects via impairment of the ubiquitin proteasome system, but the exact mode of action remained unclear. Here, we present a systematic biochemical characterization of KM-proteasome interactions in vitro and in vivo, including complex structures of wild type and mutant yeast 20S proteasome with KM. Our results provide evidence for a polypharmacological mode of action for KM's cytotoxic effect on cancer cells.
Collapse
Affiliation(s)
- Philipp Beck
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Anna-Lena Späth
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | - Yasser Elnakady
- Helmholtz Center for Infectious Research (HZI), Department Microbial Natural Products, Saarland University, Campus C2 3, Saarbrücken 66041, Germany
| | - Rolf Müller
- Helmholtz Center for Infectious Research (HZI), Department Microbial Natural Products, Saarland University, Campus C2 3, Saarbrücken 66041, Germany
| | - Michael Groll
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany.
| |
Collapse
|
154
|
Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y, Kaneko T, Yashiroda H, Murata S. Assembly mechanisms of specialized core particles of the proteasome. Biomolecules 2014; 4:662-77. [PMID: 25033340 PMCID: PMC4192667 DOI: 10.3390/biom4030662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/30/2014] [Accepted: 06/22/2014] [Indexed: 11/16/2022] Open
Abstract
The 26S proteasome has a highly complicated structure comprising the 20S core particle (CP) and the 19S regulatory particle (RP). Along with the standard CP in all eukaryotes, vertebrates have two more subtypes of CP called the immunoproteasome and the thymoproteasome. The immunoproteasome has catalytic subunits β1i, β2i, and β5i replacing β1, β2, and β5 and enhances production of major histocompatibility complex I ligands. The thymoproteasome contains thymus-specific subunit β5t in place of β5 or β5i and plays a pivotal role in positive selection of CD8+ T cells. Here we investigate the assembly pathways of the specialized CPs and show that β1i and β2i are incorporated ahead of all the other β-subunits and that both β5i and β5t can be incorporated immediately after the assembly of β3 in the absence of β4, distinct from the assembly of the standard CP in which β-subunits are incorporated in the order of β2, β3, β4, β5, β6, β1, and β7. The propeptide of β5t is a key factor for this earlier incorporation, whereas the body sequence seems to be important for the earlier incorporation of β5i. This unique feature of β5t and β5i may account for preferential assembly of the immunoproteasome and the thymoproteasome over the standard type even when both the standard and specialized subunits are co-expressed.
Collapse
Affiliation(s)
- Minghui Bai
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Xian Zhao
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazutaka Sahara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuki Ohte
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuko Hirano
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takeumi Kaneko
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
155
|
Raule M, Cerruti F, Cascio P. Enhanced rate of degradation of basic proteins by 26S immunoproteasomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1942-7. [PMID: 24851840 DOI: 10.1016/j.bbamcr.2014.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
Abstract
Immunoproteasomes are alternative forms of proteasomes specialized in the generation of MHC class I antigenic peptides and important for efficient cytokine production. We have identified a new biochemical property of 26S immunoproteasomes, namely the ability to hydrolyze basic proteins at greatly increased rates compared to constitutive proteasomes. This enhanced degradative capacity is specific for basic polypeptides, since substrates with a lower content in lysine and arginine residues are hydrolyzed at comparable rates by constitutive and immunoproteasomes. Crucially, selective inhibition of the immunoproteasome tryptic subunit β2i strongly reduces degradation of basic proteins. Therefore, our data demonstrate the rate limiting function of the proteasomal trypsin-like activity in controlling turnover rates of basic protein substrates and suggest new biological roles for immunoproteasomes in maintaining cellular homeostasis by rapidly removing a potentially harmful excess of free histones that can build up under different pathophysiological conditions.
Collapse
Affiliation(s)
- Mary Raule
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Fulvia Cerruti
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| |
Collapse
|
156
|
Götze S, Bose A, Sokolova IM, Abele D, Saborowski R. The proteasomes of two marine decapod crustaceans, European lobster (Homarus gammarus) and Edible crab (Cancer pagurus), are differently impaired by heavy metals. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:62-9. [PMID: 24721378 DOI: 10.1016/j.cbpc.2014.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/23/2014] [Accepted: 03/31/2014] [Indexed: 01/19/2023]
Abstract
The intracellular ubiquitin-proteasome system is a key regulator of cellular processes involved in the controlled degradation of short-living or malfunctioning proteins. Certain diseases and cellular dysfunctions are known to arise from the disruption of proteasome pathways. Trace metals are recognized stressors of the proteasome system in vertebrates and plants, but their effects on the proteasome of invertebrates are not well understood. Since marine invertebrates, and particularly benthic crustaceans, can be exposed to high metal levels, we studied the effects of in vitro exposure to Hg(2+), Zn(2+), Cu(2+), and Cd(2+) on the activities of the proteasome from the claw muscles of lobsters (Homarus gammarus) and crabs (Cancer pagurus). The chymotrypsin like activity of the proteasome of these two species showed different sensitivity to metals. In lobsters the activity was significantly inhibited by all metals to a similar extent. In crabs the activities were severely suppressed only by Hg(2+) and Cu(2+) while Zn(2+) had only a moderate effect and Cd(2+) caused almost no inhibition of the crab proteasome. This indicates that the proteasomes of both species possess structural characteristics that determine different susceptibility to metals. Consequently, the proteasome-mediated protein degradation in crab C. pagurus may be less affected by metal pollution than that of the lobster H. gammarus.
Collapse
Affiliation(s)
- Sandra Götze
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Aneesh Bose
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Doris Abele
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany.
| |
Collapse
|
157
|
Roy SS, Kirma NB, Santhamma B, Tekmal RR, Agyin JK. Effects of a novel proteasome inhibitor BU-32 on multiple myeloma cells. Cancer Chemother Pharmacol 2014; 73:1263-71. [PMID: 24728817 DOI: 10.1007/s00280-014-2463-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/31/2014] [Indexed: 11/28/2022]
Abstract
Proteasome inhibition is associated with substantial antitumor effects in preclinical models of multiple myeloma (MM) as well as in patients. However, results of recent clinical trials to evaluate the effect of the proteasome inhibitor Bortezomib (Velcade(®), also called PS-341) in MM patients have shown limited activity when used as a single agent. This underscores the need to find new efficacious and less toxic proteasome inhibitors. Recently, carfilzomib was approved for the treatment of refractory/relapsed MM and several new agents have been introduced into the clinic, including marizomib and MLN9708, and trials investigating these second-generation proteasome inhibitors have demonstrated promising results. We have recently synthesized a novel proteasome inhibitor, BU-32, and tested its growth inhibitory effects in different human MM cells including RPMI8226, MM.1S, MM.1R, and U266. In this study, we evaluate the efficacy of the novel proteasome inhibitor BU-32 (NSC D750499) using an in vitro MM model. BU-32 exhibits strong cytotoxicity in a panel of MM cell lines--RPMI8226, MM1S, MM1R, and U266. In addition, we demonstrate by proteasome inhibition assay that BU-32 potently inhibits the chymotryptic- and caspase-like activities of the 26S proteasome. We further show from Annexin V-FITC binding studies that BU-32, like Bortezomib, induces apoptosis in a panel of MM cell lines but the effect is more pronounced with BU-32-treated cells. Invasion assay with the MM.1S cell line indicates that BU-32 inhibits the invasiveness of myeloma cells. Results from our studies using real-time PCR array analyses show that BU-32 effectively downregulates an array of angiogenesis and inflammatory markers. Our results suggest that BU-32 might be a potential chemotherapeutic agent with promising antitumor activity for the treatment of MM.
Collapse
Affiliation(s)
- Sudipa S Roy
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | | | | | | |
Collapse
|
158
|
Kubiczkova L, Pour L, Sedlarikova L, Hajek R, Sevcikova S. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma. J Cell Mol Med 2014; 18:947-61. [PMID: 24712303 PMCID: PMC4508135 DOI: 10.1111/jcmm.12279] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 02/13/2014] [Indexed: 01/08/2023] Open
Abstract
Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First-in-class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre-clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second-generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second-generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti-proteasome therapeutics.
Collapse
Affiliation(s)
- Lenka Kubiczkova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
159
|
Götze S, Matoo OB, Beniash E, Saborowski R, Sokolova IM. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:65-82. [PMID: 24572072 DOI: 10.1016/j.aquatox.2014.01.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/22/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Increased anthropogenic emission of CO2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves-Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4-5 weeks to clean seawater (control) and to either 50 μg L(-1) Cu or 50 μg L(-1) Cd at one of three partial pressures of CO2 ( [Formula: see text] ∼ 395, ∼ 800 and ∼ 1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated [Formula: see text] enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated [Formula: see text] , but [Formula: see text] modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome were slightly inhibited by Cd exposure in normocapnia but this inhibition was reversed at elevated [Formula: see text] . Cu exposure inhibited the chymotrypsin-like activity of the oyster proteasome regardless of the exposure [Formula: see text] . The effects of metal exposure on the proteasome activity were less pronounced in clams, likely due to the lower metal accumulation. However, the general trends (i.e. an increase during Cd exposure, inhibition during exposure to Cu, and overall stimulatory effects of elevated [Formula: see text] ) were similar to those found in oysters. Levels of mRNA for ubiquitin and tumor suppressor p53 were suppressed by metal exposures in normocapnia in both species but this effect was alleviated or reversed at elevated [Formula: see text] . Cellular energy status of oysters was maintained at all metal and CO2 exposures, while in clams the simultaneous exposure to Cu and moderate hypercapnia (∼ 800 μatm [Formula: see text] ) led to a decline in glycogen, ATP and ADP levels and an increase in AMP indicating energy deficiency. These data suggest that environmental CO2 levels can modulate accumulation and physiological effects of metals in bivalves in a species-specific manner which can affect their fitness and survival during the global change in estuaries.
Collapse
Affiliation(s)
- Sandra Götze
- Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven, Germany; Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Omera B Matoo
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
160
|
Souza LDC, Camargo R, Demasi M, Santana JM, de Sá CM, de Freitas SM. Effects of an anticarcinogenic Bowman-Birk protease inhibitor on purified 20S proteasome and MCF-7 breast cancer cells. PLoS One 2014; 9:e86600. [PMID: 24475156 PMCID: PMC3903573 DOI: 10.1371/journal.pone.0086600] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/11/2013] [Indexed: 01/01/2023] Open
Abstract
Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10−7 M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis.
Collapse
Affiliation(s)
- Larissa da Costa Souza
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Ricardo Camargo
- Laboratory of Microbiology Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | - Jaime Martins Santana
- Laboratory of Pathogen-Host Interface, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Cézar Martins de Sá
- Laboratory of Microbiology Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasília, Brasília, Brazil
- * E-mail:
| |
Collapse
|
161
|
Halter D, Collart MA, Panasenko OO. The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PLoS One 2014; 9:e86218. [PMID: 24465968 PMCID: PMC3895043 DOI: 10.1371/journal.pone.0086218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/08/2013] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome.
Collapse
Affiliation(s)
- David Halter
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Martine A. Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
162
|
Resistance to Proteasome Inhibitors in Multiple Myeloma. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2014. [DOI: 10.1007/978-3-319-06752-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
163
|
Kniepert A, Groettrup M. The unique functions of tissue-specific proteasomes. Trends Biochem Sci 2013; 39:17-24. [PMID: 24286712 DOI: 10.1016/j.tibs.2013.10.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
Abstract
The 26S proteasome is the main protease in eukaryotes. Proteolysis occurs within the cylindrical 20S proteasome that is constitutively expressed in most tissues. However, three tissue-specific versions of the 20S proteasome have been discovered to date. The immunoproteasome is optimized to process antigens and it directs the differentiation of T helper (Th) cells. The thymoproteasome is selectively expressed in cortical epithelial cells of the thymus where it plays an essential role in the positive selection of T lymphocytes. Finally, the spermatoproteasome is found in the testes where it is required during spermatogenesis. Here, we outline how tissue-specific proteasomes adapt to functional needs in their respective tissues and how their selective inhibition may be used to interfere with autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Andrea Kniepert
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| |
Collapse
|
164
|
Sridhar S, Bhat G, Guruprasad K. Analysis of bortezomib inhibitor docked within the catalytic subunits of the Plasmodium falciparum 20S proteasome. SPRINGERPLUS 2013; 2:566. [PMID: 24255860 PMCID: PMC3825223 DOI: 10.1186/2193-1801-2-566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022]
Abstract
The three-dimensional fold of Plasmodium falciparum (Pf) 20S proteasome is similar to yeast Saccharomyces cerevisiae 20S proteasome. The twenty eight subunits complex corresponding to two copies of seven distinct α and seven distinct β subunits shares >35% sequence identity with equivalent subunits of the yeast 20S proteasome. Bortezomib (Velcade®) - a known inhibitor of the three catalytic subunits; β1, β2, β5 of the yeast 20S proteasome can bind in the equivalent subunits of the Pf 20S proteasome and is in agreement with experimental results. The model defines the binding mode of the bortezomib inhibitor within the catalytic subunits of the Pf 20S proteasome and provides the structural basis for the design of Pf 20S proteasome-specific inhibitors. The substitutions associated within the catalytic subunits of Pf 20S proteasome relative to yeast 20S proteasome; Thr21-Ser, Thr22-Ser, Thr31-Ser, Thr35-Asn, Ala49-Ser (in β1 subunit), Ser20-Ala, Gln22-Glu (β2) and Thr21-Ser, Ala22-Met, Gln53-Leu (β5) may influence the relative caspase-like, tryptic-like and chymotryptic-like activities of the Pf 20S proteasome. The plasmodia-specific 'large' insert comprising fifty four amino acid residues (in β1 subunit) of the Pf 20S proteasome is distant from the catalytic sites.
Collapse
Affiliation(s)
- Settu Sridhar
- Bioinformatics, Centre for Cellular and Molecular Biology, Hyderabad, 500 007 India
| | - Gayathri Bhat
- Bioinformatics, Centre for Cellular and Molecular Biology, Hyderabad, 500 007 India
| | - Kunchur Guruprasad
- Bioinformatics, Centre for Cellular and Molecular Biology, Hyderabad, 500 007 India
| |
Collapse
|
165
|
Futamura Y, Kawatani M, Muroi M, Aono H, Nogawa T, Osada H. Identification of a Molecular Target of a Novel Fungal Metabolite, Pyrrolizilactone, by Phenotypic Profiling Systems. Chembiochem 2013; 14:2456-63. [DOI: 10.1002/cbic.201300499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Indexed: 11/11/2022]
|
166
|
Blocking Plasmodium falciparum development via dual inhibition of hemoglobin degradation and the ubiquitin proteasome system by MG132. PLoS One 2013; 8:e73530. [PMID: 24023882 PMCID: PMC3759421 DOI: 10.1371/journal.pone.0073530] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022] Open
Abstract
Among key potential drug target proteolytic systems in the malaria parasite Plasmodium falciparum are falcipains, a family of hemoglobin-degrading cysteine proteases, and the ubiquitin proteasomal system (UPS), which has fundamental importance in cellular protein turnover. Inhibition of falcipains blocks parasite development, primarily due to inhibition of hemoglobin degradation that serves as a source of amino acids for parasite growth. Falcipains prefer P2 leucine in substrates and peptides, and their peptidyl inhibitors with leucine at the P2 position show potent antimalarial activity. The peptidyl inhibitor MG132 (Z-Leu-Leu-Leu-CHO) is a widely used proteasome inhibitor, which also has P2 leucine, and has also been shown to inhibit parasite development. However, the antimalarial targets of MG132 are unclear. We investigated whether MG132 blocks malaria parasite development by inhibiting hemoglobin degradation and/or by targeting the UPS. P. falciparum was cultured with inhibitors of the UPS (MG132, epoxomicin, and lactacystin) or falcipains (E64), and parasites were assessed for morphologies, extent of hemoglobin degradation, and accumulation of ubiquitinated proteins. MG132, like E64 and unlike epoxomicin or lactacystin, blocked parasite development, with enlargement of the food vacuole and accumulation of undegraded hemoglobin, indicating inhibition of hemoglobin degradation by MG132, most likely due to inhibition of hemoglobin-degrading falcipain cysteine proteases. Parasites cultured with epoxomicin or MG132 accumulated ubiquitinated proteins to a significantly greater extent than untreated or E64-treated parasites, indicating that MG132 inhibits the parasite UPS as well. Consistent with these findings, MG132 inhibited both cysteine protease and UPS activities present in soluble parasite extracts, and it strongly inhibited recombinant falcipains. MG132 was highly selective for inhibition of P. falciparum (IC50 0.0476 µM) compared to human peripheral blood mononuclear cells (IC50 10.8 µM). Thus, MG132 inhibits two distinct proteolytic systems in P. falciparum, and it may serve as a lead molecule for development of dual-target inhibitors of malaria parasites.
Collapse
|
167
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
168
|
Abstract
We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib.
Collapse
|
169
|
Majetschak M. Regulation of the proteasome by ATP: implications for ischemic myocardial injury and donor heart preservation. Am J Physiol Heart Circ Physiol 2013; 305:H267-78. [PMID: 23709597 DOI: 10.1152/ajpheart.00206.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several lines of evidence suggest that proteasomes are involved in multiple aspects of myocardial physiology and pathology, including myocardial ischemia-reperfusion injury. It is well established that the 26S proteasome is an ATP-dependent enzyme and that ischemic heart disease is associated with changes in the ATP content of the cardiomyocyte. A functional link between the 26S proteasome, myocardial ATP concentrations, and ischemic cardiac injury, however, has been suggested only recently. This review discusses the currently available data on the pathophysiological role of the cardiac proteasome during ischemia and reperfusion in the context of the cellular ATP content. Depletion of the myocardial ATP content during ischemia appears to activate the 26S proteasome via direct regulatory effects of ATP on 26S proteasome stability and activity. This implies pathological degradation of target proteins by the proteasome and could provide a pathophysiological basis for beneficial effects of proteasome inhibitors in various models of myocardial ischemia. In contrast to that in the ischemic heart, reduced and impaired proteasome activity is detectable in the postischemic heart. The paradoxical findings that proteasome inhibitors showed beneficial effects when administered during reperfusion in some studies could be explained by their anti-inflammatory and immune suppressive actions, leading to reduction of leukocyte-mediated myocardial reperfusion injury. The direct regulatory effects of ATP on the 26S proteasome have implications for the understanding of the contribution of the 26S proteasome to the pathophysiology of the ischemic heart and its possible role as a therapeutic target.
Collapse
Affiliation(s)
- Matthias Majetschak
- Departments of Surgery and Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
170
|
Zhang N, Quan Z, Rash B, Oliver SG. Synergistic effects of TOR and proteasome pathways on the yeast transcriptome and cell growth. Open Biol 2013; 3:120137. [PMID: 23697803 PMCID: PMC3866871 DOI: 10.1098/rsob.120137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proteasome has been implicated in gene transcription through a variety of mechanisms. How the proteasome regulates genome-wide transcription in relation to nutrient signalling pathways is largely unknown. Using chemical inhibitors to compromise the functions of the proteasome and/or TORC1, we reveal that the proteasome and TORC1 synergistically promote the expression of de novo purine and amino acid biosynthetic genes, and restrict the transcription of those associated with proteolysis, starvation and stress responses. Genetic analysis demonstrates that TORC1 negatively regulates both the Yak1 and Rim15 kinases to modulate starvation-specific gene expression mediated by the Msn2/4 and Gis1 transcription factors. Compromising proteasome function induces starvation-specific gene transcription in exponential-phase cells and abrogates the strict control of such expression by Yak1 and Rim15 in rapamycin-treated cells, confirming that the proteasome functions to ensure stringent control of the starvation response by the TOR pathway. Synergy between the two pathways is also exhibited on cell growth control. Rpn4-dependent upregulation of proteasomal genes and a catalytically competent 20S proteasome are essential for yeast cells to respond to reduced TORC1 activity. These data suggest that the proteasome and the TOR signalling pathway synergistically regulate a significant portion of the genome to coordinate cell growth and starvation response.
Collapse
Affiliation(s)
- Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
171
|
Ehlinger A, Walters KJ. Structural insights into proteasome activation by the 19S regulatory particle. Biochemistry 2013; 52:3618-28. [PMID: 23672618 DOI: 10.1021/bi400417a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes such as cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the past decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from the study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, the RP has a large number of both permanent and transient components with specialized functional roles that are critical for proteasome function. In this review, we highlight recent mechanistic developments in the study of proteasome activation by the RP and how they provide context to our current understanding of the UPS.
Collapse
Affiliation(s)
- Aaron Ehlinger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
172
|
Abstract
This spotlight review focuses on the second-generation proteasome inhibitor carfilzomib, which was recently approved by the U.S. Food and Drug Administration for treatment of relapsed and refractory multiple myeloma patients who have received at least 2 prior therapies, including bortezomib and an immunomodulatory agent, and have demonstrated disease progression on or within 60 days of the completion of the last therapy. This review focuses on clinical trial data leading to drug approval and provides advice for treating physicians who are now accessing this drug for patients.
Collapse
|
173
|
Stein ML, Groll M. Applied techniques for mining natural proteasome inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:26-38. [PMID: 23360979 DOI: 10.1016/j.bbamcr.2013.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
Abstract
In eukaryotic cells, the ubiquitin-proteasome-system (UPS) is responsible for the non-lysosomal degradation of proteins and plays a pivotal role in such vital processes as protein homeostasis, antigen processing or cell proliferation. Therefore, it is an attractive drug target with various applications in cancer and immunosuppressive therapies. Being an evolutionary well conserved pathway, many pathogenic bacteria have developed small molecules, which modulate the activity of their hosts' UPS components. Such natural products are, due to their stepwise optimization over the millennia, highly potent in terms of their binding mechanisms, their bioavailability and selectivity. Generally, this makes bioactive natural products an ideal starting point for the development of novel drugs. Since four out of the ten best seller drugs are natural product derivatives, research in this field is still of unfathomable value for the pharmaceutical industry. The currently most prominent example for the successful exploitation of a natural compound in the UPS field is carfilzomib (Kyprolis®), which represents the second FDA approved drug targeting the proteasome after the admission of the blockbuster bortezomib (Velcade®) in 2003. On the other hand side of the spectrum, ONX 0914, which is derived from the same natural product as carfilzomib, has been shown to selectively inhibit the immune response related branch of the pathway. To date, there exists a huge potential of UPS inhibitors with regard to many diseases. Both approved drugs against the proteasome show severe side effects, adaptive resistances and limited applicability, thus the development of novel compounds with enhanced properties is a main objective of active research. In this review, we describe the techniques, which can be utilized for the discovery of novel natural inhibitors, which in particular block the 20S proteasomal activity. In addition, we will illustrate the successful implementation of a recently published methodology with the example of a highly potent but so far unexploited group of proteasome inhibitors, the syrbactins, and their biological functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Martin L Stein
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Unversität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| | | |
Collapse
|
174
|
Abstract
Proteasomes are ATP-dependent protein degradation machines present in all archaea and eukaryotes, and found in several bacterial species of the order Actinomycetales. Mycobacterium tuberculosis (Mtb), an Actinomycete pathogenic to humans, requires proteasome function to cause disease. In this chapter, we describe what is currently understood about the biochemistry of the Mtb proteasome and its role in virulence. The characterization of the Mtb proteasome has led to the discovery that proteins can be targeted for degradation by a small protein modifier in bacteria as they are in eukaryotes. Furthermore, the understanding of proteasome function in Mtb has helped reveal new insight into how the host battles infections.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY, 10016, USA
| | | | | |
Collapse
|
175
|
Li H, Ponder EL, Verdoes M, Asbjornsdottir KH, Deu E, Edgington LE, Lee JT, Kirk CJ, Demo SD, Williamson KC, Bogyo M. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. ACTA ACUST UNITED AC 2012; 19:1535-45. [PMID: 23142757 DOI: 10.1016/j.chembiol.2012.09.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/12/2012] [Accepted: 09/27/2012] [Indexed: 12/26/2022]
Abstract
The Plasmodium proteasome has been suggested to be a potential antimalarial drug target; however, toxicity of inhibitors has prevented validation of this enzyme in vivo. We report a screen of a library of 670 analogs of the recent US Food and Drug Administration-approved inhibitor, carfilzomib, to identify compounds that selectively kill parasites. We identified one compound, PR3, that has significant parasite killing activity in vitro but dramatically reduced toxicity in host cells. We found that this parasite-specific toxicity is not due to selective targeting of the Plasmodium proteasome over the host proteasome, but instead is due to a lack of activity against one of the human proteasome subunits. Subsequently, we used PR3 to significantly reduce parasite load in Plasmodium berghei infected mice without host toxicity, thus validating the proteasome as a viable antimalarial drug target.
Collapse
Affiliation(s)
- Hao Li
- Graduate Program in Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Kramer HB, Nicholson B, Kessler BM, Altun M. Detection of ubiquitin-proteasome enzymatic activities in cells: application of activity-based probes to inhibitor development. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:2029-37. [PMID: 22613766 PMCID: PMC7125640 DOI: 10.1016/j.bbamcr.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/04/2012] [Accepted: 05/11/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Synthetic probes that mimic natural substrates can enable the detection of enzymatic activities in a cellular environment. One area where such activity-based probes have been applied is the ubiquitin-proteasome pathway, which is emerging as an important therapeutic target. A family of reagents has been developed that specifically label deubiquitylating enzymes (DUBs) and facilitate characterization of their inhibitors. SCOPE OF REVIEW Here we focus on the application of probes for intracellular DUBs, a group of specific proteases involved in the ubiquitin proteasome system. In particular, the functional characterization of the active subunits of this family of proteases that specifically recognize ubiquitin and ubiquitin-like proteins will be discussed. In addition we present the potential and design of activity-based probes targeting kinases and phosphatases to study phosphorylation. MAJOR CONCLUSIONS Synthetic molecular probes have increased our understanding of the functional role of DUBs in living cells. In addition to the detection of enzymatic activities of known members, activity-based probes have contributed to a number of functional assignments of previously uncharacterized enzymes. This method enables cellular validation of the specificity of small molecule DUB inhibitors. GENERAL SIGNIFICANCE Molecular probes combined with mass spectrometry-based proteomics and cellular assays represent a powerful approach for discovery and functional validation, a concept that can be expanded to other enzyme classes. This addresses a need for more informative cell-based assays that are required to accelerate the drug development process. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Collapse
Key Words
- abp, activity-based probe
- adp, adenosine diphosphate
- atp, adenosine triphosphate
- dub, deubiquitylating enzyme
- e1, ubiquitin activating enzyme
- e2, ubiquitin conjugating enzyme
- e3, ubiquitin-protein ligase
- haubbr2, ha-tagged ubiquitin ethyl bromide
- haubvme, ha-tagged ubiquitin vinyl methyl ester
- haubvs, ha-tagged ubiquitin vinyl sulfone
- ip, immunoprecipitation
- ms, mass spectrometry
- ptm, post-translational modification
- ptp, protein tyrosine phosphatase
- sds-page, sodium dodecylsulfate polyacrylamide gel electrophoresis
- spps, solid phase peptide synthesis
- ub, ubiquitin
- ubl, ubiquitin-like protein
- uch-l1, ubiquitin carboxyl terminal hydrolase isozyme l1
- uch-l3, ubiquitin carboxyl terminal hydrolase isozyme l3
- uch-l5, ubiquitin carboxyl terminal hydrolase isozyme l5
- usp7, ubiquitin specific processing protease 7
- ubiquitin
- small molecular inhibitor
- deubiquitinating enzyme
- ubiquitin specific protease
- proteomics
- active site-directed molecular probe
Collapse
Affiliation(s)
- Holger B Kramer
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
177
|
Legesse-Miller A, Raitman I, Haley EM, Liao A, Sun LL, Wang DJ, Krishnan N, Lemons JMS, Suh EJ, Johnson EL, Lund BA, Coller HA. Quiescent fibroblasts are protected from proteasome inhibition-mediated toxicity. Mol Biol Cell 2012; 23:3566-81. [PMID: 22875985 PMCID: PMC3442405 DOI: 10.1091/mbc.e12-03-0192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition-mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition-induced cytotoxicity.
Collapse
|
178
|
Yang H, Li M, Qi X, Lv C, Deng J, Zhao G. Identification of seven water-soluble non-storage proteins from pomegranate (Punica granatum Linn.) seeds. FOOD SCI TECHNOL INT 2012; 18:329-38. [DOI: 10.1177/1082013211428008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As pomegranate ( Punica granatum Linn.) processing is fast growing, the usage of pomegranate processing wastes containing seeds has been receiving great attention. The protein component accounts for 100–130 g/kg of the seeds in weight. However, so far, there is no information on the composition and function of the pomegranate seed proteins. In this study, a global view of water-soluble non-storage proteins isolated from mature pomegranate seeds were studied using two-dimensional polyacrylamide gel electrophoresis coupled with liquid chromatography–tandem mass spectrometry. With the two-dimensional polyacrylamide gel electrophoresis approach, over 120 protein spots were resolved, of which 7 abundant protein spots showing low molecular mass were identified. These identified proteins may be linked to seed development and metabolism, but more importantly, the occurrence of these proteins provides the possibility of conversion the pomegranate processing wastes into useful products or raw material for food industry.
Collapse
Affiliation(s)
- Haixia Yang
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Meiliang Li
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Xin Qi
- National Institute of Metrology, Beijing 100013, China
| | - Chenyan Lv
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, China
| | - Jianjun Deng
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Guanghua Zhao
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
179
|
Mishto M, Goede A, Taube KT, Keller C, Janek K, Henklein P, Niewienda A, Kloss A, Gohlke S, Dahlmann B, Enenkel C, Kloetzel PM. Driving forces of proteasome-catalyzed peptide splicing in yeast and humans. Mol Cell Proteomics 2012; 11:1008-23. [PMID: 22822185 DOI: 10.1074/mcp.m112.020164] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome-catalyzed peptide splicing (PCPS) represents an additional activity of mammalian 20S proteasomes recently identified in connection with antigen presentation. We show here that PCPS is not restricted to mammalians but that it is also a feature of yeast 20S proteasomes catalyzed by all three active site β subunits. No major differences in splicing efficiency exist between human 20S standard- and immuno-proteasome or yeast 20S proteasome. Using H(2)(18)O to monitor the splicing reaction we also demonstrate that PCPS occurs via direct transpeptidation that slightly favors the generation of peptides spliced in cis over peptides spliced in trans. Splicing efficiency itself is shown to be controlled by proteasomal cleavage site preference as well as by the sequence characteristics of the spliced peptides. By use of kinetic data and quantitative analyses of PCPS obtained by mass spectrometry we developed a structural model with two PCPS binding sites in the neighborhood of the active Thr1.
Collapse
Affiliation(s)
- Michele Mishto
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Oudenarder Straβe 16, 13347 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Tian Z, Zheng H, Li J, Li Y, Su H, Wang X. Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice. Circ Res 2012; 111:532-42. [PMID: 22740087 DOI: 10.1161/circresaha.112.270983] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RATIONALE Both cardiomyocyte-restricted proteasome functional enhancement and pharmacological proteasome inhibition (PSMI) were shown to attenuate myocardial ischemia/reperfusion (I/R) injury. The role of cardiac proteasome dysfunction during I/R and the perspective to diminish I/R injury by manipulating proteasome function remain unclear. OBJECTIVES We sought to determine proteasome adequacy in I/R hearts, create a mouse model of cardiomyocyte-restricted PSMI (CR-PSMI), and test CR-PSMI impact on I/R injury. METHODS AND RESULTS Myocardial I/R were modeled by ligation (30 minutes) and subsequent release of the left anterior descending artery in mice overexpressing GFPdgn, a validated surrogate proteasome substrate. At 24 hours of reperfusion, myocardial proteasome activities were significantly lower whereas total ubiquitin conjugates and GFPdgn protein levels were markedly higher in all regions of the I/R hearts than the sham controls, indicative of proteasome functional insufficiency. CR-PSMI in intact mice was achieved by transgenic (tg) overexpression of a peptidase-disabled mouse β5 subunit (T60A-β5) driven by an attenuated mouse mhc6 promoter. Overexpressed T60A-β5 can replace endogenous β5 and inhibits proteasome chymotrypsin-like activities in the heart. Mice with moderate CR-PSMI showed no abnormalities at the baseline but displayed markedly more pronounced structural and functional damage during I/R, compared with non-tg littermates. The exacerbation of I/R injury by moderate CR-PSMI was associated with significant increases in the protein level of PTEN and protein kinase Cδ (PKCδ), decreased Akt activation, and reduced PKCε. CONCLUSIONS Myocardial I/R causes proteasome functional insufficiency in cardiomyocytes and moderate CR-PSMI augments PTEN and PKCδ, suppresses Akt and PKCε, increases cardiomyocyte apoptosis, and aggravates I/R injury in mice.
Collapse
Affiliation(s)
- Zongwen Tian
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E Clark St, Lee Medical Bldg, Vermillion, SD 57069, USA.
| | | | | | | | | | | |
Collapse
|
181
|
Camargo ACM, Fernandes BL, Cruz L, Ferro ES. Bioactive Peptides Produced by Limited Proteolysis. ACTA ACUST UNITED AC 2012. [DOI: 10.4199/c00056ed1v01y201204npe002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
182
|
Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: an expanding army attacking a unique target. ACTA ACUST UNITED AC 2012; 19:99-115. [PMID: 22284358 DOI: 10.1016/j.chembiol.2012.01.003] [Citation(s) in RCA: 427] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib, is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection. Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives. In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in the last decade.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
183
|
Yan C, Chen Z, Li H, Zhang G, Li F, Duerksen-Hughes PJ, Zhu X, Yang J. Nuclear proteome analysis of benzo(a)pyrene-treated HeLa cells. Mutat Res 2012; 731:75-84. [PMID: 22138005 DOI: 10.1016/j.mrfmmm.2011.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/03/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10μM benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10μM) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1μM and 10μM BaP-treated groups, 2 in the 0.1μM and 10μM BaP-treated groups, 4 in the 0.1μM and 1μM BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Chunlan Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Furnham N, Sillitoe I, Holliday GL, Cuff AL, Laskowski RA, Orengo CA, Thornton JM. Exploring the evolution of novel enzyme functions within structurally defined protein superfamilies. PLoS Comput Biol 2012; 8:e1002403. [PMID: 22396634 PMCID: PMC3291543 DOI: 10.1371/journal.pcbi.1002403] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
In order to understand the evolution of enzyme reactions and to gain an overview of biological catalysis we have combined sequence and structural data to generate phylogenetic trees in an analysis of 276 structurally defined enzyme superfamilies, and used these to study how enzyme functions have evolved. We describe in detail the analysis of two superfamilies to illustrate different paradigms of enzyme evolution. Gathering together data from all the superfamilies supports and develops the observation that they have all evolved to act on a diverse set of substrates, whilst the evolution of new chemistry is much less common. Despite that, by bringing together so much data, we can provide a comprehensive overview of the most common and rare types of changes in function. Our analysis demonstrates on a larger scale than previously studied, that modifications in overall chemistry still occur, with all possible changes at the primary level of the Enzyme Commission (E.C.) classification observed to a greater or lesser extent. The phylogenetic trees map out the evolutionary route taken within a superfamily, as well as all the possible changes within a superfamily. This has been used to generate a matrix of observed exchanges from one enzyme function to another, revealing the scale and nature of enzyme evolution and that some types of exchanges between and within E.C. classes are more prevalent than others. Surprisingly a large proportion (71%) of all known enzyme functions are performed by this relatively small set of 276 superfamilies. This reinforces the hypothesis that relatively few ancient enzymatic domain superfamilies were progenitors for most of the chemistry required for life. Enzymes, as biological catalysts, are crucial to life. Understanding how enzymes have evolved to perform the wide variety of reactions found across all kingdoms of life is fundamental to a broad range of biological studies, especially those leading to new therapeutics. To unravel the evolution of novel enzyme function requires combining information on protein structure, sequence, phylogeny and chemistry (in terms of interacting small molecules and reaction mechanisms). We have developed a protocol for integrating this wide range of data, which we have applied to a relatively large number of families comprising some very diverse relatives. This has permitted us to present an initial overview of the evolution of novel enzyme functions, in which we observe that some changes in function between relatives are more common than others, with most of the functionality observed in nature confined to relatively few families. Moreover, we are able to identify the evolutionary route taken within a superfamily to change the enzyme function from one reaction to another. This information may help in predicting the function of an enzyme that has yet to be experimentally characterised as well as in designing new enzymes for industrial and medical purposes.
Collapse
Affiliation(s)
- Nicholas Furnham
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
185
|
Aminake MN, Arndt HD, Pradel G. The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:1-10. [PMID: 24533266 DOI: 10.1016/j.ijpddr.2011.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 12/13/2022]
Abstract
The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs.
Collapse
Affiliation(s)
- Makoah Nigel Aminake
- Julius-Maximilians-University Würzburg, Research Center for Infectious Diseases, Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-University Jena, Chair of Organic Chemistry I, Humboldtstr. 10, 07743 Jena, Germany
| | - Gabriele Pradel
- Julius-Maximilians-University Würzburg, Research Center for Infectious Diseases, Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| |
Collapse
|
186
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
187
|
Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: an attractive target for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1825:64-76. [PMID: 22037302 PMCID: PMC3242858 DOI: 10.1016/j.bbcan.2011.10.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 01/26/2023]
Abstract
The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers.
Collapse
Affiliation(s)
- Sarah Frankland-Searby
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R. Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
188
|
Verani CN. Metal complexes as inhibitors of the 26S proteasome in tumor cells. J Inorg Biochem 2012; 106:59-67. [DOI: 10.1016/j.jinorgbio.2011.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/01/2011] [Accepted: 09/01/2011] [Indexed: 11/29/2022]
|
189
|
Howard GC, Collins GA, Tansey WP. Letter to the editor. Chemical-genetic strategy for inhibiting proteasome function in Saccharomyces cerevisiae. Yeast 2011; 29:93-4. [PMID: 22162073 DOI: 10.1002/yea.1919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
190
|
Abstract
AAA+ family proteolytic machines (ClpXP, ClpAP, ClpCP, HslUV, Lon, FtsH, PAN/20S, and the 26S proteasome) perform protein quality control and are used in regulatory circuits in all cells. These machines contain a compartmental protease, with active sites sequestered in an interior chamber, and a hexameric ring of AAA+ ATPases. Substrate proteins are tethered to the ring, either directly or via adaptor proteins. An unstructured region of the substrate is engaged in the axial pore of the AAA+ ring, and cycles of ATP binding/hydrolysis drive conformational changes that create pulses of pulling that denature the substrate and translocate the unfolded polypeptide through the pore and into the degradation chamber. Here, we review our current understanding of the molecular mechanisms of substrate recognition, adaptor function, and ATP-fueled unfolding and translocation. The unfolding activities of these and related AAA+ machines can also be used to disassemble or remodel macromolecular complexes and to resolubilize aggregates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
191
|
García-Medel N, Sanz-Bravo A, Barnea E, Admon A, López de Castro JA. The origin of proteasome-inhibitor resistant HLA class I peptidomes: a study with HLA-A*68:01. Mol Cell Proteomics 2011; 11:M111.011486. [PMID: 21969608 DOI: 10.1074/mcp.m111.011486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some HLA class I molecules bind a significant fraction of their constitutive peptidomes in the presence of proteasome inhibitors. In this study, A*68:01-bound peptides, and their parental proteins, were characterized through massive mass spectrometry sequencing to refine its binding motif, including the nearly exclusive preference for C-terminal basic residues. Stable isotope tagging was used to distinguish proteasome-inhibitor sensitive and resistant ligands. The latter accounted for less than 20% of the peptidome and, like in HLA-B27, arose predominantly from small and basic proteins. Under the conditions used for proteasome inhibition in vivo, epoxomicin and MG-132 incompletely inhibited the hydrolysis of fluorogenic substrates specific for the tryptic or for both the tryptic and chymotryptic subspecificities, respectively. This incomplete inhibition was also reflected in the cleavage of synthetic peptide precursors of A*68:01 ligands. For these substrates, the inhibition of the proteasome resulted in altered cleavage patterns. However these alterations did not upset the balance between cleavage at peptide bonds resulting in epitope destruction and those leading to their generation. The results indicate that inhibitor-resistant HLA class I ligands are not necessarily produced by non-proteasomal pathways. However, their generation is not simply explained by decreased epitope destruction upon incomplete proteasomal inhibition and may require additional proteolytic steps acting on incompletely processed proteasomal products.
Collapse
Affiliation(s)
- Noel García-Medel
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolas Cabrera N.1, Universidad Autónoma, 28049 Madrid, Spain
| | - Alejandro Sanz-Bravo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolas Cabrera N.1, Universidad Autónoma, 28049 Madrid, Spain
| | - Eilon Barnea
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - José A López de Castro
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolas Cabrera N.1, Universidad Autónoma, 28049 Madrid, Spain.
| |
Collapse
|
192
|
Haarer B, Aggeli D, Viggiano S, Burke DJ, Amberg DC. Novel interactions between actin and the proteasome revealed by complex haploinsufficiency. PLoS Genet 2011; 7:e1002288. [PMID: 21966278 PMCID: PMC3178594 DOI: 10.1371/journal.pgen.1002288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae has been a powerful model for uncovering the landscape of binary gene interactions through whole-genome screening. Complex heterozygous interactions are potentially important to human genetic disease as loss-of-function alleles are common in human genomes. We have been using complex haploinsufficiency (CHI) screening with the actin gene to identify genes related to actin function and as a model to determine the prevalence of CHI interactions in eukaryotic genomes. Previous CHI screening between actin and null alleles for non-essential genes uncovered ∼240 deleterious CHI interactions. In this report, we have extended CHI screening to null alleles for essential genes by mating a query strain to sporulations of heterozygous knock-out strains. Using an act1Δ query, knock-outs of 60 essential genes were found to be CHI with actin. Enriched in this collection were functional categories found in the previous screen against non-essential genes, including genes involved in cytoskeleton function and chaperone complexes that fold actin and tubulin. Novel to this screen was the identification of genes for components of the TFIID transcription complex and for the proteasome. We investigated a potential role for the proteasome in regulating the actin cytoskeleton and found that the proteasome physically associates with actin filaments in vitro and that some conditional mutations in proteasome genes have gross defects in actin organization. Whole-genome screening with actin as a query has confirmed that CHI interactions are important phenotypic drivers. Furthermore, CHI screening is another genetic tool to uncover novel functional connections. Here we report a previously unappreciated role for the proteasome in affecting actin organization and function.
Collapse
Affiliation(s)
- Brian Haarer
- Department of Biochemistry and Molecular Biology, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Dimitra Aggeli
- Department of Biochemistry and Molecular Biology, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Susan Viggiano
- Department of Biochemistry and Molecular Biology, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Daniel J. Burke
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, Charlottesville, Virginia, United States of America
| | - David C. Amberg
- Department of Biochemistry and Molecular Biology, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| |
Collapse
|
193
|
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:67-82. [PMID: 21820014 DOI: 10.1016/j.bbamcr.2011.07.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 01/18/2023]
Abstract
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.
Collapse
Affiliation(s)
- Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
194
|
Marzaro G, Gandin V, Marzano C, Guiotto A, Chilin A. Psoralenquinones as a novel class of proteasome inhibitors: design, synthesis and biological evaluation. ChemMedChem 2011; 6:996-1000. [PMID: 21472862 DOI: 10.1002/cmdc.201100041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/11/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Giovanni Marzaro
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
195
|
Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors in cancer therapy. J Cell Commun Signal 2011; 5:101-10. [PMID: 21484190 PMCID: PMC3088792 DOI: 10.1007/s12079-011-0121-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/13/2011] [Indexed: 02/03/2023] Open
Abstract
The ubiquitin proteasome pathway plays a critical role in regulating many processes in the cell which are important for tumour cell growth and survival. Inhibition of proteasome function has emerged as a powerful strategy for anti-cancer therapy. Clinical validation of the proteasome as a therapeutic target was achieved with bortezomib and has prompted the development of a second generation of proteasome inhibitors with improved pharmacological properties. This review summarises the main mechanisms of action of proteasome inhibitors in cancer, the development of proteasome inhibitors as therapeutic agents and the properties and progress of next generation proteasome inhibitors in the clinic.
Collapse
Affiliation(s)
- Lisa J. Crawford
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Ground Floor, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL
| | - Brian Walker
- Department of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL
| | - Alexandra E. Irvine
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Ground Floor, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL
| |
Collapse
|
196
|
Ruschak AM, Slassi M, Kay LE, Schimmer AD. Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 2011; 103:1007-17. [PMID: 21606441 DOI: 10.1093/jnci/djr160] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The proteasome is an intracellular enzyme complex that degrades ubiquitin-tagged proteins and thereby regulates protein levels within the cell. Given this important role in maintaining cellular homeostasis, it is perhaps somewhat surprising that proteasome inhibitors have a therapeutic window. Proteasome inhibitors have demonstrated clinical efficacy in the treatment of multiple myeloma and mantle cell lymphoma and are under evaluation for the treatment of other malignancies. Bortezomib is the first and only Food and Drug Administration-approved proteasome inhibitor that inhibits this enzyme complex in a reversible fashion. Although bortezomib improves clinical outcomes when used as a single agent, most patients do not respond to this drug and those who do respond almost uniformly relapse. As such, efforts are underway to develop proteasome inhibitors that act through mechanisms distinct from that of bortezomib. Specifically, inhibitors that bind the active site of the proteasome and inhibit the complex irreversibly have been developed and are in advanced clinical trials. Inhibitors that act on sites of the proteasome outside of the catalytic center have also been identified and are in preclinical development. In this review, we discuss the structure and function of the proteasome. We then focus on the molecular biology, chemistry, and the preclinical and clinical efficacy of novel proteasome inhibitors as strategies to inhibit this target and overcome some forms of bortezomib resistance.
Collapse
Affiliation(s)
- Amy M Ruschak
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
197
|
Vigneron N, Van den Eynde BJ. Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cell Mol Life Sci 2011; 68:1503-20. [PMID: 21387143 PMCID: PMC11114561 DOI: 10.1007/s00018-011-0658-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/29/2022]
Abstract
The molecular definition of tumor antigens recognized by cytolytic T lymphocytes (CTL) started in the late 1980s, at a time when the MHC class I antigen processing field was in its infancy. Born together, these two fields of science evolved together and provided each other with critical insights. Over the years, stimulated by the potential interest of tumor antigens for cancer immunotherapy, scientists have identified and characterized numerous antigens recognized by CTL on human tumors. These studies have provided a wealth of information relevant to the mode of production of antigenic peptides presented by MHC class I molecules. A number of tumor antigenic peptides were found to result from unusual mechanisms occurring at the level of transcription, translation or processing. Although many of these mechanisms occur in the cell at very low level, they are relevant to the immune system as they determine the killing of tumor cells by CTL, which are sensitive to low levels of peptide/MHC complexes. Moreover, these unusual mechanisms were found to occur not only in tumor cells but also in normal cells. Thereby, the study of tumor antigens has illuminated many aspects of MHC class I processing. We review here those insights into the MHC I antigen processing pathway that result from the characterization of human tumor antigens recognized by CTL.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, UCL 7459, 1200 Brussels, Belgium
| | - Benoît J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, UCL 7459, 1200 Brussels, Belgium
| |
Collapse
|
198
|
Halas A, Podlaska A, Derkacz J, McIntyre J, Skoneczna A, Sledziewska-Gojska E. The roles of PCNA SUMOylation, Mms2-Ubc13 and Rad5 in translesion DNA synthesis in Saccharomyces cerevisiae. Mol Microbiol 2011; 80:786-97. [PMID: 21362066 DOI: 10.1111/j.1365-2958.2011.07610.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mms2, in concert with Ubc13 and Rad5, is responsible for polyubiquitination of replication processivity factor PCNA. This modification activates recombination-like DNA damage-avoidance mechanisms, which function in an error-free manner. Cells deprived of Mms2, Ubc13 or Rad5 exhibit mutator phenotypes as a result of the channelling of premutational DNA lesions to often error-prone translesion DNA synthesis (TLS). Here we show that Siz1-mediated PCNA SUMOylation is required for the stimulation of this TLS, despite the presence of PCNA monoubiquitination. The stimulation of spontaneous mutagenesis by Siz1 in cells carrying rad5 and/or mms2 mutations is connected with the known role of PCNA SUMOylation in the inhibition of Rad52-mediated recombination. However, following UV irradiation, Siz1 is engaged in additional, as yet undefined, mechanisms controlling genetic stability at the replication fork. We also demonstrate that in the absence of PCNA SUMOylation, Mms2-Ubc13 and Rad5 may, independently of each other, function in the stimulation of TLS. Based on this finding and on an analysis of the epistatic relationships between SIZ1, MMS2 and RAD5, with respect to UV sensitivity, we conclude that PCNA SUMOylation is responsible for the functional differences between the Mms2 and Rad5 homologues of Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Agnieszka Halas
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
199
|
Clark LA, Tsai KL, Starr AN, Nowend KL, Murphy KE. A missense mutation in the 20S proteasome β2 subunit of Great Danes having harlequin coat patterning. Genomics 2011; 97:244-8. [PMID: 21256207 DOI: 10.1016/j.ygeno.2011.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 01/27/2023]
Abstract
Harlequin is a pigmentary trait of the domestic dog that is controlled by two autosomal loci: the melanosomal gene, SILV, and a modifier gene, harlequin (H), previously localized to chromosome 9. Heterozygosity for a retrotransposon insertion in SILV and a mutation in H causes a pattern of black patches on a white background. Homozygosity for H is embryonic lethal. Fine mapping of the harlequin locus revealed a 25 kb interval wherein all harlequin Great Danes are heterozygous for a common haplotype. This region contains one gene, PSMB7, which encodes the β2 catalytic subunit of the proteasome. Sequence analysis identified a coding variant in exon 2 that segregates with harlequin patterning. The substitution predicts the replacement of a highly conserved valine with a glycine. Described herein is the identification of a naturally-occurring mutation of the ubiquitin proteasome system that is associated with a discernable phenotype of dogs.
Collapse
Affiliation(s)
- Leigh Anne Clark
- Department of Genetics and Biochemistry, College of Agriculture, Forestry, and Life Sciences, Clemson University, Clemson, SC 29634-0318, USA.
| | | | | | | | | |
Collapse
|
200
|
Grover A, Shandilya A, Bisaria VS, Sundar D. Probing the anticancer mechanism of prospective herbal drug Withaferin A on mammals: a case study on human and bovine proteasomes. BMC Genomics 2010; 11 Suppl 4:S15. [PMID: 21143798 PMCID: PMC3005937 DOI: 10.1186/1471-2164-11-s4-s15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background The UPP (ubiquitin proteasome pathway) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells which regulates cellular events, including mitotis, differentiation, signal transduction, apoptosis, and inflammation. UPP controls activation of the transcriptional factor NF-κB (nuclear factor κB), which is a regulatory protein playing central role in a variety of cellular processes including immune and inflammatory responses, apoptosis, and cellular proliferation. Since the primary interaction of proteasomes occurs with endogenous proteins, the signalling action of transcription factor NF-κB can be blocked by inhibition of proteasomes. A great variety of natural and synthetic chemical compounds classified as peptide aldehydes, peptide boronates, nonpeptide inhibitors, peptide vinyl sulfones and epoxyketones are now widely used as research tools for probing their potential to inhibit proteolytic activities of different proteasomes and to investigate the underlying inhibition mechanisms. The present work reports a bio-computational study carried out with the aim of exploring the proteasome inhibition capability of WA (withaferin A), a steroidal lactone, by understanding the binding mode of WA as a ligand into the mammalian proteasomes (X-ray crystal structure of Bos taurus 20S proteasome and multiple template homology modelled structure of 20S proteasome of Homo sapiens) using molecular docking and molecular dynamics simulation studies. Results One possible mode of action which is proposed here for WA to act as a proteasome inhibitor is by suppression of the proteolytic activity which depends on the N-terminal threonine (Thr1) residue hydroxyl group. Docking studies carried out with herbal ligand WA into the structures of bovine and human proteasomes substantiate that WA has the ability to inhibit activity of mammalian 20S proteasomes by blocking the nucleophilic function of N-terminal Thr1. Results from molecular dynamics simulations in water show that the trajectories of both the native human 20S proteasome and the proteasome complexed with WA are stable over a considerably long time period of 4 ns suggesting the dynamic structural stability of human 20S proteasome/WA complex. Conclusions Inhibition of proteasomal activity are promising ways to retard or block degradation of specific proteins to correct diverse pathologies. Though quite a number of selective and efficient proteasomal inhibitors exist nowadays, their toxic side effects limit their potential in possible disease treatment. Thus there is an indispensable need for exploration of novel natural products as antitumor drug candidates. The present work supports the mammalian proteasomes inhibiting activity of WA along with elucidation of its possible mode of action. Since WA is a small herbal molecule, it is expected to provide one of the modest modes of inhibition along with added favours of ease in oral administration and decreased immunogenicity. The molecular docking results suggest that WA can inhibit the mammalian proteasomes irreversibly and with a high rate through acylation of the N-terminal Thr1 of the β-5 subunit.
Collapse
Affiliation(s)
- Abhinav Grover
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India.
| | | | | | | |
Collapse
|