151
|
Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O'Dowd BF. Discovery and mapping of ten novel G protein-coupled receptor genes. Gene 2001; 275:83-91. [PMID: 11574155 DOI: 10.1016/s0378-1119(01)00651-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the identification, cloning and tissue distributions of ten novel human genes encoding G protein-coupled receptors (GPCRs) GPR78, GPR80, GPR81, GPR82, GPR93, GPR94, GPR95, GPR101, GPR102, GPR103 and a pseudogene, psi GPR79. Each novel orphan GPCR (oGPCR) gene was discovered using customized searches of the GenBank high-throughput genomic sequences database with previously known GPCR-encoding sequences. The expressed genes can now be used in assays to determine endogenous and pharmacological ligands. GPR78 shared highest identity with the oGPCR gene GPR26 (56% identity in the transmembrane (TM) regions). psi GPR79 shared highest sequence identity with the P2Y(2) gene and contained a frame-shift truncating the encoded receptor in TM5, demonstrating a pseudogene. GPR80 shared highest identity with the P2Y(1) gene (45% in the TM regions), while GPR81, GPR82 and GPR93 shared TM identities with the oGPCR genes HM74 (70%), GPR17 (30%) and P2Y(5) (40%), respectively. Two other novel GPCR genes, GPR94 and GPR95, encoded a subfamily with the genes encoding the UDP-glucose and P2Y(12) receptors (sharing >50% identities in the TM regions). GPR101 demonstrated only distant identities with other GPCR genes and GPR102 shared identities with GPR57, GPR58 and PNR (35-42% in the TM regions). GPR103 shared identities with the neuropeptide FF 2, neuropeptide Y2 and galanin GalR1 receptors (34-38% in the TM regions). Northern analyses revealed GPR78 mRNA expression in the pituitary and placenta and GPR81 expression in the pituitary. A search of the GenBank databases with the GPR82 sequence retrieved an identical sequence in an expressed sequence tag (EST) partially encoding GPR82 from human colonic tissue. The GPR93 sequence retrieved an identical, human EST sequence from human primary tonsil B-cells and an EST partially encoding mouse GPR93 from small intestinal tissue. GPR94 was expressed in the frontal cortex, caudate putamen and thalamus of brain while GPR95 was expressed in the human prostate and rat stomach and fetal tissues. GPR101 revealed mRNA transcripts in caudate putamen and hypothalamus. GPR103 mRNA signals were detected in the cortex, pituitary, thalamus, hypothalamus, basal forebrain, midbrain and pons.
Collapse
Affiliation(s)
- D K Lee
- Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Platelet aggregation is initiated by receptor activation coupled to intracellular signaling leading to activation of integrin alphaIIbbeta3. Recent advances in the study of platelet receptors for collagen, von Willebrand factor, thrombin, and adenosine diphosphate are providing new insights into the mechanisms of platelet aggregation.
Collapse
Affiliation(s)
- B Savage
- The Roon Research Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
153
|
Barnard EA, Simon J. An elusive receptor is finally caught: P2Y(12'), an important drug target in platelets. Trends Pharmacol Sci 2001; 22:388-91. [PMID: 11478981 DOI: 10.1016/s0165-6147(00)01759-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite intensive research, the nucleotide P2 receptor that is involved in the aggregation and activation of platelets by ADP has remained elusive. However, now two research groups have independently identified a new platelet receptor of unexpected structure, P2Y(12), that acts with the P2Y(1) receptor to form the site of ADP activation and explains the multiple transduction mechanisms observed in response to ADP in platelets. Recent evidence also suggests that a third component, ATP action on the P2X(1) receptor ion channel, contributes to platelet activation.
Collapse
Affiliation(s)
- E A Barnard
- Dept of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QJ.
| | | |
Collapse
|
154
|
Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 2001; 107:1591-8. [PMID: 11413167 PMCID: PMC200194 DOI: 10.1172/jci12242] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ADP plays a critical role in modulating thrombosis and hemostasis. ADP initiates platelet aggregation by simultaneous activation of two G protein-coupled receptors, P2Y1 and P2Y12. Activation of P2Y1 activates phospholipase C and triggers shape change, while P2Y12 couples to Gi to reduce adenylyl cyclase activity. P2Y12 has been shown to be the target of the thienopyridine drugs, ticlopidine and clopidogrel. Recently, we cloned a human orphan receptor, SP1999, highly expressed in brain and platelets, which responded to ADP and had a pharmacological profile similar to that of P2Y12. To determine whether SP1999 is P2Y12, we generated SP1999-null mice. These mice appear normal, but they exhibit highly prolonged bleeding times, and their platelets aggregate poorly in responses to ADP and display a reduced sensitivity to thrombin and collagen. These platelets retain normal shape change and calcium flux in response to ADP but fail to inhibit adenylyl cyclase. In addition, oral clopidogrel does not inhibit aggregation responses to ADP in these mice. These results demonstrate that SP1999 is indeed the elusive receptor, P2Y12. Identification of the target receptor of the thienopyridine drugs affords us a better understanding of platelet function and provides tools that may lead to the discovery of more effective antithrombotic therapies.
Collapse
Affiliation(s)
- C J Foster
- Department of Central Nervous System and Cardiovascular Pharmacology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Affiliation(s)
- D Woulfe
- Departments of Medicine and Pharmacology and the Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
156
|
Jin J, Tomlinson W, Kirk IP, Kim YB, Humphries RG, Kunapuli SP. The C6-2B glioma cell P2Y(AC) receptor is pharmacologically and molecularly identical to the platelet P2Y(12) receptor. Br J Pharmacol 2001; 133:521-8. [PMID: 11399669 PMCID: PMC1572816 DOI: 10.1038/sj.bjp.0704114] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P2Y receptor activation in many cell types leads to phospholipase C activation and accumulation of inositol phosphates, while in blood platelets, C6-2B glioma cells, and in B10 microvascular endothelial cells a P2Y receptor subtype, which couples to inhibition of adenylyl cyclase, historically termed P2Y(AC), (P2T(AC) or P(2T) in platelets) has been identified. Recently, this receptor has been cloned and designated P2Y(12) in keeping with current P2 receptor nomenclature. Three selective P(2T) receptor antagonists, with a range of affinities, inhibited ADP-induced aggregation of washed human or rat platelets, in a concentration-dependent manner, with a rank order of antagonist potency (pIC(50), human: rat) of AR-C78511 (8.5 : 9.1)>AR-C69581 (6.2 : 6.0)>AR-C70300 (5.4 : 5.1). However, these compounds had no effect on ADP-induced platelet shape change. All three antagonists had no significant effect on the ADP-induced inositol phosphate formation in 1321N1 astrocytoma cells stably expressing the P2Y(1) receptor, when used at concentrations that inhibit platelet aggregation. These antagonists also blocked ADP-induced inhibition of adenylyl cyclase in rat platelets and C6-2B cells with identical rank orders of potency and overlapping concentration - response curves. RT - PCR and nucleotide sequence analyses revealed that the C6-2B cells express the P2Y(12) mRNA. These data demonstrate that the P2Y(AC) receptor in C6-2B cells is pharmacologically identical to the P2T(AC) receptor in rat platelets.
Collapse
Affiliation(s)
- Jianguo Jin
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
| | - Wendy Tomlinson
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Ian P Kirk
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Young B Kim
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
| | - Robert G Humphries
- Discovery BioScience Department, AstraZeneca R&D Charnwood, Loughborough
| | - Satya P Kunapuli
- Department of Physiology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Department of Pharmacology, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University Medical School, Philadelphia, Pennsylvania, PA, U.S.A
- Author for correspondence: .
| |
Collapse
|
157
|
Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM. P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 2001; 283:379-83. [PMID: 11327712 DOI: 10.1006/bbrc.2001.4816] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding characteristics of (33)P-2MeS-ADP, a stable analogue of ADP, were determined on CHO cells transfected with the human P2Y(12) receptor, a novel purinergic receptor. These transfected CHO cells displayed a strong affinity for (33)P-2MeS-ADP, the binding characteristics of which corresponded in all points to those observed on platelets. In particular, this receptor recognised purines with the following order of potency: 2MeS-ADP = 2MeS-ATP > ADP = ATPgammaS = ATP >> UTP, a binding profile which is similar to that obtained in platelets. The binding of (33)P-2MeS-ADP was antagonised by pCMPS but not by MRS2179 and FSBA, antagonists of P2Y(1) and aggregin, respectively. Moreover, the binding of (33)P-2MeS-ADP to these cells was strongly and irreversibly inhibited by the active metabolite of clopidogrel with a potency which was consistent with that observed for this compound on platelets. Like in platelets, 2MeS-ADP induced adenylyl cyclase down-regulation in these P2Y(12) transfected CHO cells, an effect which was absent in the corresponding non-transfected cells. As already shown in platelets, the active metabolite of clopidogrel antagonised 2MeS-ADP-induced inhibition of adenylyl cyclase on transfected cells. Our results confirm that P2Y(12) is the previously called "platelet P2t(AC)" receptor and show that this receptor is antagonised by the active metabolite of clopidogrel.
Collapse
Affiliation(s)
- P Savi
- Cardiovascular/Thrombosis Research Department, Sanofi-Synthélabo, 195 Route d'Espagne, Toulouse, 31036, France
| | | | | | | | | | | |
Collapse
|
158
|
Laitinen JT, Uri A, Raidaru G, Miettinen R. [(35)S]GTPgammaS autoradiography reveals a wide distribution of G(i/o)-linked ADP receptors in the nervous system: close similarities with the platelet P2Y(ADP) receptor. J Neurochem 2001; 77:505-18. [PMID: 11299313 DOI: 10.1046/j.1471-4159.2001.00265.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
No G(i)-linked P2Y receptors have been cloned to date but the presence of such receptors is thought to be restricted to platelets and certain clonal cell lines. Using the functional approach of [(35)S]guanosine 5'-[gamma-thio]-triphosphate autoradiography, we uncovered the widespread presence of such receptors in the CNS. Under conditions in which the prominent signal due to tonic adenosine receptor activity is masked, ADP and ATP stimulated G-protein activity in multiple grey and white matter regions. Localization in the grey matter suggests inhibitory auto-/heteroreceptor function. In the white matter, activated G proteins appeared as 'hot spots' (presumed oligodendrocyte progenitors) with scattered distribution along the main fibre tracts. Responses to ATP were diminished under conditions that inhibited degradation, suggesting that prior conversion to ADP explained agonist action. Uracil nucleotides were ineffective but 2-methylthio-ADP activated G proteins approximately 500-fold more potently than ADP, although both were similarly degraded. Throughout the brain, ADP-dependent G-protein activity was reversed by 2-hexylthio-AdoOC(O)Asp(2), a non-phosphate ATP analogue, whereas selective P2Y(1) receptor antagonists proved ineffective. A similar receptor was also disclosed from the adrenal medulla. These data witness a hitherto unrecognized abundance of G(i/o)-linked ADP receptors in the nervous system. Biochemical and pharmacological behaviour suggests striking similarities to the elusive platelet P2Y(ADP) receptor.
Collapse
Affiliation(s)
- J T Laitinen
- Department of Physiology, University of Kuopio, Finland Institute of Chemical Physics, Tartu University, Estonia Department of Neuroscience and Neurology, University and University Hospital of Kuopio, Finland.
| | | | | | | |
Collapse
|