151
|
Singhirunnusorn P, Ueno Y, Matsuo M, Suzuki S, Saiki I, Sakurai H. Transient suppression of ligand-mediated activation of epidermal growth factor receptor by tumor necrosis factor-alpha through the TAK1-p38 signaling pathway. J Biol Chem 2007; 282:12698-706. [PMID: 17327237 DOI: 10.1074/jbc.m608723200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) has been shown to be activated by specific ligands as well as other cellular stimuli including tumor necrosis factor-alpha (TNF-alpha). In the present study, we found that cellular stress suppressed ligand-mediated EGFR activity. Both TNF-alpha and osmotic stress rapidly induced phosphorylation of EGFR. This phosphorylation of EGFR and the activation of mitogen-activated protein kinases and NF-kappaB occurred independently of the shedding of extracellular membrane-bound EGFR ligands and intracellular EGFR tyrosine kinase activity. Transforming growth factor-beta-activated kinase 1 (TAK1) was involved in the TNF-alpha-induced signaling pathway to EGFR. In addition, experiments using chemical inhibitors and small interfering RNA demonstrated that p38 alpha is a common mediator for the cellular stress-induced phosphorylation of EGFR. Surprisingly, the modified EGFR was not able to respond to its extracellular ligand due to transient internalization through the clathrin-mediated mechanism. Furthermore, turnover of p38 activation led to dephosphorylation and recycling back to the cell surface of EGFR. These results demonstrated that TNF-alpha has opposite bifunctional activities in modulating the function of the EGFR.
Collapse
Affiliation(s)
- Pattama Singhirunnusorn
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
152
|
Kim SI, Kwak JH, Zachariah M, He Y, Wang L, Choi ME. TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am J Physiol Renal Physiol 2007; 292:F1471-8. [PMID: 17299140 DOI: 10.1152/ajprenal.00485.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have previously demonstrated that transforming growth factor-beta(1) (TGF-beta(1)) rapidly activates the mitogen-activated protein kinase kinase 3 (MKK3)-p38 MAPK signaling cascade, leading to the induction of type I collagen synthesis in mouse glomerular mesangial cells (Wang L, Ma R, Flavell RA, Choi ME. J Biol Chem 277: 47257-47262, 2002). In the present study, we investigated the functional role of upstream TGF-beta-activated kinase 1 (TAK1) and TAK1-binding protein 1 (TAB1) in the TGF-beta(1) signaling cascade. Rapid activation of endogenous TAK1 activity by TGF-beta(1) was observed in mouse mesangial cells. Transient overexpression of TAK1 with TAB1 enhanced the activation of MKK3 and p38 MAPK with or without TGF-beta(1) stimulation, whereas a dominant-negative mutant of TAK1 (TAK1DN) suppressed TGF-beta(1)-induced activation of MKK3 and p38 MAPK. Moreover, constitutive expression of TAK1DN reduced steady-state protein levels of MKK3 and p38 MAPK as well as MKK3 phosphorylation. Increased p38alpha MAPK activity by ectopic expression of either TAB1 or wild-type p38alpha MAPK resulted in enhanced TGF-beta(1)-induced type I collagen expression. In contrast, constitutive expression of TAK1DN inhibited collagen induction. Taken together, our data indicate that TAK1 and TAB1 play a pivotal role as upstream signal transducers activating the MKK3-p38 MAPK signaling cascade that leads to the induction of type I collagen expression by TGF-beta(1). In addition, our findings also suggest that TAK1 has a novel function in regulation of the steady-state protein levels of MKK3 and p38 MAPK.
Collapse
Affiliation(s)
- Sung Il Kim
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
153
|
Alford KA, Glennie S, Turrell BR, Rawlinson L, Saklatvala J, Dean JLE. Heat shock protein 27 functions in inflammatory gene expression and transforming growth factor-beta-activated kinase-1 (TAK1)-mediated signaling. J Biol Chem 2007; 282:6232-41. [PMID: 17202147 DOI: 10.1074/jbc.m610987200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein (HSP) 27 has long been known to be a component of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. p38 MAPK has important functions in the inflammatory response, but the role of HSP27 in inflammation has remained unknown. We have used small interfering RNAs to suppress HSP27 expression in HeLa cells and fibroblasts and found that it is required for pro-inflammatory cell signaling and the expression of pro-inflammatory genes. HSP27 is needed for the activation by interleukin (IL)-1 of TAK1 and downstream signaling by p38 MAPK, JNK, and their activators (MKK-3, -4, -6, -7) and IKKbeta. IL-1-induced ERK activation appears to be independent of HSP27. HSP27 is required for both IL-1 and TNF-induced signaling pathways for which the most upstream common signaling protein is TAK1. HSP27 is also required for IL-1-induced expression of the pro-inflammatory mediators, cyclooxygenase-2, IL-6, and IL-8. HSP27 functions to drive cyclooxygenase-2 and IL-6 expression by augmenting the activation of the kinase downstream of p38 MAPK, MK2, resulting in stabilization of cyclooxygenase-2 and IL-6 mRNAs. The mechanism may not occur in cells of myeloid lineage because HSP27 protein was undetectable in human monocytes and murine macrophages.
Collapse
Affiliation(s)
- Kate A Alford
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London W6 8LH, United Kingdom
| | | | | | | | | | | |
Collapse
|
154
|
Valanne S, Kleino A, Myllymäki H, Vuoristo J, Rämet M. Iap2 is required for a sustained response in the Drosophila Imd pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:991-1001. [PMID: 17343912 DOI: 10.1016/j.dci.2007.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 05/14/2023]
Abstract
Fruit flies have effective immune response against Gram-negative bacteria. Upon infection, early JNK-signaling pathway mediated response is followed by the action of the Immune deficiency (Imd) signaling cascade, a Drosophila equivalent of mammalian TNF-receptor pathway, leading to the release of antimicrobial peptides. Recently, Tak1-binding protein 2 (Tab2) and Inhibitor of apoptosis 2 (Iap2) were identified as components of the Imd pathway. In this study, we carried out a genome-wide kinetic analysis of the role of Tab2 and Iap2 for immune response in Drosophila S2 cells using oligonucleotide microarrays. Tab2 RNAi abolished the induction of all immune response genes in S2 cells indicating its requirement for signaling both via the Imd and the JNK pathway. The role of Iap2 was more specific. Kinetic analysis indicated that Iap2 is required to sustain antimicrobial peptide gene expression in S2 cells. Furthermore, inactivation of Iap2 by RNAi resulted in impaired microbial resistance in Drosophila in vivo.
Collapse
Affiliation(s)
- Susanna Valanne
- Institute of Medical Technology, 33014 University of Tampere, and Department of Pediatrics, Tampere University Hospital, Finland
| | | | | | | | | |
Collapse
|
155
|
Choo MK, Kawasaki N, Singhirunnusorn P, Koizumi K, Sato S, Akira S, Saiki I, Sakurai H. Blockade of transforming growth factor-β-activated kinase 1 activity enhances TRAIL-induced apoptosis through activation of a caspase cascade. Mol Cancer Ther 2006; 5:2970-6. [PMID: 17172402 DOI: 10.1158/1535-7163.mct-06-0379] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a member of the TNF-alpha ligand family that selectively induces apoptosis in a variety of tumor cells. To clarify the molecular mechanism of TRAIL-induced apoptosis, we focused on transforming growth factor-beta-activated kinase 1 (TAK1) mitogen-activated protein kinase (MAPK) kinase kinase, a key regulator of the TNF-alpha-induced activation of p65/RelA and c-Jun NH2-terminal kinase/p38 MAPKs. In human cervical carcinoma HeLa cells, TRAIL induced the delayed phosphorylation of endogenous TAK1 and its activator protein TAB1 and TAB2, which contrasted to the rapid response to TNF-alpha. Specific knockdown of TAK1 using small interfering RNA (siRNA) abrogated the TRAIL-induced activation of p65 and c-Jun NH2-terminal kinase/p38 MAPKs. TRAIL-induced apoptotic signals, including caspase-8, caspase-3, caspase-7, and poly(ADP-ribose) polymerase, were enhanced by TAK1 siRNA. Flow cytometry showed that the binding of Annexin V to cell surface was also synergistically increased by TRAIL in combination with TAK1 siRNA. In addition, pretreatment of cells with 5Z-7-oxozeaenol, a selective TAK1 kinase inhibitor, enhanced the TRAIL-induced cleavage of caspases and binding of Annexin V. The TAK1-mediated antiapoptotic effects were also observed in human lung adenocarcinoma A549 cells. In contrast, TAK1-deficient mouse embryonic fibroblasts are resistant to TRAIL-induced apoptosis, and treatment of control mouse embryonic fibroblasts with 5Z-7-oxozeaenol did not drastically promote the TRAIL-induced activation of a caspase cascade. These results suggest that TAK1 plays a critical role for TRAIL-induced apoptosis, and the blockade of TAK1 kinase will improve the chances of overcoming cancer.
Collapse
Affiliation(s)
- Min-Kyung Choo
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Rawlings DJ, Sommer K, Moreno-García ME. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 2006; 6:799-812. [PMID: 17063183 DOI: 10.1038/nri1944] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recognition of antigen by B- or T-cell receptors initiates an intracellular signalling cascade that results in the nuclear translocation and activation of the transcription factor nuclear factor-kappaB (NF-kappaB). NF-kappaB is an important regulator of lymphocyte development and function, and its dysregulation is associated with many immune disorders. Defining the mechanisms that transmit signals from the antigen receptor to NF-kappaB is therefore an important goal for immunologists. In this Review, we merge information gleaned from research of the innate immune system with what we know about antigen-receptor signals in the adaptive immune system, to propose a cohesive model of how antigen receptors activate NF-kappaB.
Collapse
Affiliation(s)
- David J Rawlings
- Department of Immunology, Childrens Hospital & Regional Medical Centre, 307 Westlake Avenue North, Suite 300, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
157
|
Yamamoto M, Sato S, Saitoh T, Sakurai H, Uematsu S, Kawai T, Ishii KJ, Takeuchi O, Akira S. Cutting Edge: Pivotal Function of Ubc13 in Thymocyte TCR Signaling. THE JOURNAL OF IMMUNOLOGY 2006; 177:7520-4. [PMID: 17114420 DOI: 10.4049/jimmunol.177.11.7520] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Ubc13 E2 ubiquitin-conjugating enzyme is essential for BCR-, TLR-, and IL-1 receptor (IL-1R)-mediated immune responses. Although Ubc13-deficient mice show defects in BCR-, TLR/IL-1R-, or CD40-mediated activation of mitogen-activated protein kinases, the function of Ubc13 in TCR-mediated signaling and responses remains uncertain. To address this, we here generated T cell-specific conditional Ubc13-deficient mice. The frequency of T lymphocytes was severely reduced in spleens from Ubc13-deficient mice. Moreover, Ubc13-deficient thymocytes displayed defective proliferation in response to anti-CD3/CD28 or PMA/ionophore stimulation. Regarding the signal transduction, although NF-kappaB activation was modestly affected, PMA/ionophore-induced activation of Jnk and p38 was profoundly impaired in Ubc13-deficient thymocytes. In addition, PMA/ionophore-mediated ubiquitination of NF-kappaB essential modulator (NEMO)/IkappaB kinase gamma (IKKgamma) and phosphorylation of TGF-beta-activated kinase 1 (TAK1) were nearly abolished in Ubc13-deficient thymocytes. Thus, Ubc13 plays an important role in thymocyte TCR-mediated signaling and immune responses.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0851, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Kajino T, Ren H, Iemura SI, Natsume T, Stefansson B, Brautigan DL, Matsumoto K, Ninomiya-Tsuji J. Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J Biol Chem 2006; 281:39891-6. [PMID: 17079228 PMCID: PMC1797071 DOI: 10.1074/jbc.m608155200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TAK1 (transforming growth factor beta-activated kinase 1) is a serine/threonine kinase that is a mitogen-activated protein kinase kinase kinase and an essential intracellular signaling component in inflammatory signaling pathways. Upon stimulation of cells with inflammatory cytokines, TAK1 binds proteins that stimulate autophosphorylation within its activation loop and is thereby catalytically activated. This activation is transient; it peaks within a couple of minutes and is subsequently down-regulated rapidly to basal levels. The mechanism of down-regulation of TAK1 has not yet been elucidated. In this study, we found that toxin inhibition of type 2A protein phosphatases greatly enhances interleukin 1 (IL-1)-dependent phosphorylation of Thr-187 in the TAK1 activation loop as well as the catalytic activity of TAK1. From proteomic analysis of TAK1-binding proteins, we identified protein phosphatase 6 (PP6), a type-2A phosphatase, and demonstrated that PP6 associated with and inactivated TAK1 by dephosphorylation of Thr-187. Ectopic and endogenous PP6 co-precipitated with TAK1, and expression of PP6 reduced IL-1 activation of TAK1 but did not affect osmotic activation of MLK3, another MAPKKK. Reduction of PP6 expression by small interfering RNA enhances IL-1-induced phosphorylation of Thr-187 in TAK1. Enhancement occurred without change in levels of PP2A showing specificity for PP6. Our results demonstrate that PP6 specifically down-regulates TAK1 through dephosphorylation of Thr-187 in the activation loop, which is likely important for suppressing inflammatory responses via TAK1 signaling pathways.
Collapse
Affiliation(s)
- Taisuke Kajino
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hong Ren
- Cell Signaling Technology, Danvers, MA 01923
| | - Shun-ichiro Iemura
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo 135-0064
| | - Tohru Natsume
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo 135-0064
| | - Bjarki Stefansson
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - David L. Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Solution Oriented Research for Science and Technology (SORST), Japan Science and Technology Agency, Japan
| | - Jun Ninomiya-Tsuji
- Solution Oriented Research for Science and Technology (SORST), Japan Science and Technology Agency, Japan
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633
| |
Collapse
|
159
|
Bertelsen M, Sanfridson A. TAB1 modulates IL-1alpha mediated cytokine secretion but is dispensable for TAK1 activation. Cell Signal 2006; 19:646-57. [PMID: 17052891 DOI: 10.1016/j.cellsig.2006.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/24/2006] [Accepted: 08/28/2006] [Indexed: 01/15/2023]
Abstract
Biochemical evidence indicates that TGF-beta-activated kinase 1 (TAK1), a key modulator of the inflammatory response, exists in a complex with various adaptor proteins including the TAK1 binding protein 1 (TAB1). However, the physiological importance of TAB1 in TAK1 activation, and in the subsequent induction of proinflammatory mediators, remains unclear. In this study, a critical role for TAK1 in IL-1alpha or TNFalpha stimulated MAPK and NFkappaB activation was confirmed by inhibition of the nuclear accumulation of NFkappaB p65 and phosphorylated forms of c-Jun and p38 following siRNA mediated TAK1 silencing. These effects were associated with significant reductions in IL-1alpha stimulated levels of secreted IL-6, IL-8, MCP-1 and GM-CSF. In contrast, IL-1alpha or TNFalpha dependent cellular redistribution of NFkappaB p65 and phosphorylated c-Jun and p38 was not affected by 80% siRNA mediated knockdown of TAB1 protein levels. Interestingly, IL-6, IL-8 and GM-CSF release from TAB1 siRNA transfected cells was significantly reduced following IL-1alpha treatment, but was unchanged after TNFalpha stimulation, suggesting differential roles for TAB1 in IL-1alpha and TNFalpha signalling pathways. These findings may imply an as yet unidentified role for TAB1 in the inflammatory response, which is independent of the activation of classical TAK1 associated signalling cascades.
Collapse
Affiliation(s)
- Malene Bertelsen
- Department of Biological Sciences, AstraZeneca R&D, Scheelevägen 8, 221 87 Lund, Sweden
| | | |
Collapse
|
160
|
HuangFu WC, Omori E, Akira S, Matsumoto K, Ninomiya-Tsuji J. Osmotic stress activates the TAK1-JNK pathway while blocking TAK1-mediated NF-kappaB activation: TAO2 regulates TAK1 pathways. J Biol Chem 2006; 281:28802-10. [PMID: 16893890 PMCID: PMC1797068 DOI: 10.1074/jbc.m603627200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osmotic stress activates MAPKs, including JNK and p38, which play important roles in cellular stress responses. Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and can activate JNK and p38. TAK1 can also activate IkappaB kinase (IKK) that leads to degradation of IkappaB and subsequent NF-kappaB activation. We found that TAK1 is essential for osmotic stress-induced activation of JNK but is not an exclusive mediator of p38 activation. Furthermore, we found that although TAK1 was highly activated upon osmotic stress, it could not induce degradation of IkappaB or activation of NF-kappaB. These results suggest that TAK1 activity is somehow modulated to function specifically in osmotic stress signaling, leading to the activation of JNK but not of IKK. To elucidate the mechanism underlying this modulation, we screened for potential TAK1-binding proteins. We found that TAO2 (thousand-and-one amino acid kinase 2) associates with TAK1 and can inhibit TAK1-mediated activation of NF-kappaB but not of JNK. We observed that TAO2 can interfere with the interaction between TAK1 and IKK and thus may regulate TAK1 function. TAK1 is activated by many distinct stimuli, including cytokines and stresses, and regulation by TAO2 may be important to activate specific intracellular signaling pathways that are unique to osmotic stress.
Collapse
Affiliation(s)
- Wei-Chun HuangFu
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695
| | - Emily Omori
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, JAPN
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, JAPAN
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, JAPN
- SORST, Japan Science and Technology Agency, JAPAN
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
161
|
Yamamoto M, Okamoto T, Takeda K, Sato S, Sanjo H, Uematsu S, Saitoh T, Yamamoto N, Sakurai H, Ishii KJ, Yamaoka S, Kawai T, Matsuura Y, Takeuchi O, Akira S. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006; 7:962-70. [PMID: 16862162 DOI: 10.1038/ni1367] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 06/29/2006] [Indexed: 11/09/2022]
Abstract
The Ubc13 E2 ubiquitin-conjugating enzyme is key in the process of 'tagging' target proteins with lysine 63-linked polyubiquitin chains, which are essential for the transmission of immune receptor signals culminating in activation of the transcription factor NF-kappaB. Here we demonstrate that conditional ablation of Ubc13 resulted in defective B cell development and in impaired B cell and macrophage activation. In response to all tested stimuli except tumor necrosis factor, Ubc13-deficient cells showed almost normal NF-kappaB activation but considerably impaired activation of mitogen-activated protein kinase. Ubc13-induced activation of mitogen-activated protein kinase required, at least in part, ubiquitination of the adaptor protein IKKgamma. These results show that Ubc13 is key in the mammalian immune response.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Thiefes A, Wolf A, Doerrie A, A Grassl G, Matsumoto K, Autenrieth I, Bohn E, Sakurai H, Niedenthal R, Resch K, Kracht M. The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway. EMBO Rep 2006; 7:838-44. [PMID: 16845370 PMCID: PMC1525148 DOI: 10.1038/sj.embor.7400754] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 06/07/2006] [Accepted: 06/12/2006] [Indexed: 11/09/2022] Open
Abstract
The mechanism by which YopP simultaneously inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB pathways has been elusive. Ectopic expression of YopP inhibits the activity and ubiquitination of a complex consisting of overexpressed TGF-beta-activated kinase 1 (TAK1) and its subunit TAK1-binding protein (TAB)1, but not of MEK kinase 1. YopP, but not the catalytically inactive mutant YopP(C172A), also suppresses basal and interleukin-1-inducible activation of endogenous TAK1, TAB1 and TAB2. YopP does not affect the interaction of TAK1, TAB1 and TAB2 but inhibits autophosphorylation of TAK1 at Thr 187 and phosphorylation of TAB1 at Ser 438. Glutathione S-transferase-tagged YopP (GST-YopP) binds to MAPK kinase (MAPKK)4 and TAB1 but not to TAK1 or TAB2 in vitro. Furthermore, YopP in synergy with a previously described negative regulatory feedback loop inhibits TAK1 by MAPKK6-p38-mediated TAB1 phosphorylation. Taken together, these data strongly suggest that YopP binds to TAB1 and directly inhibits TAK1 activity by affecting constitutive TAK1 and TAB1 ubiquitination that is required for autoactivation of TAK1.
Collapse
Affiliation(s)
- Axel Thiefes
- Institute of Pharmacology, Medical School Hannover, 30625 Hannover, Germany
| | - Alexander Wolf
- Institute of Pharmacology, Medical School Hannover, 30625 Hannover, Germany
| | - Anneke Doerrie
- Institute of Pharmacology, Medical School Hannover, 30625 Hannover, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hygiene, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ingo Autenrieth
- Institute of Medical Microbiology and Hygiene, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Erwin Bohn
- Institute of Medical Microbiology and Hygiene, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Hiroaki Sakurai
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Rainer Niedenthal
- Institute of Biochemistry, Medical School Hannover, 30625 Hannover, Germany
| | - Klaus Resch
- Institute of Pharmacology, Medical School Hannover, 30625 Hannover, Germany
| | - Michael Kracht
- Institute of Pharmacology, Medical School Hannover, 30625 Hannover, Germany
- Tel: +49 511 532 2800/2802; Fax: +49 511 532 4081; E-mail:
| |
Collapse
|
163
|
Kettner-Buhrow D, Dittrich-Breiholz O, Schneider H, Wolter S, Resch K, Kracht M. Small interfering RNAs generated by recombinant dicer induce inflammatory gene expression independent from the TAK1-NFkappaB-MAPK signaling pathways. Biochem Biophys Res Commun 2006; 347:566-73. [PMID: 16843436 DOI: 10.1016/j.bbrc.2006.06.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/11/2006] [Indexed: 01/05/2023]
Abstract
Generation of mixtures of small interfering (si) RNAs by recombinant dicer avoids selection of efficient target sites within mRNAs but little is known about off-target effects of this approach. Using recombinant human dicer we generated siRNA mixtures (dsiRNA) directed against the protein kinase TAK1 and its subunit TAB1, important upstream molecules in the pathways activated by IL-1, TNF, and toll-like receptors (TLR). dsiRNA against TAK1 or TAB1 significantly suppressed their target proteins as well as TAK1-mediated activation of NFkappaB, p38 MAPK, and JNK, and of IL-8 transcription. However, microarray analysis of 136 endogenous inflammatory genes revealed that dsiRNA against TAB1 or TAK1 did not suppress IL-1 or TNF-induced genes but rather induced a broader range of 15 inflammatory genes as well as seven known interferon-response genes. The same genes were induced by dsiRNA directed against luciferase but not by a synthetic control siRNA molecule. Hence, our results show that complex mixtures of siRNA induce an inflammatory gene response that is independent from TAK1-mediated signal transduction. In the light of the increasing usage of enzymatically prepared libraries of siRNA these results provide important insight into potential off-target effects of this approach.
Collapse
|
164
|
Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2006; 2:2006.0015. [PMID: 16738560 PMCID: PMC1681489 DOI: 10.1038/msb4100057] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/23/2006] [Indexed: 12/18/2022] Open
Abstract
Recognition of pathogen-associated molecular signatures is critically important in proper activation of the immune system. The toll-like receptor (TLR) signaling network is responsible for innate immune response. In mammalians, there are 11 TLRs that recognize a variety of ligands from pathogens to trigger immunological responses. In this paper, we present a comprehensive map of TLRs and interleukin 1 receptor signaling networks based on papers published so far. The map illustrates the possible existence of a main network subsystem that has a bow-tie structure in which myeloid differentiation primary response gene 88 (MyD88) is a nonredundant core element, two collateral subsystems with small GTPase and phosphatidylinositol signaling, and MyD88-independent pathway. There is extensive crosstalk between the main bow-tie network and subsystems, as well as feedback and feedforward controls. One obvious feature of this network is the fragility against removal of the nonredundant core element, which is MyD88, and involvement of collateral subsystems for generating different reactions and gene expressions for different stimuli.
Collapse
Affiliation(s)
- Kanae Oda
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
- Sony Computer Science Laboratories Inc., Tokyo, Japan
- The Systems Biology Institute, Suite 6A, M31 6-31-15 Jingumae, Shibuya, Tokyo 150-0001, Japan. Tel.: +81 3 5468 1661; Fax: +81 3 5468 1664; E-mail:
| |
Collapse
|
165
|
Haase R, Richter K, Pfaffinger G, Courtois G, Ruckdeschel K. Yersinia outer protein P suppresses TGF-beta-activated kinase-1 activity to impair innate immune signaling in Yersinia enterocolitica-infected cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:8209-17. [PMID: 16339560 DOI: 10.4049/jimmunol.175.12.8209] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pathogenic Yersinia spp. use a panel of virulence proteins that antagonize signal transduction processes in infected cells to undermine host defense mechanisms. One of these proteins, Yersinia enterocolitica outer protein P (YopP), down-regulates the NF-kappaB and MAPK signaling pathways, which suppresses the proinflammatory host immune response. In this study, we explored the mechanism by which YopP succeeds to simultaneously disrupt several of these key signaling pathways of innate immunity. Our data show that YopP operates upstream of its characterized eukaryotic binding partner IkappaB kinase-beta to shut down the NF-kappaB signaling cascade. Accordingly, YopP efficiently impaired the activities of TGF-beta-activated kinase-1 (TAK1) in infected cells. TAK1 is an important activator of the IkappaB kinase complex in the TLR signaling cascade. The repression of TAK1 activities correlated with reduced activation of NF-kappaB- as well as AP-1-dependent reporter gene expression in Yersinia-infected murine macrophages. This suggests that the impairment of the TAK1 enzymatic activities by Yersinia critically contributes to down-regulate activation of NF-kappaB and of MAPK members in infected host cells. The inhibition of TAK1 potentially results from the blockade of signaling events that control TAK1 induction. This process could involve the attenuation of ubiquitination of the upstream signal transmitter TNFR-associated factor-6. Together, these results indicate that, by silencing the TAK1 signaling complex, Yersinia counteracts the induction of several conserved signaling pathways of innate immunity, which aids the bacterium in subverting the host immune response.
Collapse
Affiliation(s)
- Rudolf Haase
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Munich, Germany
| | | | | | | | | |
Collapse
|
166
|
Shinohara H, Yasuda T, Aiba Y, Sanjo H, Hamadate M, Watarai H, Sakurai H, Kurosaki T. PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. ACTA ACUST UNITED AC 2006; 202:1423-31. [PMID: 16301747 PMCID: PMC2212994 DOI: 10.1084/jem.20051591] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The B cell antigen receptor (BCR)–mediated activation of IκB kinase (IKK) and nuclear factor–κB require protein kinase C (PKC)β; however, the mechanism by which PKCβ regulates IKK is unclear. Here, we demonstrate that another protein kinase, TGFβ-activated kinase (TAK)1, is essential for IKK activation in response to BCR stimulation. TAK1 interacts with the phosphorylated CARMA1 (also known as caspase recruitment domain [CARD]11, Bimp3) and this interaction is mediated by PKCβ. IKK is also recruited to the CARMA1–Bcl10–mucosal-associated lymphoid tissue 1 adaptor complex in a PKCβ-dependent manner. Hence, our data suggest that phosphorylation of CARMA1, mediated by PKCβ, brings two key protein kinases, TAK1 and IKK, into close proximity, thereby allowing TAK1 to phosphorylate IKK.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Choo MK, Sakurai H, Koizumi K, Saiki I. TAK1-mediated stress signaling pathways are essential for TNF-α-promoted pulmonary metastasis of murine colon cancer cells. Int J Cancer 2006; 118:2758-64. [PMID: 16385569 DOI: 10.1002/ijc.21734] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have recently established a TNF-alpha-promoted metastasis model, in which the ability to metastasize to the lung was enhanced by stimulation of cultured colon 26 cells with TNF-alpha before intravenous inoculation. To investigate intracellular events in metastatic cascades of TNF-alpha-treated cancer cells, we have focused on the stress signaling pathways to c-Jun N-terminal kinase (JNK) and p38. Treatment with a specific inhibitor, SP600125 or SB203580, in vitro suppressed TNF-alpha-induced migration and pulmonary metastasis. Activation of endogenous TAK1, a mitogen-activated protein kinase (MAP3K) regulating the JNK and p38 MAPK pathways, was induced rapidly by TNF-alpha, and co-transfection of TAK1 with its activator protein TAB1 stimulated activation of JNK and p38 MAPKs, which led to activation of the transcription factor AP-1. The activation of stress signaling pathways by TAK1 resulted in enhanced migration to fibronectin in vitro and metastasis to the lung in vivo without affecting cell proliferation in vitro and tumor growth in vivo. Moreover, knockdown of endogenous TAK1 using small interfering RNA (siRNA) suppressed the TNF-alpha-induced JNK/p38 activation, migration and pulmonary metastasis. These results indicate that TAK1-mediated stress signaling pathways in cancer cells are essential for TNF-alpha-promoted metastasis to the lung.
Collapse
Affiliation(s)
- Min-Kyung Choo
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
168
|
Symons A, Beinke S, Ley SC. MAP kinase kinase kinases and innate immunity. Trends Immunol 2006; 27:40-8. [PMID: 16356769 DOI: 10.1016/j.it.2005.11.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/27/2005] [Accepted: 11/17/2005] [Indexed: 12/26/2022]
Abstract
Toll-like receptors, which respond to invariant microbial molecules, and receptors for the proinflammatory cytokines tumour necrosis factor and interleukin-1 are crucial for initiation and regulation of innate immune responses. These receptors activate each of the major mitogen-activated protein (MAP) kinase subtypes, extracellular signal-regulated protein kinases, c-Jun amino-terminal kinases and p38 MAP kinases, which are crucial for cell survival and controlling the expression of immune mediators. Here we discuss recent studies characterizing the specific MAP kinase kinase kinases (MAP 3-kinases) that link MAP kinases to receptors involved in innate immunity and the mechanisms by which the activity of MAP 3-kinases is regulated by such receptors.
Collapse
Affiliation(s)
- Antony Symons
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
169
|
Lu G, Kang YJ, Han J, Herschman HR, Stefani E, Wang Y. TAB-1 modulates intracellular localization of p38 MAP kinase and downstream signaling. J Biol Chem 2005; 281:6087-95. [PMID: 16407200 DOI: 10.1074/jbc.m507610200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress-activated mitogen-activated protein (MAP) kinase p38 mediates stress signaling in mammalian cells via threonine and tyrosine phosphorylation in its conserved TGY motif by upstream MAP kinase kinases (MKKs). In addition, p38 MAP kinase can also be activated by an MKK-independent mechanism involving TAB-1 (TAK-1-binding protein)-mediated autophosphorylation. Although TAB-1-mediated p38 activation has been implicated in ischemic heart, the biological consequences and downstream signaling of TAB-1-mediated p38 activation in cardiomyocytes is largely unknown. We show here that TAB-1 expression leads to a significant induction of p38 autophosphorylation and consequent kinase activation in cultured neonatal cardiomyocytes. In contrast to MKK3-induced p38 kinase downstream effects, TAB-1-induced p38 kinase activation does not induce expression of pro-inflammatory genes, cardiac marker gene expression, or changes in cellular morphology. Rather, TAB-1 binds to p38 and prevents p38 nuclear localization. Furthermore, TAB-1 disrupts p38 interaction with MKK3 and redirects p38 localization in the cytosol. Consequently, TAB-1 expression antagonizes the downstream activity of p38 kinase induced by MKK3 and attenuates interleukin-1beta-induced inflammatory gene induction in cardiomyocytes. These data suggest that TAB-1 can mediate MKK-independent p38 kinase activation while negatively modulating MKK-dependent p38 function. Our study not only redefines the functional role of TAB-1 in p38 kinase-mediated signaling pathways but also provides the first evidence that intracellular localization of p38 kinase and complex interaction dictates its downstream effects. These results suggest a previously unknown mechanism for stress-MAP kinase regulation in mammalian cells.
Collapse
Affiliation(s)
- Gang Lu
- Molecular Biology Institute and Department of Anesthesiology and Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
170
|
Sakurai H, Singhirunnusorn P, Shimotabira E, Chino A, Suzuki S, Koizumi K, Saiki I. TAK1-mediated transcriptional activation of CD28-responsive element and AP-1-binding site within the IL-2 promoter in Jurkat T cells. FEBS Lett 2005; 579:6641-6. [PMID: 16293250 DOI: 10.1016/j.febslet.2005.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 10/21/2005] [Accepted: 10/29/2005] [Indexed: 10/25/2022]
Abstract
We focused on the functional involvement of transforming growth factor-beta-activated kinase 1 (TAK1) in transcriptional regulation of interleukin-2 (IL-2) in T cells. Costimulation of Jurkat cells with 12-O-tetradecanoylphorbol-13-acetate and A23187 leads to a rapid phosphorylation of TAK1 and TAK1-binding protein 1 (TAB1), critical for TAK1 activation. A specific inhibitor of TAK1 blocked production of IL-2. In addition, overexpression of TAK1 and TAB1 induced secretion of IL-2. CD28-responsive element/activator protein-1-binding site (RE/AP) within the IL-2 promoter was a functional target for TAK1. The RE/AP-driven transcription was regulated by TAK1-mediated activation of the c-Jun NH2-terminal kinase, p38 and IkappaB kinase. These results indicate that TAK1 plays a critical role in T cell activation by controlling production of IL-2.
Collapse
Affiliation(s)
- Hiroaki Sakurai
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
171
|
Blonska M, Shambharkar PB, Kobayashi M, Zhang D, Sakurai H, Su B, Lin X. TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem 2005; 280:43056-63. [PMID: 16260783 DOI: 10.1074/jbc.m507807200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Receptor-interacting protein (RIP) plays a critical role in tumor necrosis factor-alpha (TNF-alpha)-induced IkappaB kinase (IKK) activation and subsequent activation of transcription factor NF-kappaB. However, the molecular mechanism by which RIP mediates TNF-alpha-induced NF-kappaB activation is not completely defined. In this study, we have found that TAK1 is recruited to the TNF-alpha receptor complex in a RIP-dependent manner following the stimulation of TNF-alpha receptor 1 (TNF-R1). Moreover, a forced recruitment of TAK1 to TNF-R1 in the absence of RIP is sufficient to mediate TNF-alpha-induced NF-kappaB activation, indicating that the major function of RIP is to recruit its downstream kinases to the TNF-R1 complex. Interestingly, we also find that TAK1 and MEKK3 form a functional complex, in which TAK1 regulates autophosphorylation of MEKK3. The TAK1-mediated regulation of MEKK3 phosphorylation is dependent on the kinase activity of TAK1. Although TAK1-MEKK3 interaction is not affected by overexpressed TAB1, TAB1 is required for TAK1 activation and subsequent MEKK3 phosphorylation. Together, we conclude that TAK1 is recruited to the TNF-R1 complex via RIP and likely cooperates with MEKK3 to activate NF-kappaB in TNF-alpha signaling.
Collapse
Affiliation(s)
- Marzenna Blonska
- Department of Molecular and Cellular Oncology, Department of Immunology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Qiao B, Padilla SR, Benya PD. Transforming growth factor (TGF)-beta-activated kinase 1 mimics and mediates TGF-beta-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. J Biol Chem 2005; 280:17562-71. [PMID: 15743758 DOI: 10.1074/jbc.m500646200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor (TGF)-beta, bone morphogenetic protein (BMP), and interleukin-1beta activate TGF-beta-activated kinase 1 (TAK1), which lies upstream of the p38 MAPK, JNK, and NF-kappaB pathways. Our knowledge remains incomplete of TAK1 target genes, requirement for cooperative signaling, and capacity for shared or segregated ligand-dependent responses. We show that adenoviral overexpression of TAK1a in articular chondrocytes stimulated type II collagen protein synthesis 3-6-fold and mimicked the response to TGF-beta1 and BMP2. Both factors activated endogenous TAK1 and its activating protein, TAB1, and the collagen response was inhibited by dominant-negative TAK1a. Isoform-specific antibodies to TGF-beta blocked the response to endogenous and exogenous TGF-beta but not the response to TAK1a. Expression of Smad3 did not stimulate type II collagen synthesis or enhance that caused by TGF-beta1 or TAK1a, in contrast to its effects on its endogenous targets, CTGF and plasminogen-activated inhibitor-1. TAK1a, overexpressed alone and immunoprecipitated, phosphorylated MKK6 and stimulated the plasminogen-activated inhibitor-1 promoter following transient transfection; both effects were enhanced by TAB1 coexpression, but type II collagen synthesis was not. Stimulation by TAK1a or TGF-beta did not require increased Col2a1 mRNA, and TAK1 actually reduced Col2a1 mRNA in parallel with the cartilage markers, SRY-type HMG box 9 (Sox9) and aggrecan. Thus, TAK1 increased target gene expression (Col2a1) by translational or posttranslational mechanisms as a Smad3-independent response shared by TGF-beta1 and BMP2.
Collapse
Affiliation(s)
- Bo Qiao
- Orthopaedic Hospital, Los Angeles, J. Vernon Luck, Sr., M.D. Research Center and UCLA-Orthopaedic Hospital Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|