151
|
Steen BR, Zuyderduyn S, Toffaletti DL, Marra M, Jones SJM, Perfect JR, Kronstad J. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. EUKARYOTIC CELL 2004; 2:1336-49. [PMID: 14665467 PMCID: PMC326655 DOI: 10.1128/ec.2.6.1336-1349.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cryptococcus neoformans, an encapsulated basidiomycete fungus of medical importance, is capable of crossing the blood-brain barrier and causing meningitis in both immunocompetent and immunocompromised individuals. To gain insight into the adaptation of the fungus to the host central nervous system (CNS), serial analysis of gene expression (SAGE) was used to characterize the gene expression profile of C. neoformans cells recovered from the CNS of infected rabbits. A SAGE library was constructed, and 49,048 tags were sequenced; 16,207 of these tags were found to represent unique sequences or tag families. Of the 304 most-abundant tags, 164 were assigned to a putative gene for subsequent functional grouping. The results (as determined according to the number of tags that identified genes encoding proteins required for these functions) indicated that the C. neoformans cells were actively engaged in protein synthesis, protein degradation, stress response, small-molecule transport, and signaling. In addition, a high level of energy requirement of the fungal cells was suggested by a large number of tags that matched putative genes for energy production. Taken together, these findings provide the first insight into the transcriptional adaptation of C. neoformans to the host environment and identify the set of fungal genes most highly expressed during cerebrospinal fluid infection.
Collapse
Affiliation(s)
- B R Steen
- Biotechnology Laboratory, Department of Microbiology and Immunology, and Faculty of Agricultural Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
152
|
Toledano MB, Delaunay A, Monceau L, Tacnet F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem Sci 2004; 29:351-7. [PMID: 15236742 DOI: 10.1016/j.tibs.2004.05.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michel B Toledano
- Laboratoire Stress Oxydants et Cancer, Service de Biologie Moléculaire Systémique, DBJC, DSV, CEA-Saclay, Bâtiment 142, 91191 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
153
|
Tsuzi D, Maeta K, Takatsume Y, Izawa S, Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett 2004; 565:148-54. [PMID: 15135069 DOI: 10.1016/j.febslet.2004.03.091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/11/2004] [Accepted: 03/25/2004] [Indexed: 11/29/2022]
Abstract
The GPX2 gene encodes a homologue of phospholipid hydroperoxide glutathione peroxidase in Saccharomyces cerevisiae. The GPX2 promoter contains three elements the sequence of which is completely consistent with the optimal sequence for the Yap1 response element (YRE). Here, we identify the intrinsic YRE that functions in the oxidative stress response of GPX2. In addition, we discovered a cis-acting element (5'-GGCCGGC-3') within the GPX2 promoter proximal to the functional YRE that is necessary for H(2)O(2)-induced expression of GPX2. We present evidence showing that Skn7 is necessary for the oxidative stress response of GPX2 and is able to bind to this sequence. We determine the optimal sequence for Skn7 to regulate GPX2 under conditions of oxidative stress to be 5'-GGC(C/T)GGC-3', and we designate this sequence the oxidative stress-responsive Skn7 response element.
Collapse
Affiliation(s)
- Daisuke Tsuzi
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
154
|
Tsuzi D, Maeta K, Takatsume Y, Izawa S, Inoue Y. Distinct regulatory mechanism of yeastGPX2encoding phospholipid hydroperoxide glutathione peroxidase by oxidative stress and a calcineurin/Crz1-mediated Ca2+signaling pathway. FEBS Lett 2004; 569:301-6. [PMID: 15225652 DOI: 10.1016/j.febslet.2004.05.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 05/14/2004] [Indexed: 11/24/2022]
Abstract
The GPX2 gene encodes a homologue of mammalian phospholipid hydroperoxide glutathione peroxidase in Saccharomyces cerevisiae. Previously, we have reported that the oxidative stress-induced expression of GPX2 is strictly regulated by Yap1 and Skn7 transcription factors. Here, we found that the expression of GPX2 is induced by CaCl(2) in a calcineurin (CN)/Crz1-dependent manner, and the CN-dependent response element was specified in the GPX2 promoter. Neither Yap1 nor Skn7 was required for Ca(2+)-dependent induction of GPX2, therefore, distinct regulation for the oxidative stress response and Ca(2+) signal response for GPX2 exists in yeast cells.
Collapse
Affiliation(s)
- Daisuke Tsuzi
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
155
|
Kilili KG, Atanassova N, Vardanyan A, Clatot N, Al-Sabarna K, Kanellopoulos PN, Makris AM, Kampranis SC. Differential Roles of Tau Class Glutathione S-Transferases in Oxidative Stress. J Biol Chem 2004; 279:24540-51. [PMID: 15037622 DOI: 10.1074/jbc.m309882200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant glutathione S-transferase BI-GST has been identified as a potent inhibitor of Bax lethality in yeast, a phenotype associated with oxidative stress and disruption of mitochondrial functions. Screening of a tomato two-hybrid library for BI-GST interacting proteins identified five homologous Tau class GSTs, which readily form heterodimers between them and BI-GST. All six LeGSTUs were found to be able to protect yeast cells from prooxidant-induced cell death. The efficiency of each LeGSTU was prooxidant-specific, indicating a different role for each LeGSTU in the oxidative stress-response mechanism. The prooxidant protective effect of all six proteins was suppressed in the absence of YAP1, a transcription factor that regulates hydroperoxide homeostasis in Saccharomyces cerevisiae, suggesting a role for the LeGSTUs in the context of the YAP1-dependent stress-responsive machinery. The different LeGSTUs exhibited varied substrate specificity and showed activity against oxidative stress by-products, indicating that their prooxidant protective function is likely related to the minimization of oxidative damage. Taken together, these results indicate that Tau class GSTs participate in a broad network of catalytic and regulatory functions involved in the oxidative stress response.
Collapse
Affiliation(s)
- Kimiti G Kilili
- Mediterranean Agronomic Institute of Chania, Alsyllion Agrokepiou, Chania 73100, Greece
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Monteiro G, Kowaltowski AJ, Barros MH, Netto LES. Glutathione and thioredoxin peroxidases mediate susceptibility of yeast mitochondria to Ca(2+)-induced damage. Arch Biochem Biophys 2004; 425:14-24. [PMID: 15081889 DOI: 10.1016/j.abb.2004.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/27/2004] [Indexed: 11/23/2022]
Abstract
The effect of thioredoxin peroxidases on the protection of Ca(2+)-induced inner mitochondrial membrane permeabilization was studied in the yeast Saccharomyces cerevisiae using null mutants for these genes. Since deletion of a gene can promote several other effects besides the absence of the respective protein, characterizations of the redox state of the mutant strains were performed. Whole cellular extracts from all the mutants presented lower capacity to decompose H(2)O(2) and lower GSH/GSSG ratios, as expected for strains deficient for peroxide-removing enzymes. Interestingly, when glutathione contents in mitochondrial pools were analyzed, all mutants presented lower GSH/GSSG ratios than wild-type cells, with the exception of DeltacTPxI strain (cells in which cytosolic thioredoxin peroxidase I gene was disrupted) that presented higher GSH/GSSG ratio. Low GSH/GSSG ratios in mitochondria increased the susceptibility of yeast to damage induced by Ca(2+) as determined by membrane potential and oxygen consumption experiments. However, H(2)O(2) removal activity appears also to be important for mitochondria protection against permeabilization because exogenously added catalase strongly inhibited loss of mitochondrial potential. Moreover, exogenously added recombinant peroxiredoxins prevented inner mitochondrial membrane permeabilization. GSH/GSSG ratios decreased after Ca(2+) addition, suggesting that reactive oxygen species (ROS) probably mediate this process. Taken together our results indicate that both mitochondrial glutathione pools and peroxide-removing enzymes are key components for the protection of yeast mitochondria against Ca(2+)-induced damage.
Collapse
Affiliation(s)
- Gisele Monteiro
- Departamento de Biologia-Genética, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
157
|
Abstract
Reactive (low pKa) cysteine residues in proteins are critical components in redox signaling. A particularly reactive and versatile reversibly oxidized form of cysteine, the sulfenic acid (Cys-SOH), has important roles as a catalytic center in enzymes and as a sensor of oxidative and nitrosative stress in enzymes and transcriptional regulators. Depending on environment, sometimes the sulfenic acid provides a metastable oxidized form, and other times it is a fleeting intermediate giving rise to more stable disulfide, sulfinic acid, or sulfenyl-amide forms.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
158
|
Basu U, Southron JL, Stephens JL, Taylor GJ. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol Genet Genomics 2004; 271:627-37. [PMID: 15133656 DOI: 10.1007/s00438-004-1015-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
We have taken a systematic genetic approach to study the potential role of glutathione metabolism in aluminum (Al) toxicity and resistance, using disruption mutants available in Saccharomyces cerevisiae. Yeast disruption mutants defective in phospholipid hydroperoxide glutathione peroxidases (PHGPX; phgpx1 Delta, phgpx2 Delta, and phgpx3Delta), were tested for their sensitivity to Al. The triple mutant, phgpx1 Delta/2Delta/3Delta, was more sensitive to Al (55% reduction in growth at 300 microM Al) than any single phgpx mutant, indicating that the PHGPX genes may collectively contribute to Al resistance. The hypersensitivity of phgpx3Delta to Al was overcome by complementation with PHGPX3, and all PHGPX genes showed increased expression in response to Al in the wild-type strain (YPH250), with maximum induction of approximately 2.5-fold for PHGPX3. Both phgpx3Delta and phgpx1Delta/2Delta/3Delta mutants were sensitive to oxidative stress (exposure to H(2)O(2) or diamide). Lipid peroxidation was also increased in the phgpx1Delta/2Delta/3Delta mutant compared to the parental strain. Disruption mutants defective in genes for glutathione S-transferases (GSTs) (gtt1Delta and gtt2Delta), glutathione biosynthesis (gsh1Delta and gsh2Delta), glutathione reductase (glr1Delta) and a glutathione transporter (opt1Delta) did not show hypersensitivity to Al relative to the parental strain BY4741. Interestingly, a strain deleted for URE2, a gene which encodes a prion precursor with homology to GSTs, also showed hypersensitivity to Al. The hypersensitivity of the ure2Delta mutant could be overcome by complementation with URE2. Expression of URE2 in the parental strain increased approximately 2-fold in response to exposure to 100 microM Al. Intracellular oxidation levels in the ure2Delta mutant showed a 2-fold (non-stressed) and 3-fold (when exposed-to 2 mM H(2)O(2)) increase compared to BY4741; however, the ure2Delta mutant showed no change in lipid peroxidation compared to the control. The phgpx1Delta/2Delta/3Delta and ure2Delta mutants both showed increased accumulation of Al. These findings suggest the involvement of PHGPX genes and a novel role of URE2 in Al toxicity/resistance in S. cerevisiae.
Collapse
Affiliation(s)
- U Basu
- Department of Biological Sciences, University of Alberta, T6G 2E9, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
159
|
Wong CM, Siu KL, Jin DY. Peroxiredoxin-null Yeast Cells Are Hypersensitive to Oxidative Stress and Are Genomically Unstable. J Biol Chem 2004; 279:23207-13. [PMID: 15051715 DOI: 10.1074/jbc.m402095200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins are a family of abundant peroxidases found in all organisms. Although these antioxidant enzymes are thought to be critically involved in cellular defense and redox signaling, their exact physiological roles are largely unknown. In this study, we took a genetic approach to address the functions of peroxiredoxins in budding yeast. We generated and characterized a yeast mutant lacking all five peroxiredoxins. The quintuple peroxiredoxin-null mutant was still viable, though the growth rate was lower under normal aerobic conditions. Although peroxiredoxins are not essential for cell viability, peroxiredoxin-null yeast cells were more susceptible to oxidative and nitrosative stress. In the complete absence of peroxiredoxins, the expression of other antioxidant proteins including glutathione peroxidase and glutathione reductase was induced. In addition, the quintuple mutant was hypersensitive to glutathione depletion. Thus, the glutathione system might cooperate with other antioxidant enzymes to compensate for peroxiredoxin deficiency. Interestingly, the peroxiredoxinnull yeast cells displayed an increased rate of spontaneous mutations that conferred resistance to canavanine. This mutator phenotype was rescued by yeast peroxiredoxin Tsa1p, but not by its active-site mutant defective for peroxidase activity. Our findings suggest that the antioxidant function of peroxiredoxins is important for maintaining genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Department of Biochemistry, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
160
|
Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY, Yang KS, Lee SR. Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett 2004; 560:7-13. [PMID: 15017976 DOI: 10.1016/s0014-5793(04)00112-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein tyrosine phosphatase (PTP) is a family of enzymes important for regulating cellular phosphorylation state. The oxidation and consequent inactivation of several PTPs by H(2)O(2) are well demonstrated. It is also shown that recovery of enzymatic activity depends on the availability of cellular reductants. Among these redox-regulated PTPs, PTEN, Cdc25 and low molecular weight PTP are known to form a disulfide bond between two cysteines, one in the active site and the other nearby, during oxidation by H(2)O(2). The disulfide bond likely confers efficiency in the redox regulation of the PTPs and protects cysteine-sulfenic acid of PTPs from further oxidation. In this review, through a comparative analysis of the oxidation process of Yap1 and PTPs, we propose the mechanism of disulfide bond formation in the PTPs.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- Center for Cell Signaling Research, Department of Biological Sciences, Ewha Women's University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Manfredini V, Roehrs R, Peralba MCR, Henriques JAP, Saffi J, Ramos ALLP, Benfato MS. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1deltasod2delta double mutants against oxidative damage. Braz J Med Biol Res 2004; 37:159-65. [PMID: 14762569 DOI: 10.1590/s0100-879x2004000200001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae mutants deficient in superoxide dismutase genes (sod1delta, sod2delta and the double mutant) were subjected to H2O2 stress in the stationary phase. The highest sensitivity was observed in the sod2delta mutant, while the sod1deltasod2delta double mutant was not sensitive. Sod mutants had lower catalase activity (44%) than wild-type cells, independent of H2O2 stress. Untreated cells of sod1deltasod2delta double mutants showed increased glutathione peroxidase activity (126%), while sod1delta had lower activity (77%) than the wild type. Glutathione levels in sod1delta were increased (200-260%) after exposure to various H2O2 concentrations. In addition, the highest malondialdehyde levels could be observed without H2O2 treatment in sod1delta (167%) and sod2delta (225%) mutants. In contrast, the level of malondialdehyde in the sod1deltasod2delta double mutant was indistinguishable from that of the wild type. These results suggest that resistance to H2O2 by sod1deltasod2delta cells depends on the induction of glutathione peroxidase and is independent of catalase, and that glutathione is a primary antioxidant in the defense against H2O2 in stationary phase sod1delta mutants.
Collapse
Affiliation(s)
- V Manfredini
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
163
|
Wheeler GL, Grant CM. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. PHYSIOLOGIA PLANTARUM 2004; 120:12-20. [PMID: 15032872 DOI: 10.1111/j.0031-9317.2004.0193.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An increasingly important area of research is based on sulphydryl chemistry, since the oxidation of -SH groups is one of the earliest observable events during oxidant-mediated damage and -SH groups play a critical role in the function of many macromolecular structures including enzymes, transcription factors and membrane proteins. Glutaredoxins and thioredoxins are small heat-stable oxidoreductases, conserved throughout evolution, which play key roles in maintaining the cellular redox balance. Much progress has been made in analysing these systems in the yeast Saccharomyces cerevisiae which is a very useful model eukaryote due to its ease of genetic manipulation, its compact genome, the availability of the entire genome sequence, and the current rate of progress in gene function research. Yeast, like all eukaryotes, contains a number of glutaredoxin and thioredoxin isoenzymes located in both the cytoplasm and the mitochondria. This review describes recent findings made in yeast that are leading to a better understanding of the regulation and role of redox homeostasis in eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Glen L. Wheeler
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK
| | | |
Collapse
|
164
|
Abstract
Thiol-based regulatory switches play central roles in cellular responses to oxidative stress, nitrosative stress, and changes in the overall thiol-disulfide redox balance. Protein sulfhydryls offer a great deal of flexibility in the different types of modification they can undergo and the range of chemical signals they can perceive. For example, recent work on OhrR and OxyR has clearly established that disulfide bonds are not the only cysteine oxidation products that are likely to be relevant to redox sensing in vivo. Furthermore, different stresses can result in distinct modifications to the same protein; in OxyR it seems that distinct modifications can occur at the same cysteine, and in Yap1 a partner protein ensures that the disulfide bond induced by peroxide stress is different from the disulfide bond induced by other stresses. These kinds of discoveries have also led to the intriguing suggestion that different modifications to the same protein can create multiple activation states and thus deliver discrete regulatory outcomes. In this review, we highlight these issues, focusing on seven well-characterized microbial proteins controlled by thiol-based switches, each of which exhibits unique regulatory features.
Collapse
Affiliation(s)
- Mark S B Paget
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | | |
Collapse
|
165
|
Vergauwen B, Pauwels F, Van Beeumen JJ. Glutathione and catalase provide overlapping defenses for protection against respiration-generated hydrogen peroxide in Haemophilus influenzae. J Bacteriol 2003; 185:5555-62. [PMID: 12949108 PMCID: PMC193741 DOI: 10.1128/jb.185.18.5555-5562.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutathione is an abundant and ubiquitous low-molecular-weight thiol that may play a role in many cellular processes, including protection against the deleterious effects of reactive oxygen species. We address here the role of glutathione in protection against hydrogen peroxide (H2O2) in Haemophilus influenzae and show that glutathione and catalase provide overlapping defense systems. H. influenzae is naturally glutathione deficient and imports glutathione from the growth medium. Mutant H. influenzae lacking catalase and cultured in glutathione-deficient minimal medium is completely devoid of H2O2 scavenging activity and, accordingly, substantial amounts of H2O2 accumulate in the growth medium. H. influenzae generates H2O2 at rates similar to those reported for Escherichia coli, but the toxicity of this harmful metabolite is averted by glutathione-based H2O2 removal, which appears to be the primary system for protection against H2O2 endogenously generated during aerobic respiration. When H2O2 concentrations exceed low micromolar levels, the hktE gene-encoded catalase becomes the predominant scavenger. The requirement for glutathione in protection against oxidative stress is analogous to that in higher and lower eukaryotes but is unlike the situation in other bacteria in which glutathione is dispensable for aerobic growth during both normal and oxidative stress conditions.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, 9000 Ghent, Belgium
| | | | | |
Collapse
|
166
|
Zhang L, Onda K, Imai R, Fukuda R, Horiuchi H, Ohta A. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2003; 307:308-14. [PMID: 12859956 DOI: 10.1016/s0006-291x(03)01168-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A rapid downshift in the growth temperature of Saccharomyces cerevisiae from 30 to 10 degrees C resulted in an increase in transcript levels of the antioxidation genes SOD1 [encoding Cu-Zn superoxide dismutase (SOD)], CTT1 (encoding catalase T), and GSH1 (encoding gamma-glutamylcysteine synthetase). The cellular activities of SOD and catalase were also increased, indicating that the temperature downshift caused an antioxidant response. In support of this, a simultaneous increase in the intracellular level of H(2)O(2) was observed. The level of YAP1 mRNA, encoding a transcription factor critical for the oxidative stress response in this yeast, was also increased by the temperature downshift. However, deletion of YAP1 did not reduce the elevated mRNA levels of the antioxidant genes. This suggests that the temperature downshift-induced increase in the mRNA level of anti-oxidant genes is YAP1-independent.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Cellular Genetics, Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
167
|
Moye-Rowley WS. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. EUKARYOTIC CELL 2003; 2:381-9. [PMID: 12796283 PMCID: PMC161443 DOI: 10.1128/ec.2.3.381-389.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- W Scott Moye-Rowley
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
168
|
Springael JY, Penninckx MJ. Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Biochem J 2003; 371:589-95. [PMID: 12529169 PMCID: PMC1223296 DOI: 10.1042/bj20021893] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Revised: 01/10/2003] [Accepted: 01/15/2003] [Indexed: 01/22/2023]
Abstract
In Saccharomyces cerevisiae, the CIS2 gene encodes gamma-glutamyl transpeptidase (gamma-GT; EC 2.3.2.2), the main GSH-degrading enzyme. The promoter region of CIS2 contains one stress-response element (CCCCT) and eight GAT(T/A)A core sequences, probably involved in nitrogen-regulated transcription. We show in the present study that expression of CIS2 is indeed regulated according to the nature of the nitrogen source. Expression is highest in cells growing on a poor nitrogen source such as urea. Under these conditions, the GATA zinc-finger transcription factors Nil1 and Gln3 are both required for CIS2 expression, Nil1 appearing as the more important factor. We further show that Gzf3, another GATA zinc-finger protein, acts as a negative regulator in nitrogen-source control of CIS2 expression. During growth on a preferred nitrogen source like NH(4)(+), CIS2 expression is repressed through a mechanism involving (at least) the Gln3-binding protein Ure2/GdhCR. Induction of CIS2 expression during nitrogen starvation is dependent on Gln3 and Nil1. Furthermore, rapamycin causes similar CIS2 activation, indicating that the target of rapamycin signalling pathway controls CIS2 expression via Gln3 and Nil1 in nitrogen-starved cells. Finally, our results show that CIS2 expression is induced mainly by nitrogen starvation but apparently not by other types of stress.
Collapse
Affiliation(s)
- Jean-Yves Springael
- Laboratoire de Physiologie et d'Ecologie Microbienne, Université Libre de Bruxelles, c/o Institut Pasteur de Bruxelles, Belgium
| | | |
Collapse
|
169
|
Takeda T, Miyao K, Tamoi M, Kanaboshi H, Miyasaka H, Shigeoka S. Molecular characterization of glutathione peroxidase-like protein in halotolerant Chlamydomonas sp. W80. PHYSIOLOGIA PLANTARUM 2003; 117:467-475. [PMID: 12675737 DOI: 10.1034/j.1399-3054.2003.00075.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cDNA clone encoding a glutathione peroxidase (GPX)-like protein was isolated from the cDNA library from halotolerant Chlamydomonas W80 (C. W80) by a simple screening method based on the bacterial expression system. The cDNA clone contained an open reading frame encoding a mature protein of 163 amino acids with a calculated molecular mass of 18 267 Da. No potential signal peptide was found. The deduced amino acid sequence of the cDNA showed 40-63% and 37-46% homology to those of GPX-like proteins from higher plants and mammalian GPXs, respectively. The C. W80 GPX-like protein contained a normal cysteine residue instead of a selenocysteine at the catalytic site. However, it contained amino acid residues (glutamine and tryptophan) that are involved in three protein loops and are important for the catalytic activity in the mammalian GPX. Interestingly, the native and recombinant GPX-like proteins showed activities towards unsaturated fatty acid hydroperoxides, but not towards either H2O2 or phospholipid hydroperoxide. Transformed E. coli cells expressing the C. W80 GPX-like protein showed enhanced tolerance to 5% NaCl or 0.2 mM paraquat treatments. Accession number: The nucleotide sequence data reported have been submitted to the DDBJ, EMBL, and GenBank nucleotide sequence databases with the following accession number AB009083.
Collapse
Affiliation(s)
- Toru Takeda
- Department of Food and Nutrition, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan Kansai Electric Power Company, Technical Research Centre, Nyakuoji 3-11-20, Amagasaki 661-0974, Japan
| | | | | | | | | | | |
Collapse
|
170
|
Missirlis F, Rahlfs S, Dimopoulos N, Bauer H, Becker K, Hilliker A, Phillips JP, Jäckle H. A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. Biol Chem 2003; 384:463-72. [PMID: 12715897 DOI: 10.1515/bc.2003.052] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cellular defense systems against reactive oxygen species (ROS) include thioredoxin reductase (TrxR) and glutathione reductase (GR). They generate sulfhydryl-reducing systems which are coupled to antioxidant enzymes, the thioredoxin and glutathione peroxidases (TPx and GPx). The fruit fly Drosophila lacks a functional GR, suggesting that the thioredoxin system is the major source for recycling glutathione. Whole genome in silico analysis identified two non-selenium containing putative GPx genes. We examined the biochemical characteristics of one of these gene products and found that it lacks GPx activity and functions as a TPx. Transgene-dependent overexpression of the newly identified Glutathione peroxidase homolog with thioredoxin peroxidase activity (Gtpx-1) gene increases resistance to experimentally induced oxidative stress, but does not compensate for the loss of catalase, an enzyme which, like GTPx-1, functions to eliminate hydrogen peroxide. The results suggest that GTPx-1 is part of the Drosophila Trx antioxidant defense system but acts in a genetically distinct pathway or in a different cellular compartment than catalase.
Collapse
Affiliation(s)
- Fanis Missirlis
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Vergauwen B, Pauwels F, Vaneechoutte M, Van Beeumen JJ. Exogenous glutathione completes the defense against oxidative stress in Haemophilus influenzae. J Bacteriol 2003; 185:1572-81. [PMID: 12591874 PMCID: PMC148052 DOI: 10.1128/jb.185.5.1572-1581.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since they are equipped with several strategies by which they evade the antimicrobial defense of host macrophages, it is surprising that members of the genus Haemophilus appear to be deficient in common antioxidant systems that are well established to protect prokaryotes against oxidative stress. Among others, no genetic evidence for glutathione (gamma-Glu-Cys-Gly) (GSH) biosynthesis or for alkyl hydroperoxide reduction (e.g., the Ahp system characteristic or enteric bacteria) is apparent from the Haemophilus influenzae Rd genome sequence, suggesting that the organism relies on alternative systems to maintain redox homeostasis or to reduce small alkyl hydroperoxides. In this report we address this apparent paradox for the nontypeable H. influenzae type strain NCTC 8143. Instead of biosynthesis, we could show that this strain acquires GSH by importing the thiol tripeptide from the growth medium. Although such GSH accumulation had no effect on growth rates, the presence of cellular GSH protected against methylglyoxal, tert-butyl hydroperoxide (t-BuOOH), and S-nitrosoglutathione toxicity and regulated the activity of certain antioxidant enzymes. H. influenzae NCTC 8143 extracts were shown to contain GSH-dependent peroxidase activity with t-BuOOH as the peroxide substrate. The GSH-mediated protection against t-BuOOH stress is most probably catalyzed by the product of open reading frame HI0572 (Prx/Grx), which we isolated from a genomic DNA fragment that confers wild-type resistance to t-BuOOH toxicity in the Ahp-negative Escherichia coli strain TA4315 and that introduces GSH-dependent alkyl hydroperoxide reductase activity into naturally GSH peroxidase-negative E. coli. Finally, we demonstrated that cysteine is an essential amino acid for growth and that cystine, GSH, glutathione amide, and cysteinylglycine can be catabolized in order to complement cysteine deficiency.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | | | | | | |
Collapse
|
172
|
Wiatrowski HA, Carlson M. Yap1 accumulates in the nucleus in response to carbon stress in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:19-26. [PMID: 12582119 PMCID: PMC141162 DOI: 10.1128/ec.2.1.19-26.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yap1 is a transcription factor of the AP-1 family that is required for the adaptive response to oxidative stress in Saccharomyces cerevisiae. We recovered Yap1 in a two-hybrid screen for proteins that interact with the Sip2 subunit of the Snf1 protein kinase, which is required for the adaptation of cells to glucose limitation. Yap1 becomes enriched in the nucleus when cells are subjected to oxidative stress. We show that the localization of Yap1 is similarly sensitive to carbon stress. When glucose-grown cells were shifted to medium containing glycerol or no added carbon source, green fluorescent protein (GFP)-Yap1 accumulated in the nucleus. After adaptation to growth in glycerol, GFP-Yap1 was again primarily cytoplasmic. Nuclear accumulation was independent of respiration and of the Snf1, PKA, TOR, and Yak1 pathways, and the mechanism is distinct from that involved in the response to hydrogen peroxide. Addition of glutathione to the medium inhibited nuclear accumulation of GFP-Yap1 in response to carbon stress but did not affect the relocalization of Gal83 or Mig1. Other stresses such as increased temperature, acidic pH, and ionic stress did not cause nuclear enrichment of GFP-Yap1. These findings suggest a role for Yap1 in the response to carbon stress.
Collapse
Affiliation(s)
- Heather A Wiatrowski
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
173
|
Cyrne L, Martins L, Fernandes L, Marinho HS. Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med 2003; 34:385-93. [PMID: 12543254 DOI: 10.1016/s0891-5849(02)01300-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.
Collapse
Affiliation(s)
- Luisa Cyrne
- Centro de Estudos de Bioquímica e Fisiologia, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
174
|
|
175
|
Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 2002; 111:471-81. [PMID: 12437921 DOI: 10.1016/s0092-8674(02)01048-6] [Citation(s) in RCA: 655] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Yap1 transcription factor regulates hydroperoxide homeostasis in S. cerevisiae. Yap1 is activated by oxidation when hydroperoxide levels increase. We show that Yap1 is not directly oxidized by hydroperoxide. We identified the glutathione peroxidase (GPx)-like enzyme Gpx3 as a second component of the pathway, serving the role of sensor and transducer of the hydroperoxide signal to Yap1. When oxidized by H2O2, Gpx3 Cys36 bridges Yap1 Cys598 by a disulfide bond. This intermolecular disulfide bond is then resolved into a Yap1 intramolecular disulfide bond, the activated form of the regulator. Thioredoxin turns off the pathway by reducing both sensor and regulator. These data reveal a redox-signaling function for a GPx-like enzyme and elucidate a eukaryotic hydroperoxide-sensing mechanism. Gpx3 is thus a hydroperoxide receptor and redox-transducer.
Collapse
Affiliation(s)
- Agnès Delaunay
- Laboratoire Stress Oxydants et Cancers, SBGM, DBJC, CEA-Saclay, 91191 Gif-sur-Yvette, Cedex, France
| | | | | | | | | |
Collapse
|
176
|
|
177
|
Collinson EJ, Wheeler GL, Garrido EO, Avery AM, Avery SV, Grant CM. The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem 2002; 277:16712-7. [PMID: 11875065 DOI: 10.1074/jbc.m111686200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae contains two glutaredoxins, encoded by GRX1 and GRX2, which are active as glutathione-dependent oxidoreductases. Our studies show that changes in the levels of glutaredoxins affect the resistance of yeast cells to oxidative stress induced by hydroperoxides. Elevating the gene dosage of GRX1 or GRX2 increases resistance to hydroperoxides including hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide. The glutaredoxin-mediated resistance to hydroperoxides is dependent on the presence of an intact glutathione system, but does not require the activity of phospholipid hydroperoxide glutathione peroxidases (GPX1-3). Rather, the mechanism appears to be mediated via glutathione conjugation and removal from the cell because it is absent in strains lacking glutathione-S-transferases (GTT1, GTT2) or the GS-X pump (YCF1). We show that the yeast glutaredoxins can directly reduce hydroperoxides in a catalytic manner, using reducing power provided by NADPH, GSH, and glutathione reductase. With cumene hydroperoxide, high pressure liquid chromatography analysis confirmed the formation of the corresponding cumyl alcohol. We propose a model in which the glutathione peroxidase activity of glutaredoxins converts hydroperoxides to their corresponding alcohols; these can then be conjugated to GSH by glutathione-S-transferases and transported into the vacuole by Ycf1.
Collapse
Affiliation(s)
- Emma J Collinson
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
178
|
Jung BG, Lee KO, Lee SS, Chi YH, Jang HH, Kang SS, Lee K, Lim D, Yoon SC, Yun DJ, Inoue Y, Cho MJ, Lee SY. A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. J Biol Chem 2002; 277:12572-8. [PMID: 11823460 DOI: 10.1074/jbc.m110791200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA, PHCC-TPx, specifying a protein highly homologous to known phospholipid hydroperoxide glutathione peroxidases was isolated from a Chinese cabbage cDNA library. PHCC-TPx encodes a preprotein of 232 amino acids containing a putative N-terminal chloroplast targeting sequence and three conserved Cys residues (Cys(107), Cys(136), and Cys(155)). The mature form of enzyme without the signal peptide was expressed in Escherichia coli, and the recombinant protein was found to utilize thioredoxin (Trx) but not GSH as an electron donor. In the presence of a Trx system, the protein efficiently reduces H(2)O(2) and organic hydroperoxides. Complementation analysis shows that overexpression of the PHCC-TPx restores resistance to oxidative stress in yeast mutants lacking GSH but fails to complement mutant lacking Trx, suggesting that the reducing agent of PHCC-TPx in vivo is not GSH but is Trx. Mutational analysis of the three Cys residues individually replaced with Ser shows that Cys(107) is the primary attacking site by peroxide, and oxidized Cys(107) reacts with Cys(155)-SH to make an intramolecular disulfide bond, which is reduced eventually by Trx. Tryptic peptide analysis by matrix-assisted laser desorption and ionization time of flight mass spectrometry shows that Cys(155) can form a disulfide bond with either Cys(107) or Cys(136).
Collapse
Affiliation(s)
- Bae Gyo Jung
- Division of Applied Life Sciences (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Hong SK, Cha MK, Choi YS, Kim WC, Kim IH. Msn2p/Msn4p act as a key transcriptional activator of yeast cytoplasmic thiol peroxidase II. J Biol Chem 2002; 277:12109-17. [PMID: 11821410 DOI: 10.1074/jbc.m111341200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We observed that the transcription of Saccharomyces cerevisiae cytoplasmic thiol peroxidase type II (cTPx II) (YDR453C) is regulated in response to various stresses (e.g. oxidative stress, carbon starvation, and heat-shock). It has been suggested that both transcription-activating proteins, Yap1p and Skn7p, regulate the transcription of cTPx II upon exposure to oxidative stress. However, a dramatic loss of transcriptional response to various stresses in yeast mutant strains lacking both Msn2p and Msn4p suggests that the transcription factors act as a principal transcriptional activator. In addition to two Yap1p response elements (YREs), TTACTAA and TTAGTAA, the presence of two stress response elements (STREs) (CCCCT) in the upstream sequence of cTPx II also suggests that Msn2p/Msn4p could control stress-induced expression of cTPx II. Analysis of the transcriptional activity of site-directed mutagenesis of the putative STREs (STRE1 and STRE2) and YREs (TRE1 and YRE2) in terms of the activity of a lacZ reporter gene under control of the cTPx II promoter indicates that STRE2 acts as a principal binding element essential for transactivation of the cTPx II promoter. The transcriptional activity of the cTPx II promoter was exponentially increased after postdiauxic growth. The transcriptional activity of the cTPx II promoter is greatly increased by rapamycin. Deletion of Tor1, Tor2, Ras1, and Ras2 resulted in a considerable induction when compared with their parent strains, suggesting that the transcription of cTPx II is under negative control of the Ras/cAMP and target of rapamycin signaling pathways. Taken together, these results suggest that cTPx II is a target of Msn2p/Msn4p transcription factors under negative control of the Ras-protein kinase A and target of rapamycin signaling pathways. Furthermore, the accumulation of cTPx II upon exposure to oxidative stress and during the postdiauxic shift suggests an important antioxidant role in stationary phase yeast cells.
Collapse
Affiliation(s)
- Seung-Keun Hong
- Department of Biochemistry, Paichai University, Taejon 302-735, Republic of Korea
| | | | | | | | | |
Collapse
|
180
|
Abstract
The relative antioxidant functions of thiol-dependent mechanisms and of direct catalytic inactivation of H2O2 were examined using a collection of yeast mutants containing disruptions in single or multiple genes encoding two major enzymatic sources of NADPH [glucose-6-phosphate dehydrogenase (ZWF1) and cytosolic NADP+-specific isocitrate dehydrogenase (IDP2)] and in genes encoding two major cellular peroxidases [mitochondrial cytochrome c peroxidase (CCP1) and cytosolic catalase (CTT1)]. Both types of mechanisms were found to be important for growth in the presence of exogenous H2O2. In the absence of exogenous oxidants, however, loss of ZWF1 and IDP2, but not loss of CTT1 and CCP1, was found to be detrimental not only to growth but also to viability of cells shifted to rich medium containing oleate or acetate. The loss in viability correlates with increased levels of intracellular oxidants apparently produced during normal metabolism of these carbon sources. Acute effects in DeltaZWF1DeltaIDP2 mutants following shifts to these nonpermissive media include an increase in the number of cells demonstrating a transient decrease in growth rate and in cells containing apparent nuclear DNA strand breaks. Cumulative effects are reflected in phenotypes, including sensitivity to acetate medium and a reduction in mating efficiency, that become more pronounced with time following disruption of the ZWF1 and IDP2 genes. These results suggest that cellular mechanisms dependent on NADPH are crucial metabolic antioxidants.
Collapse
Affiliation(s)
- K I Minard
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
181
|
Avery AM, Avery SV. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 2001; 276:33730-5. [PMID: 11445588 DOI: 10.1074/jbc.m105672200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GPX1, GPX2, and GPX3 genes of Saccharomyces cerevisiae have been reported previously to encode glutathione peroxidases (GPxs). We re-examined the sequence alignments of these proteins with GPxs from higher eukaryotes. Sequence identities, particularly with phospholipid hydroperoxide glutathione peroxidases (PHGPxs), were enhanced markedly by introduction to the yeast sequences of gaps that are characteristic of PHGPxs. PHGPx-like activity was detectable in extracts from wild-type S. cerevisiae and was diminished in extracts from gpx1 Delta, gpx2 Delta, and gpx3 Delta deletion mutants; PHGPx activity was almost absent in a gpx1 Delta/gpx2 Delta/gpx3 Delta triple mutant. Studies with cloned GPX1, GPX2, and GPX3 expressed heterologously in Escherichia coli confirmed that these genes encode proteins with PHGPx activity. An S. cerevisiae gpx1 Delta/gpx2 Delta/gpx3 Delta mutant was defective for growth in medium supplemented with the oxidation-sensitive polyunsaturated fatty acid linolenate (18:3). This sensitivity to 18:3 was more marked than sensitivity to H(2)O(2). Unlike H(2)O(2) toxicity, delayed toxicity of 18:3 toward gpx1 Delta/gpx2 Delta/gpx3 Delta cells was correlated with the gradual incorporation of 18:3 into S. cerevisiae membrane lipids and was suppressible with alpha-tocopherol, an inhibitor of lipid peroxidation. The results show that the GPX genes of S. cerevisiae, previously reported to encode GPxs, encode PHGPxs (PHGPx1, PHGPx2, and PHGPx3) and that these enzymes protect yeast against phospholipid hydroperoxides as well as nonphospholipid peroxides during oxidative stress. This is the first report of an organism that expresses PHGPx from more than one gene and produces PHGPx in the absence of a GPx.
Collapse
Affiliation(s)
- A M Avery
- School of Life and Environmental Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|
182
|
Gaber A, Tamoi M, Takeda T, Nakano Y, Shigeoka S. NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett 2001; 499:32-6. [PMID: 11418106 DOI: 10.1016/s0014-5793(01)02517-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here we isolated and characterized two genes (slr1171, slr1992) designated gpx-1 and gpx-2, respectively, encoding glutathione peroxidase (GPX)-like proteins (Gpx-1, Gpx-2) from Synechocystis PCC 6803. The deduced amino acid sequences for gpx-1 and gpx-2 showed high similarity to those of GPX-like proteins from higher plants and mammalian GPXs, respectively. Surprisingly, both recombinant proteins in Escherichia coli were able to utilize NADPH, but not reduced glutathione, as an electron donor and unsaturated fatty acid hydroperoxides or alkyl hydroperoxides as an acceptor. It seems accurate to refer to Gpx-1 and Gpx-2 as NADPH-dependent GPX-like proteins that serve as a new defense system for the reduction of unsaturated fatty acid hydroperoxides.
Collapse
Affiliation(s)
- A Gaber
- Department of Applied Biological Chemistry, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | |
Collapse
|
183
|
Vergauwen B, Pauwels F, Jacquemotte F, Meyer TE, Cusanovich MA, Bartsch RG, Van Beeumen JJ. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J Biol Chem 2001; 276:20890-7. [PMID: 11399772 DOI: 10.1074/jbc.m102026200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the Chromatiaceae, the glutathione derivative gamma-l-glutamyl-l-cysteinylglycine amide, or glutathione amide, was reported to be present in facultative aerobic as well as in strictly anaerobic species. The gene (garB) encoding the central enzyme in glutathione amide cycling, glutathione amide reductase (GAR), has been isolated from Chromatium gracile, and its genomic organization has been examined. The garB gene is immediately preceded by an open reading frame encoding a novel 27.5-kDa chimeric enzyme composed of one N-terminal peroxiredoxin-like domain followed by a glutaredoxin-like C terminus. The 27.5-kDa enzyme was established in vitro to be a glutathione amide-dependent peroxidase, being the first example of a prokaryotic low molecular mass thiol-dependent peroxidase. Amino acid sequence alignment of GAR with the functionally homologous glutathione and trypanothione reductases emphasizes the conservation of the catalytically important redox-active disulfide and of regions involved in binding the FAD prosthetic group and the substrates glutathione amide disulfide and NADH. By establishing Michaelis constants of 97 and 13.2 microm for glutathione amide disulfide and NADH, respectively (in contrast to K(m) values of 6.9 mm for glutathione disulfide and 1.98 mm for NADPH), the exclusive substrate specificities of GAR have been documented. Specificity for the amidated disulfide cofactor partly can be explained by the substitution of Arg-37, shown by x-ray crystallographic data of the human glutathione reductase to hydrogen-bond one of the glutathione glycyl carboxylates, by the negatively charged Glu-21. On the other hand, the preference for the unusual electron donor, to some extent, has to rely on the substitution of the basic residues Arg-218, His-219, and Arg-224, which have been shown to interact in the human enzyme with the NADPH 2'-phosphate group, by Leu-197, Glu-198, and Phe-203. We suggest GAR to be the newest member of the class I flavoprotein disulfide reductase family of oxidoreductases.
Collapse
Affiliation(s)
- B Vergauwen
- Laboratory of Protein Biochemistry and Protein Engineering, Gent University, 9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Cells have evolved complex and efficient strategies for dealing with variable and often-harsh environments. A key aspect of these stress responses is the transcriptional activation of genes encoding defense and repair proteins. In yeast members of the AP-1 family of proteins are required for the transcriptional response to oxidative stress. This sub-family of AP-1 (called yAP-1) proteins are sensors of the redox-state of the cell and are activated directly by oxidative stress conditions. yAP-1 proteins are bZIP-containing factors that share homology to the mammalian AP-1 factor complex and bind to very similar DNA sequence sites. The generation of reactive oxygen species and the resulting potential for oxidative stress is common to all aerobically growing organisms. Furthermore, many of the features of this response appear to be evolutionarily conserved and consequently the study of model organisms, such as yeast, will have widespread utility. The important structural features of these factors, signaling pathways controlling their activity and the nature of the target genes they control will be discussed.
Collapse
Affiliation(s)
- W M Toone
- CRC Cell Regulation Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | | | | |
Collapse
|
185
|
Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 2001; 276:8469-74. [PMID: 11078740 DOI: 10.1074/jbc.m008708200] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cadmium is very toxic at low concentrations, but the basis for its toxicity is not clearly understood. We analyzed the proteomic response of yeast cells to acute cadmium stress and identified 54 induced and 43 repressed proteins. A striking result is the strong induction of 9 enzymes of the sulfur amino acid biosynthetic pathway. Accordingly, we observed that glutathione synthesis is strongly increased in response to cadmium treatment. Several proteins with antioxidant properties were also induced. The induction of nine proteins is dependent upon the transactivator Yap1p, consistent with the cadmium hypersensitive phenotype of the YAP1-disrupted strain. Most of these proteins are also overexpressed in a strain overexpressing Yap1p, a result that correlates with the cadmium hyper-resistant phenotype of this strain. Two of these Yap1p-dependent proteins, thioredoxin and thioredoxin reductase, play an important role in cadmium tolerance because strains lacking the corresponding genes are hypersensitive to this metal. Altogether, our data indicate that the two cellular thiol redox systems, glutathione and thioredoxin, are essential for cellular defense against cadmium.
Collapse
Affiliation(s)
- K Vido
- Service de Biochimie et Génétique Moléculaire, Bât 142, CEA-Saclay, F-91191, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
186
|
Spector D, Labarre J, Toledano MB. A genetic investigation of the essential role of glutathione: mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 2001; 276:7011-6. [PMID: 11084050 DOI: 10.1074/jbc.m009814200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an attempt to elucidate the essential function of glutathione in Saccharomyces cerevisiae, we searched for suppressors of the GSH auxotrophy of Deltagsh1, a strain lacking the rate-limiting enzyme of glutathione biosynthesis. We found that specific mutations of PRO2, the second enzyme in proline biosynthesis, permitted the growth of Deltagsh1 in the absence of exogenous GSH. The suppression mechanism by alleles of PRO2 involved the biosynthesis of a trace amount of glutathione. Deletion of PRO1, the first enzyme of the proline biosynthesis pathway, or PRO2 eliminated the suppression, suggesting that gamma-glutamyl phosphate, the product of Pro1 and the physiological substrate of Pro2, is required as an obligate substrate of suppressor alleles of PRO2 for glutathione synthesis. A mutagenesis of a Deltagsh1 strain also lacking the proline pathway failed to generate any suppressor mutants under either aerobic or anaerobic conditions, confirming that glutathione is essential in yeast. This essential function is not related to DNA synthesis based on the terminal phenotype of glutathione-depleted cells or to toxic accumulation of non-native protein disulfides. Analysis of the suppressor strain demonstrates that normal glutathione levels are required for the tolerance to oxidants under acute, but not chronic stress conditions.
Collapse
Affiliation(s)
- D Spector
- Service de Biochimie et Génétique Moléculaire, Bât. 142, Commissariat à l'Energie Atomique, F-91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
187
|
Moradas-Ferreira P, Costa V. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep 2001; 5:277-85. [PMID: 11145102 DOI: 10.1179/135100000101535816] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been extensively utilised to address the mechanisms underlying the oxidative stress response. The antioxidant defences can be induced either by respiratory growth or in the presence of pro-oxidants. The cell response involves the transcriptional control of genes by protein regulators that have been recently identified and post-translational activation of pre-existing defences. The current state of the art regarding the induction of antioxidant defences during respiratory growth and by exposure to hydrogen peroxide is reviewed.
Collapse
Affiliation(s)
- P Moradas-Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| | | |
Collapse
|
188
|
Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 2001; 54:439-61. [PMID: 11018134 DOI: 10.1146/annurev.micro.54.1.439] [Citation(s) in RCA: 540] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glutathione- and thioredoxin-dependent reduction systems are responsible for maintaining the reduced environment of the Escherichia coli and Saccharomyces cerevisiae cytosol. Here we examine the roles of these two cellular reduction systems in the bacterial and yeast defenses against oxidative stress. The transcription of a subset of the genes encoding glutathione biosynthetic enzymes, glutathione reductases, glutaredoxins, thioredoxins, and thioredoxin reductases, as well as glutathione- and thioredoxin-dependent peroxidases is clearly induced by oxidative stress in both organisms. However, only some strains carrying mutations in single genes are hypersensitive to oxidants. This is due, in part, to the redundant effects of the gene products and the overlap between the two reduction systems. The construction of strains carrying mutations in multiple genes is helping to elucidate the different roles of glutathione and thioredoxin, and studies with such strains have recently revealed that these two reduction systems modulate the activities of the E. coli OxyR and SoxR and the S. cerevisiae Yap1p transcriptional regulators of the adaptive responses to oxidative stress.
Collapse
Affiliation(s)
- O Carmel-Harel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
189
|
Grant CM. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 2001; 39:533-41. [PMID: 11169096 DOI: 10.1046/j.1365-2958.2001.02283.x] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulphydryl groups (-SH) play a remarkably broad range of roles in the cell, and the redox status of cysteine residues can affect both the structure and the function of numerous enzymes, receptors and transcription factors. The intracellular milieu is usually a reducing environment as a result of high concentrations of the low-molecular-weight thiol glutathione (GSH). However, reactive oxygen species (ROS), which are the products of normal aerobic metabolism, as well as naturally occurring free radical-generating compounds, can alter this redox balance. A number of cellular factors have been implicated in the regulation of redox homeostasis, including the glutathione/glutaredoxin and thioredoxin systems. Glutaredoxins and thioredoxins are ubiquitous small heat-stable oxidoreductases that have proposed functions in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding and sulphur metabolism. This review describes recent findings in the lower eukaryote Saccharomyces cerevisiae that are leading to a better understanding of their role in redox homeostasis in eukaryotic cell metabolism.
Collapse
Affiliation(s)
- C M Grant
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Sackville Street, Manchester M60 1QD, UK.
| |
Collapse
|
190
|
Carmel-Harel O, Stearman R, Gasch AP, Botstein D, Brown PO, Storz G. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol Microbiol 2001; 39:595-605. [PMID: 11169101 DOI: 10.1046/j.1365-2958.2001.02255.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae Yap1p transcription factor is required for the H2O2-dependent activation of many antioxidant genes including the TRX2 gene encoding thioredoxin 2. To identify factors that regulate Yap1p activity, we carried out a genetic screen for mutants that show elevated expression of a TRX2-HIS3 fusion in the absence of H2O2. Two independent mutants isolated in this screen carried mutations in the TRR1 gene encoding thioredoxin reductase. Northern blot and whole-genome expression analysis revealed that the basal expression of most Yap1p targets and many other H2O2-inducible genes is elevated in Deltatrr1 mutants in the absence of external stress. In Deltatrr1 mutants treated with H2O2, the Yap1p targets, as well as genes comprising a general environmental stress response and genes encoding protein-folding chaperones, are hyperinduced. However, despite the elevated expression of genes encoding antioxidant enzymes, Deltatrr1 mutants are extremely sensitive to H2O2. The results suggest that cells lacking thioredoxin reductase have diminished capacity to detoxify oxidants and/or to repair oxidative stress-induced damage and that the thioredoxin system is involved in the redox regulation of Yap1p transcriptional activity.
Collapse
Affiliation(s)
- O Carmel-Harel
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430, USA
| | | | | | | | | | | |
Collapse
|
191
|
Nguyên DT, Alarco AM, Raymond M. Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem 2001; 276:1138-45. [PMID: 11056165 DOI: 10.1074/jbc.m008377200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bZip transcription factor Yap1p plays an important role in oxidative stress response and multidrug resistance in Saccharomyces cerevisiae. We have previously demonstrated that the FLR1 gene, encoding a multidrug transporter of the major facilitator superfamily, is a transcriptional target of Yap1p. The FLR1 promoter contains three potential Yap1p response elements (YREs) at positions -148 (YRE1), -167 (YRE2), and -364 (YRE3). To address the function of these YREs, the three sites have been individually mutated and tested in transactivation assays. Our results show that (i) each of the three YREs is functional and important for the optimal transactivation of FLR1 by Yap1p and that (ii) the three YREs are not functionally equivalent, mutation of YRE3 being the most deleterious, followed by YRE2 and YRE1. Simultaneous mutation of the three YREs abolished transactivation of the promoter by Yap1p, demonstrating that the three sites are essential for the regulation of FLR1 by Yap1p. Gel retardation assays confirmed that Yap1p differentially binds to the three YREs (YRE3 > YRE2 > YRE1). We show that the transcription of FLR1 is induced upon cell treatment with the oxidizing agents diamide, diethylmaleate, hydrogen peroxide, and tert-butyl hydroperoxide, the antimitotic drug benomyl, and the alkylating agent methylmethane sulfonate and that this induction is mediated by Yap1p through the three YREs. Finally, we show that FLR1 overexpression confers resistance to diamide, diethylmaleate, and menadione but hypersensitivity to H(2)O(2), demonstrating that the Flr1p transporter participates in Yap1p-mediated oxidative stress response in S. cerevisiae.
Collapse
Affiliation(s)
- D T Nguyên
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada
| | | | | |
Collapse
|
192
|
Tsujimoto Y, Izawa S, Inoue Y. Cooperative regulation of DOG2, encoding 2-deoxyglucose-6-phosphate phosphatase, by Snf1 kinase and the high-osmolarity glycerol-mitogen-activated protein kinase cascade in stress responses of Saccharomyces cerevisiae. J Bacteriol 2000; 182:5121-6. [PMID: 10960096 PMCID: PMC94660 DOI: 10.1128/jb.182.18.5121-5126.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We screened the genome of Saccharomyces cerevisiae for the genes responsive to oxidative stress by using the lacZ transposon-insertion library. As a result, we found that expression of the DOG2 gene coding for 2-deoxyglucose-6-phosphate phosphatase was induced by oxidative stress. The expression of DOG2 was also induced by osmotic stress. We found a putative cis element (STRE, a stress response element) in the DOG2 promoter adjacent to a consensus sequence to which the Mig1p repressor is known to bind. The basal levels of DOG2 gene expression were increased in a mig1Delta mutant, while the derepression of DOG2 was not observed in a snf1Delta mutant under glucose-deprived conditions. Induction of the DOG2 gene expression by osmotic stress was observed in any of the three disruptants pbs2Delta, hog1Delta, and snf1Delta. However, the osmotic induction was completely abolished in both the snf1Delta pbs2Delta mutant and the snf1Delta hog1Delta mutant. Additionally, these single mutants as well as double mutants failed to induce DOG2 expression by oxidative stress. These results suggest that Snf1p kinase and the high-osmolarity glycerol-mitogen-activated protein kinase cascade are likely to be involved in the signaling pathway of oxidative stress and osmotic stress in regulation of DOG2.
Collapse
Affiliation(s)
- Y Tsujimoto
- Research Institute for Food Science, Kyoto University, Uji, Japan
| | | | | |
Collapse
|
193
|
|
194
|
Ross SJ, Findlay VJ, Malakasi P, Morgan BA. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol Biol Cell 2000; 11:2631-42. [PMID: 10930459 PMCID: PMC14945 DOI: 10.1091/mbc.11.8.2631] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A genetic screen was performed in Saccharomyces cerevisiae to identify mechanisms important for the transcriptional activation of genes encoding antioxidant proteins. Thioredoxin peroxidase, Tsa1p, of the thioredoxin system, was found to be essential for the transcriptional induction of other components of the thioredoxin system, TRX2 (thioredoxin) and TRR1 (thioredoxin reductase), in response to H(2)O(2). The expression of TRX2 and TRR1 is known to be regulated by the transcription factors Yap1p and Skn7p in response to H(2)O(2), and the Tsa1p-dependent regulation of TRX2 requires the Yap1p/Skn7p pathway. The data suggest that expression of components of the thioredoxin system is dependent on the activity of Tsa1p in response to H(2)O(2) in a Yap1p/Skn7p-dependent pathway.
Collapse
Affiliation(s)
- S J Ross
- School of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
195
|
Sugiyama K, Izawa S, Inoue Y. The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 2000; 275:15535-40. [PMID: 10809786 DOI: 10.1074/jbc.275.20.15535] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione is synthesized in two sequential reactions catalyzed by gamma-glutamylcysteine synthetase (GSH1 gene product) and glutathione synthetase (GSH2 gene product). The expression of GSH1 in Saccharomyces cerevisiae has been known to be up-regulated by Yap1p, a critical transcription factor for the oxidative stress response in yeast. The present study demonstrates that GSH2 expression is also regulated by Yap1p under oxidative stress-induced conditions. In addition to oxidative stress, expression of GSH1 and GSH2 was induced by heat shock stress in a Yap1p-dependent manner with subsequent increases in intracellular glutathione content. Oxygen respiration rate increased when cells were exposed to higher temperatures, and as a result, intracellular oxidation levels were increased. The heat shock-induced expression of GSH1 and GSH2 did not occur under anaerobic conditions. Furthermore, even under aerobic conditions, the heat shock response of these genes was not observed when cells were pretreated with KCN to block oxygen respiration. We speculate that heat shock stress enhances oxygen respiration, which in turn results in an increase in the generation of reactive oxygen species in mitochondria. This signal may be mediated by Yap1p, resulting in the elevation of intracellular glutathione levels.
Collapse
Affiliation(s)
- K Sugiyama
- Research Institute for Food Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
196
|
Kowaltowski AJ, Vercesi AE, Rhee SG, Netto LE. Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca(2+)-induced mitochondrial membrane permeabilization and cell death. FEBS Lett 2000; 473:177-82. [PMID: 10812070 DOI: 10.1016/s0014-5793(00)01526-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The involvement of reactive oxygen species in Ca(2+)-induced mitochondrial membrane permeabilization and cell viability was studied using yeast cells in which the thioredoxin peroxidase (TPx) gene was disrupted and/or catalase was inhibited by 3-amino-1,2, 4-triazole (ATZ) treatment. Wild-type Saccharomyces cerevisiae cells were very resistant to Ca(2+) and inorganic phosphate or t-butyl hydroperoxide-induced mitochondrial membrane permeabilization, but suffered an immediate decrease in mitochondrial membrane potential when treated with Ca(2+) and the dithiol binding reagent phenylarsine oxide. In contrast, S. cerevisiae spheroblasts lacking the TPx gene and/or treated with ATZ suffered a decrease in mitochondrial membrane potential, generated higher amounts of hydrogen peroxide and had decreased viability under these conditions. In all cases, the decrease in mitochondrial membrane potential could be inhibited by ethylene glycol-bis(beta-aminoethyl ether) N,N, N',N'-tetraacetic acid, dithiothreitol or ADP, but not by cyclosporin A. We conclude that TPx and catalase act together, maintaining cell viability and protecting S. cerevisiae mitochondria against Ca(2+)-promoted membrane permeabilization, which presents similar characteristics to mammalian permeability transition.
Collapse
Affiliation(s)
- A J Kowaltowski
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083-970, Campinas, Brazil
| | | | | | | |
Collapse
|
197
|
Juhnke H, Charizanis C, Latifi F, Krems B, Entian KD. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 2000; 35:936-48. [PMID: 10692169 DOI: 10.1046/j.1365-2958.2000.01768.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pos9 (Skn7) is an important transcription factor that, together with Yap1, induces the expression of oxidative stress target genes in Saccharomyces cerevisiae. The activation of Pos9 upon an oxidative stress signal occurs post-translationally. In a mutant screen for factors involved in the activation of a Pos9-dependent reporter gene upon oxidative stress, we identified the mutant fap7-1 (for factor activating Pos9). This point mutant failed to activate a Gal4-Pos9 hybrid transcription factor, assayed by hydrogen peroxide-induced GAL1-lacZ reporter gene activities. Additionally, the fap7-1 mutant strain was sensitive to oxidative stress and revealed slow growth on glucose compared with the wild type. The fap7-1 mutation also affected the induction of the Pos9 target gene TPX1 and of a synthetic promoter previously identified to be regulated in a Yap1- and Pos9-dependent manner. This lack of induction was specific as the fap7-1 mutant response to other stresses such as sodium chloride or co-application of both hydrogen peroxide and sodium chloride was not affected, as tested with the Pos9-independent expression pattern of a TPS2-lacZ reporter system. We identified the gene YDL166c to be allelic to the FAP7 gene and to be essential. Fluorescence microscopy of Fap7-GFP fusion proteins indicated a nuclear localization of the Fap7 protein. Our data suggest that Fap7 is a nuclear factor important for Pos9-dependent target gene transcription upon oxidative stress.
Collapse
Affiliation(s)
- H Juhnke
- Institut für Mikrobiologie der Johann Wolfgang Goethe-Universität Frankfurt, Biozentrum, Niederursel, Marie-Curie-Strasse 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|