151
|
Guan J, Stavridi E, Leeper DB, Iliakis G. Effects of hyperthermia on p53 protein expression and activity. J Cell Physiol 2002; 190:365-74. [PMID: 11857452 DOI: 10.1002/jcp.10069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although p53 responses after DNA damage have been investigated extensively, p53 responses after heat shock, which exerts cytotoxic action by mechanisms other than direct induction of DNA damage, are less well characterized. We investigated, therefore, the effect of hyperthermic exposures on the levels and DNA-binding activity of p53. Experiments were carried out with U2OS and ML-1 cells, known to express wild-type p53 protein. Although heating at 41 degrees C for up to 6 h had only a small effect on p53 levels or DNA binding activity, exposure to temperatures between 42.5 and 45.5 degrees C caused an immediate decrease in protein levels that was associated with a reduction in DNA binding activity. This observation is compatible with a high lability of p53 to heat shock, or heat sensitivity of the pathway regulating p53 levels in non-stressed cells. When cells were heated to 42.5 degrees C and returned to normal temperatures, a strong p53 response associated with an increase in protein levels and DNA binding activity was observed, suggesting the production of p53-inducing cellular damage. At higher temperatures, however, this response was compromised in an exposure-time-dependent manner. The increase in DNA binding activity was more heat sensitive than the increase in p53 levels and was inhibited at lower temperatures and shorter exposure times. Thus, the pathway of p53 activation is itself heat sensitive and compromised at high levels of exposure. Compared to p53 activation after exposure to ionizing radiation, heat-induced activation is rapid and short lived. When cells were exposed to combined heat and radiation, the response observed approximated that of cells exposed to heat alone. Wortmannin at 10 microM inhibited p53 activation for up to 2 h after heat shock suggesting the involvement of wortmannin-sensitive kinases, such as DNA-PK and ATM. Heat shock causes phosphorylation of p53 at Serine-15, but there is no correlation between phosphorylation at this site and activation of the protein. The results in aggregate indicate p53 activation in the absence of DNA damage by a heat-sensitive mechanism operating with faster kinetics than radiation-induced p53 activation. The former response may induce pathways preventing other stimuli from activating p53, as heat-induced activation of p53 is dominant over activation of p53 by DNA damage in combined-treatment experiments. These observations suggest means for abrogating p53 induction after DNA damage with the purpose of potentiating response and enhancing cell killing.
Collapse
Affiliation(s)
- Jun Guan
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
152
|
Komarova EA, Gudkov AV. Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 2001; 62:657-67. [PMID: 11556286 DOI: 10.1016/s0006-2952(01)00733-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The p53 tumor suppressor pathway is a key mediator of stress response that protects the organism from accumulating genetically altered and potentially cancerous cells by inducing growth arrest or apoptosis in damaged cells. However, under certain stressful conditions, p53 activity can result in massive apoptosis in sensitive tissues, leading to severe pathological consequences for the organism. One such situation is anticancer therapy that is often associated with general genotoxic stress, leading to p53-dependent apoptosis in the epithelia of the digestive tract and in the hematopoietic system. A chemical inhibitor of p53, capable of suppressing p53-mediated apoptosis, was shown to protect mice from lethal doses of gamma-radiation, making pharmacological suppression of p53 a perspective therapeutic approach to reduce the side-effects of cancer treatment. There are other situations, besides anti-cancer therapy, when humans are exposed to stressful conditions known to involve p53 activation, which, in extreme cases, could result in the development of life-threatening diseases. Here we review the experimental evidence on the role of p53 in tissue injuries associated with hypoxia (heart and brain ischemias) and hyperthermia (fever and burns), comparing these pathologies with the consequences of genotoxic stress of cancer treatment. The accumulated information points to the involvement of p53 in the generation of the pathological outcome of the above stresses, making them potential targets for the therapeutic application of p53 inhibitors.
Collapse
Affiliation(s)
- E A Komarova
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
153
|
Affiliation(s)
- Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology UNESCO, Warsaw 02-109 and
Institute of Biochemistry and Biophysics PAS, Warsaw 02-109, Poland Corresponding author e-mail:
| | - Frank W. King
- Department of Molecular Biology, International Institute of Molecular and Cell Biology UNESCO, Warsaw 02-109 and
Institute of Biochemistry and Biophysics PAS, Warsaw 02-109, Poland Corresponding author e-mail:
| | | |
Collapse
|
154
|
Abstract
Despite intensive study of p53, the regulation of p53 cellular localization is still poorly understood. This is an overview of the elements and molecules involved in p53 nucleocytoplasmic transportation. These include the nuclear import and export signals of p53, inhibition of p53 nuclear import and export by oligomerization, MDM2-mediated p53 nuclear export, and possible roles of p53 phosphorylation in regulating p53 cellular localization. Finally, questions regarding p53 cellular trafficking will also be discussed.
Collapse
Affiliation(s)
- S H Liang
- Department of Biology, The Pennsylvania State University, University Park, USA
| | | |
Collapse
|
155
|
Takano S, Wadhwa R, Mitsui Y, Kaul SC. Identification and characterization of molecular interactions between glucose-regulated proteins (GRPs) mortalin/GRP75/peptide-binding protein 74 (PBP74) and GRP94. Biochem J 2001; 357:393-8. [PMID: 11439088 PMCID: PMC1221965 DOI: 10.1042/0264-6021:3570393] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A heat-shock protein (hsp) 70 family member mortalin/glucose-regulated protein (GRP) 75/peptide-binding protein 74 (PBP74) has been localized to various cellular compartments including mitochondria, endoplasmic reticulum and cytoplasmic vesicles. Here we describe its interactions with an endoplasmic reticulum protein GRP94, a member of the hsp90 family of GRPs. Interactions were identified, confirmed and characterized by far-Western screening, in vivo reporter and co-immunoprecipitation assays. Interacting domains of the two proteins were also characterized by mutational analysis. Such interactions of these two GRPs may be important for function of either or both and therefore provide important information for further studies.
Collapse
Affiliation(s)
- S Takano
- Institute of Molecular and Cell Biology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
156
|
Grigorian M, Andresen S, Tulchinsky E, Kriajevska M, Carlberg C, Kruse C, Cohn M, Ambartsumian N, Christensen A, Selivanova G, Lukanidin E. Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction. J Biol Chem 2001; 276:22699-708. [PMID: 11278647 DOI: 10.1074/jbc.m010231200] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A physical and functional interaction between the Ca(2+)-binding protein Mts1 (S100A4) and the tumor suppressor p53 protein is shown here for the first time. We demonstrate that Mts1 binds to the extreme end of the C-terminal regulatory domain of p53 by several in vitro and in vivo approaches: co-immunoprecipitation, affinity chromatography, and far Western blot analysis. The Mts1 protein in vitro inhibits phosphorylation of the full-length p53 and its C-terminal peptide by protein kinase C but not by casein kinase II. The Mts1 binding to p53 interferes with the DNA binding activity of p53 in vitro and reporter gene transactivation in vivo, and this has a regulatory function. A differential modulation of the p53 target gene (p21/WAF, bax, thrombospondin-1, and mdm-2) transcription was observed upon Mts1 induction in tet-inducible cell lines expressing wild type p53. Mts1 cooperates with wild type p53 in apoptosis induction. Our data imply that the ability of Mts1 to enhance p53-dependent apoptosis might accelerate the loss of wild type p53 function in tumors. In this way, Mts1 can contribute to the development of a more aggressive phenotype during tumor progression.
Collapse
Affiliation(s)
- M Grigorian
- Department of Molecular Cancer Biology, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
There are several reports which indicate that electromagnetic radiation (such as from mobile phones) at non-thermal levels may elicit a biological effect in target cells or tissues. Whether or not these biological effects lead to adverse health effects, including cancer, is unclear. To date there is limited scientific evidence of health issues, and no mechanism by which mobile phone radiation could influence cancer development. In this paper, we develop a theoretical mechanism by which radiofrequency radiation from mobile phones could induce cancer, via the chronic activation of the heat shock response. Upregulation of heat shock proteins (Hsps) is a normal defence response to a cellular stress. However, chronic expression of Hsps is known to induce or promote oncogenesis, metastasis and/or resistance to anticancer drugs. We propose that repeated exposure to mobile phone radiation acts as a repetitive stress leading to continuous expression of Hsps in exposed cells and tissues, which in turn affects their normal regulation, and cancer results. This hypothesis provides the possibility of a direct association between mobile phone use and cancer, and thus provides an important focus for future experimentation.
Collapse
Affiliation(s)
- P W French
- Centre for Immunology, St Vincent's Hospital Darlinghurst, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
158
|
Akakura S, Yoshida M, Yoneda Y, Horinouchi S. A role for Hsc70 in regulating nucleocytoplasmic transport of a temperature-sensitive p53 (p53Val-135). J Biol Chem 2001; 276:14649-57. [PMID: 11297531 DOI: 10.1074/jbc.m100200200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse temperature-sensitive p53(Val-135) accumulates in the nucleus and acts as a "wild-type" at 32 degrees C while it is sequestered in the cytoplasm at 37 degrees C. The cytoplasmic p53(Val-135) relocalized into the nucleus upon inhibition of the nuclear export at 37 degrees C, whereas a mutation in a major bipartite nuclear localization signal (NLS) caused constitutive cytoplasmic localization, indicating that it shuttled between the cytoplasm and the nucleus by its own nuclear export signal and NLS rather than tethered to cytoplasmic structures. Although the full-length p53(Val-135) did not bind the import receptor at 37 degrees C, a C-terminally truncated p53(Val-135) lacking residues 326-390 did bind it. Molecular chaperones such as Hsc70 were associated with p53(Val-135) at 37 degrees C but not at 32 degrees C. When the nuclear export was blocked by leptomycin B, only a fraction lacking Hsc70 was specifically accumulated in the nucleus. Immunodepletion of Hsc70 from the reticulocyte lysate caused p53(Val-135) to bind the import receptor. This binding was blocked by supplying the cell extract containing Hsc70 but not by the addition of recombinant Hsc70 alone. We suggest that the association with the Hsc70-containing complex prevents the NLS from the access of the import receptor through the C-terminal region of p53(Val-135) at 37 degrees C, whereas its dissociation at 32 degrees C allows rapid nuclear import.
Collapse
Affiliation(s)
- S Akakura
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
159
|
Abstract
In contrast to p53-mediated cell cycle arrest, the mechanisms of p53-mediated apoptosis in response to cellular stresses such as DNA damage, hypoxia and oncogenic signals still remain poorly understood. Elucidating these pathways is all the more pressing since there is good evidence that the activation of apoptosis rather than cell cycle arrest is crucial in p53 tumor suppression. Moreover, the therapeutic interest in p53 as the molecular target of anticancer intervention rests mainly on its powerful apoptotic capability. This puzzling elusiveness suggests that p53 not only engages a plethora of downstream pathways but itself might possess a biochemical flexibility that goes beyond its role as a mere transcription factor. Recent evidence of a direct pro-apoptotic role of p53 protein at mitochondria suggests a synergistic effect with its transcriptional activation function and brings an unexpected new level of complexity into p53 apoptotic pathways.
Collapse
Affiliation(s)
- U M Moll
- Department of Pathology, State University of New York at Stony Brook, 11794, Stony Brook, NY, USA.
| | | |
Collapse
|
160
|
Takano S, Wadhwa R, Mitsui Y, Kaul SC. p53-independent upregulation of p21WAF1 in NIH 3T3 cells malignantly transformed by mot-2. Cell Res 2001; 11:55-60. [PMID: 11305325 DOI: 10.1038/sj.cr.7290066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mot-2 protein is shown to interact with p53 and inhibit its transcriptional activation function. Mot-2 overexpressing stable clones of NIH 3T3 cells were malignantly transformed, however, they had a high level of expression of a p53 downstream gene, p21WAF1. The present study was undertaken to elucidate possible molecular mechanism(s) of such upregulation. An increased level of p21WAF1 expression was detected in stable transfectants although an exogenous reporter gene driven by p21WAF1 promoter exhibited lower activity in these cells suggesting that some post-transcriptional mechanism contributes to upregulation. Western analyses of transient and stable clones revealed that upregulation of p21WAF1 in stable NIH 3T3/mot-2 cells may be mediated by cyclin D1 and cdk-2.
Collapse
Affiliation(s)
- S Takano
- National Institute of Bioscience and Human-Technology, AIST, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
161
|
Kaul SC, Reddel RR, Mitsui Y, Wadhwa R. An N-terminal region of mot-2 binds to p53 in vitro. Neoplasia 2001; 3:110-4. [PMID: 11420746 PMCID: PMC1505414 DOI: 10.1038/sj.neo.7900139] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Accepted: 12/07/2000] [Indexed: 11/09/2022] Open
Abstract
The mouse mot-2 protein was earlier shown to bind to the tumor suppressor protein, p53. The mot-2 binding site of p53 was mapped to C-terminal amino acid residues 312-352, which includes the cytoplasmic sequestration domain. In the present study, we have found that both mot-1 and mot-2 bind to p53 in vitro. By using His-tagged deletion mutant proteins, the p53-binding domain of mot-2 was mapped to its N-terminal amino acid residues 253-282, which are identical in mot-1 and mot-2 proteins. Some peptides containing the p53-binding region of mot-2 were able to compete with the full-length protein for p53 binding. The data provided rationale for in vitro binding of mot-1 and mot-2 proteins to p53 and supported the conclusion that inability of mot-1 protein to bind p53 in vivo depends on secondary structure or its binding to other cellular factors. Most interestingly, the p53-binding region of mot-2 was common to its MKT-077, a cationic dye that exhibits antitumor activity, binding region. Therefore it is most likely that MKT-077-induced nuclear translocation and restoration of wild-type p53 function in transformed cells takes place by a competitional mechanism.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Bioscience and Human Technology, AIST, 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Roger R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia
| | - Youji Mitsui
- National Institute of Bioscience and Human Technology, AIST, 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Renu Wadhwa
- Chugai Research Institute for Molecular Medicine, 153-2 Nagai, Niihari-mura, Ibaraki 300-41, Japan
| |
Collapse
|
162
|
Abstract
Human cancer progression is driven in part by the mutation of oncogenes and tumour-suppressor genes which, under selective environmental pressures, give rise to evolving populations of biochemically altered cells with enhanced tumorigenic and metastatic potential. Given that human cancers are biologically and pathologically quite distinct, it has been quite surprising that a common event, perturbation of the p53 pathway, occurs in most if not all types of human cancers. The central role of p53 as a tumour-suppressor protein has fuelled interest in defining its mechanism of function and regulation, determining how its inactivation facilitates cancer progression, and exploring the possibility of restoring p53 function for therapeutic benefit. This review will highlight the key biochemical properties of p53 protein that affect its tumour-suppressor function and the experimental strategies that have been developed for the re-activation of the p53 pathway in cancers.
Collapse
|
163
|
Kaul SC, Takano S, Reddel RR, Mitsui Y, Wadhwa R. Transcriptional inactivation of p53 by deletions and single amino acid changes in mouse mot-1 protein. Biochem Biophys Res Commun 2000; 279:602-6. [PMID: 11118332 DOI: 10.1006/bbrc.2000.3986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse mortalin proteins, mot-1 and mot-2, differ by only two amino acid residues in their C-terminus. In previous studies we showed that they differ in their subcellular distributions and interactions with the tumor suppressor protein, p53. By using mot-1 deletion mutants and amino acid substitution constructs, we report here that inability of mot-1 to affect p53 activity in vivo is dependent on the presence of both of the unique mot-1 amino acids and all three of the predicted hsp70, EF hand, and leucine zipper motif regions. The two proteins and their single amino acid mutants showed different mobilities on SDS-polyacrylamide gel presenting an evidence for their different secondary structures. Taken together, the data suggest that each of the two differing amino acids between mot-1 and mot-2 is an important determinant of their secondary structures and in vivo activities.
Collapse
Affiliation(s)
- S C Kaul
- National Institute of Bioscience and Human Technology, AIST, 1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | | | | | | | | |
Collapse
|
164
|
Xie H, Hu Z, Chyna B, Horrigan SK, Westbrook CA. Human mortalin (HSPA9): a candidate for the myeloid leukemia tumor suppressor gene on 5q31. Leukemia 2000; 14:2128-34. [PMID: 11187902 DOI: 10.1038/sj.leu.2401935] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human mortalin (HSPA9) was originally identified by its close homology to murine mortalins, which play important roles in cellular senescence. The two murine genes, mot-1 and mot-2, differ in only two amino acid residues, but have opposite functions in cellular immortalization. HSPA9 was recently localized to chromosome 5, band q31, a region that is frequently deleted in myeloid leukemias and myelodysplasia (MDS), making it a candidate tumor suppressor gene, which is consistent with the biological function of its murine homologue. To evaluate mortalin in this capacity, its expression in normal and leukemic cell lines was investigated, and its genomic structure was determined in order to facilitate mutation detection. RT-PCR and Northern blot analysis revealed a broad distribution in normal tissues and in leukemia cell lines, producing a single 2.8 kb transcript. Genomic characterization showed that the gene spans 18 kb, and consisted of 17 exons with boundaries that were almost identical to its murine counterpart. Using intron-based primers to flank each exon, sequence of the complete protein-coding regions was obtained for three AML cell lines, including two lines with chromosome 5 loss (KG-1 and HL-60) and one without (AML-193) compared to normal DNA. No mutations were identified although one conservative nucleotide sequence variant was observed in exon 16. We have shown that mortalin is highly conserved in genomic structure as well as sequence, and the designed primers will be suitable for future studies to detect mutations in clinical samples.
Collapse
Affiliation(s)
- H Xie
- Department of Medicine, University of Illinois at Chicago, 60607-7170, USA
| | | | | | | | | |
Collapse
|
165
|
Ran Q, Wadhwa R, Kawai R, Kaul SC, Sifers RN, Bick RJ, Smith JR, Pereira-Smith OM. Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem Biophys Res Commun 2000; 275:174-9. [PMID: 10944461 DOI: 10.1006/bbrc.2000.3237] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subcellular fractionation and immunofluorescence microscopy were used to identify the specific sites of intracellular residence of mortalin, also called a mitochondrial homologue of the hsp70 family, in immortal human cell lines previously assigned to four distinct complementation groups (A-D) for indefinite cell division. In addition to the mitochondria it was seen in the endoplasmic reticulum (ER) fractions of all the cell lines analyzed. Interestingly, three of the group A cells lines (EJ, GM639, and HT1080), in addition to the mitochondria and ER, exhibited cytosolically (extra-organelle) localized pool of mortalin. These findings demonstrate that mortalin is not present exclusively in mitochondria. Its residence in different organelles may be the basis of differential distribution observed previously in different human cell lines.
Collapse
Affiliation(s)
- Q Ran
- Roy M. and Phyllis Gough Huffington Center on Aging, Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Kaula SC, Reddelb RR, Sugiharac T, Mitsuia Y, Wadhwac R. Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Lett 2000; 474:159-64. [PMID: 10838077 DOI: 10.1016/s0014-5793(00)01594-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Normal human lung fibroblasts were transfected with expression plasmids encoding mot-2, an hsp70 family member that is associated with the immortal phenotype. After the empty vector-transfected controls had become senescent and positive for senescence-associated beta-galactosidase (SA-beta-gal), the mot-2-expressing cells continued to proliferate for an additional 12-18 population doublings and showed a young cell morphology and much lower SA-beta-gal activity. The tumor suppressor p53 was found to be transcriptionally inactivated in life span-extended cells. We have thus shown for the first time that overexpression of mot-2 in normal human cells is able to permit their temporary escape from senescence.
Collapse
Affiliation(s)
- S C Kaula
- National Institute of Bioscience and Human Technology, AIST, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
167
|
Affiliation(s)
- T Tsuji
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Shikata-cho 2-5-1, 700-8558, Okayama, Japan
| | | | | | | |
Collapse
|
168
|
Abstract
Normal somatic cells are able to divide only a limited number of times before they become senescent. The occurrence of intratumoral cell death and the need for clonal evolution mean that many more cell divisions are required for tumorigenesis than is possible unless cells breach the senescence proliferation barrier and become immortalized. Senescence may therefore be a major tumor suppressor mechanism. During the past decade the study of senescence and immortalization has entered the mainstream of cancer research. A major reason for the current interest in this subject is the observation that most cancers have an activated telomere maintenance mechanism, a marker of immortalization. It has also been found that some of the most common genetic changes known to occur in cancer have a key role in the immortalization process.
Collapse
Affiliation(s)
- R R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia.
| |
Collapse
|
169
|
Wadhwa R, Takano S, Mitsui Y, Kaul SC. NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 protein. Cell Res 1999; 9:261-9. [PMID: 10628835 DOI: 10.1038/sj.cr.7290025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In previous studies we have reported that a high level of expression of mot-2 protein results in malignant transformation of NIH 3T3 cells as analyzed by anchorage independent growth and nude mice assays [Kaul et al., Oncogene, 17, 907-11, 1998]. Mot-2 was found to interact with tumor suppressor protein p53. The transient overexpression of mot-2 was inhibitory to transcriptional activation function of p53 [Wadhwa et al., J. Biol. Chem., 273, 29586-91, 1998]. We demonstrate here that mot-2 transfected stable clone of NIH 3T3 that showed malignant properties indeed show inactivation of p53 function as assayed by exogenous p53 dependent reporter. The expression level of p53 in response to UV-irradiation was lower in NIH 3T3/mot-2 as compared to NIH 3T3 cells and also exhibited delay in reaching peak. Furthermore, upon serum starvation p53 was seen to translocate to the nucleus in NIH 3T3, but not in its mot-2 derivative. The data suggests that mot-2 mediated cytoplasmic sequestration and inactivation of p53 may operate, at least in part, for malignant phenotype of NIH 3T3/mot-2 cells. NIH 3T3/mot-2 cells show inactivation of p53 protein.
Collapse
Affiliation(s)
- R Wadhwa
- Chugai Research Institute for Molecular Medicine, Niihari-Mura, Ibaraki, Japan.
| | | | | | | |
Collapse
|
170
|
Wadhwa R, Kaul SC, Mitsui Y. Cellular mortality and immortalization: a complex interplay of multiple gene functions. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 24:191-204. [PMID: 10547864 DOI: 10.1007/978-3-662-06227-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- R Wadhwa
- Chugai Research Institute for Molecular Medicine, Ibaraki, Japan
| | | | | |
Collapse
|
171
|
Abstract
The p53 tumor suppressor protein plays a crucial role in regulating cell growth following exposure to various stress stimuli. p53 induces either growth arrest, which prevents the replication of damaged DNA, or programmed cell death (apoptosis), which is important for eliminating defective cells. Whether the cell enters growth arrest or undergoes apoptosis, depends on the final integration of incoming signals with antagonistic effects on cell growth. Many factors affect the cellular response to activated p53. These include the cell type, the oncogenic status of the cell with emphasis on the Rb/E2F balance, the extracellular growth and survival stimuli, the intensity of the stress signals, the level of p53 expression and the interaction of p53 with specific proteins. p53 is regulated both at the levels of protein stability and biochemical activities. This complex regulation is mediated by a range of viral and cellular proteins. This review discusses this intriguing complexity which affects the cell response to p53 activation.
Collapse
Affiliation(s)
- R V Sionov
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | | |
Collapse
|