151
|
Venkataiah VS, Handa K, Njuguna MM, Hasegawa T, Maruyama K, Nemoto E, Yamada S, Sugawara S, Lu L, Takedachi M, Murakami S, Okura H, Matsuyama A, Saito M. Periodontal Regeneration by Allogeneic Transplantation of Adipose Tissue Derived Multi-Lineage Progenitor Stem Cells in vivo. Sci Rep 2019; 9:921. [PMID: 30696909 PMCID: PMC6351614 DOI: 10.1038/s41598-018-37528-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The ultimate goal of periodontal disease treatment is the reorganization of functional tissue that can regenerate lost periodontal tissue. Regeneration of periodontal tissues is clinically possible by using autogenic transplantation of MSCs. However, autologous MSC transplantation is limited depending on age, systemic disease and tissue quality, thus precluding their clinical application. Therefore, we evaluated the efficacy of allogeneic transplantation of adipose-derived multi-lineage progenitor cells (ADMPC) in a micro-mini pig periodontal defect model. ADMPC were isolated from the greater omentum of micro-mini pigs, and flow cytometry analysis confirmed that the ADMPC expressed MSC markers, including CD44 and CD73. ADMPC exhibited osteogenic, adipogenic and periodontal ligament differentiation capacities in differentiation medium. ADMPC showed high expression of the immune suppressive factors GBP4 and IL1-RA upon treatment with a cytokine cocktail containing interferon-γ, tumor necrosis factor-α and interleukin-6. Allogeneic transplantation of ADMPC in a micro-mini pig periodontal defect model showed significant bone regeneration ability based on bone-morphometric analysis. Moreover, the regeneration ability of ADMPC by allogeneic transplantation was comparable to those of autologous transplantation by histological analysis. These results indicate that ADMPC have immune-modulation capability that can induce periodontal tissue regeneration by allogeneic transplantation.
Collapse
Affiliation(s)
- Venkata Suresh Venkataiah
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keisuke Handa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mary M Njuguna
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tatsuya Hasegawa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentaro Maruyama
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Lu Lu
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Oral Diagnosis, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hanayuki Okura
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Japan
| | - Akifumi Matsuyama
- Department of Regenerative Medicine, Fujita Health University, Graduate School of Medicine, Toyoake, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
152
|
Ma W, Dou Q, Ha X. Let-7a-5p inhibits BMSCs osteogenesis in postmenopausal osteoporosis mice. Biochem Biophys Res Commun 2019; 510:53-58. [PMID: 30660362 DOI: 10.1016/j.bbrc.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE The aim of this study was to investigate the mechanism of let-7a-5p in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in postmenopausal osteoporosis (PMOP) mice. METHODS A mouse model of PMOP was established and osteoporosis model was identified by micro-CT scan. BMSCs in the sham group and PMOP group were cultured and osteogenic differentiation was induced. The expression of let-7a-5p in BMSCs was detected by qRT-PCR, and BMSCs was induced by osteogenic differentiation in sham and PMOP group. The BMSCs treated by let-7a-5p mimics, let-7a-5p inhibitor and negative control were named as let-7a-5p mimics group, mimics NC group, let-7a-5p inhibitor group and inhibitor NC group, respectively. ALP staining and alizarin red staining were used to detect osteogenic differentiation ability, qRT-PCR and western blot were used to detect the expression of Runt-related transcription factor 2 (Runx2) and Osterix. The targeting relationship between let-7a-5p and TGFBR1 were verificated by target scan and luciferase reporter gene assay. RESULTS The PMOP mouse model was successfully established. The expression of let-7a-5p in BMSCs of PMOP group was significantly higher than that in the sham group (P < 0.05). Let-7a-5p reduced the expression of ALP and the formation of calcified nodules, while also inhibited the expression of Runx2 and Osterix. TGFBR1 is the target gene of let-7a-5p. CONCLUSION Let-7a-5p might inhibit the osteogenic differentiation of BMSCs in PMOP mice by regulating TGFBR1.
Collapse
Affiliation(s)
- Wenpu Ma
- Department of Orthopaedics, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, China
| | - Qingjun Dou
- Department of Orthopaedics, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, China.
| | - Xin Ha
- Department of Electromyogram, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng City, Shandong Province, 252000, China
| |
Collapse
|
153
|
Chambers P, McCarthy HO, Dunne NJ. Emerging areas of bone repair materials. BONE REPAIR BIOMATERIALS 2019:411-446. [DOI: 10.1016/b978-0-08-102451-5.00016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
154
|
Bartoli-Leonard F, Wilkinson FL, Langford-Smith AWW, Alexander MY, Weston R. The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Front Cardiovasc Med 2018; 5:183. [PMID: 30619890 PMCID: PMC6305318 DOI: 10.3389/fcvm.2018.00183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular calcification is a major health risk and is highly correlated with atherosclerosis, diabetes, and chronic kidney disease. The development of vascular calcification is an active and complex process linked with a multitude of signaling pathways, which regulate promoters and inhibitors of osteogenesis, the balance of which become deregulated in disease conditions. SIRT1, a protein deacetylase, known to be protective in inhibiting oxidative stress and inflammation within the vessel wall, has been shown as a possible key player in modulating the cell-fate determining canonical Wnt signaling pathways. Suppression of SIRT1 has been reported in patients suffering with cardiovascular pathologies, suggesting that the sustained acetylation of osteogenic factors could contribute to their activation and in turn, lead to the progression of calcification. There is clear evidence of the synergy between β-Catenin and elevated Runx2, and with Wnt signaling being β-Catenin dependent, further understanding is needed as to how these molecular pathways converge and interact, in order to provide novel insight into the mechanism by which smooth muscle cells switch to an osteogenic differentiation programme. Therefore, this review will describe the current concepts of pathological soft tissue mineralization, with a focus on the contribution of SIRT1 as a regulator of Wnt signaling and its targets, discussing SIRT1 as a potential target for manipulation and therapy.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex W W Langford-Smith
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Y Alexander
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ria Weston
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
155
|
Chen Y, Ouyang J, Yan R, Maarouf MH, Wang X, Chen B, Liu S, Hu J, Guo G, Zhang J, Dai SM, Xu H, Chen JL. Silencing SOCS3 Markedly Deteriorates Spondyloarthritis in Mice Induced by Minicircle DNA Expressing IL23. Front Immunol 2018; 9:2641. [PMID: 30487798 PMCID: PMC6246747 DOI: 10.3389/fimmu.2018.02641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
Objective: Despite extensive studies, the precise mechanism underlying spondyloarthritis, especially ankylosing spondylitis, remains elusive. This study aimed to develop an ideal animal model for an insight into mechanism of spondyloarthritis and functional relevance of SOCS3 in spondyloarthritis. Methods: Since SOCS3 is a major regulator of IL23-STAT3 signaling, we generated SOCS3 knockdown transgenic (TG) mice for development of an animal model of spondyloarthritis. A hydrodynamic delivery method was employed to deliver minicircle DNA expressing IL23 (mc-IL23) into wild-type (WT) and the TG mice. Knockdown/overexpression systems mediated by lentivirus and retrovirus were used to determine whether SOCS3 regulated osteoblast differentiation. Results: Forced expression of IL23 induced severe joint destruction and extensive bone loss in SOCS3 knockdown TG mice, while this treatment only caused moderate symptoms in WT mice. Furthermore, severe spondyloarthritis was found in IL23-injected TG mice as compared to mild disease observed in WT controls under same condition. Moreover, our studies showed that IL23 promoted osteoblast differentiation via activation of STAT3 pathway and disruption of SOCS3 expression greatly increased phosphorylation of STAT3. In addition, silencing SOCS3 resulted in enhanced osteoblast differentiation through activation of Smad1/5/9 signaling, as evidenced by elevated phosphorylation level of Smad1/5/9. Experiments further demonstrated that SOCS3 interacted with Smad1 and thus suppressed the BMP2-Smad signaling. Conclusions: The results reveal that SOCS3 is involved in IL23-induced spondyloarthritis and acts as a key regulator of osteoblast differentiation, and suggest that SOCS3 knockdown TG mice may be an ideal animal model for further studies of spondyloarthritis.
Collapse
Affiliation(s)
- Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Ouyang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruoxiang Yan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Hassan Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sheng-Ming Dai
- Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Hospital, Shanghai, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
156
|
Gao Y, Zhang M, Tian X, Wang M, Zhang F. Experimental animal study on BMP-3 expression in periodontal tissues in the process of orthodontic tooth movement. Exp Ther Med 2018; 17:193-198. [PMID: 30651782 PMCID: PMC6307439 DOI: 10.3892/etm.2018.6950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/26/2018] [Indexed: 02/02/2023] Open
Abstract
Expression characteristics of bone morphogenetic protein-3 (BMP-3) in the process of orthodontic tooth movement was investigated. Forty-eight rats were randomly divided into the 3-day group (n=12), the 7-day group (n=12), the 14-day group (n=12) and the 21-day group (n=12). The maxillary left molar of each rat was used as the experimental tooth, the orthodontic tooth model was established, and the contralateral molar was used as the control tooth. The tooth movement distance was measured using a vernier caliper at day 1, 3, 7 and 14 after modeling, and rats in each group were sacrificed and sampled at the corresponding time-point. The tissue morphology was observed via hematoxylin and eosin (H&E) staining, and the expression of BMP-3 was detected via immunohistochemistry. The protein expression of BMP-3 was detected via western blotting, and the messenger ribonucleic acid (mRNA) expression of BMP-3 was detected via quantitative polymerase chain reaction (qPCR). At day 14 after modeling, the periodontal space was significantly uneven, the form of periodontal tissues was disordered, and a large number of multinucleated osteoclasts could be seen. The expression levels of BMP-3 in other groups were significantly increased compared with that in the control group (P<0.05). The expression level of BMP-3 reached the peak at day 14 after modeling, and differences were statistically significant compared with those in other time points after modeling (P<0.05). The orthodontic tooth movement distance after modeling was significantly longer with the extension of time (P<0.05). In the process of orthodontic tooth movement, the expression level of BMP-3 is gradually increased and reaches the peak at day 14, promoting the increase of osteoclasts and benefiting the orthodontic tooth movement.
Collapse
Affiliation(s)
- Yang Gao
- Department of Stomatology, Qingdao Women and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Ming Zhang
- Qingdao Stomatological Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xia Tian
- Department of Stomatology, Qingdao Women and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Meng Wang
- Department of Stomatology, Qingdao Women and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Fan Zhang
- Department of Stomatology, Qingdao Women and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
157
|
Yao W, Zhang H, Jiang X, Mehmood K, Iqbal M, Li A, Zhang J, Wang Y, Waqas M, Shen Y, Li J. Effect of Total Flavonoids of Rhizoma drynariae on Tibial Dyschondroplasia by Regulating BMP-2 and Runx2 Expression in Chickens. Front Pharmacol 2018; 9:1251. [PMID: 30450047 PMCID: PMC6224448 DOI: 10.3389/fphar.2018.01251] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/15/2018] [Indexed: 01/15/2023] Open
Abstract
Tibial dyschondroplasia (TD) is an abnormality of the growth cartilage that occurs in chickens and other rapidly growing avian species. This disease not only cause huge economic losses, but also greatly affects animal welfare. The total flavonoids of Rhizoma drynariae (TFRD) has been used to cure wide variety of diseases including bone fractures and osteoarthritis and osteoporosis. However, less information is available about the using of TFRD against the TD. The aim of this study was to determine the effect of TFRD on TD by regulating BMP-2 and Runx2 in chickens. A total of 200 birds were randomly divided into control, TD, TD recovery (TDR), and TFRD groups. All the groups were given standard diet with an addition of thiram (50 mg/kg) from days 3 to 7 in TD, TDR, and TFRD groups in order to induce TD in chickens. After the induction of TD, the birds of TFRD group were fed standard diet with the addition of TFRD at 20 mg/kg. Clinical results conveyed that TFRD can improve the growth performance of the TD chickens and recover normal activity, and it is more obvious than TDR. Gene expressions of BMP-2 and Runx2 were down-regulated during the development of the disease and were up-regulated obviously after TFRD treatment. In conclusion, TFRD not only decreased the mortality rate but also increased the growth performance of TD in chickens. In conclusion, TFRD plays important role in improving the growth performance, adjusting the relevant physiological indicators, and regulating BMP-2 and Runx2 in chickens.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Three Gorges Polytechnic, Yichang, China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mujahid Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Faculty of Veterinary and Animal Sciences, The University of Poonch, Rawalakot, Pakistan
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animals Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry University, Linzhi, China
| |
Collapse
|
158
|
Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB. Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 2018; 36:1633-1648. [PMID: 29597029 DOI: 10.1016/j.biotechadv.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
|
159
|
Kato T, Khanh VC, Sato K, Kimura K, Yamashita T, Sugaya H, Yoshioka T, Mishima H, Ohneda O. Elevated Expression of Dkk-1 by Glucocorticoid Treatment Impairs Bone Regenerative Capacity of Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Dev 2018; 27:85-99. [PMID: 29084466 DOI: 10.1089/scd.2017.0199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids are steroid hormones used as anti-inflammatory treatments. However, this strong immunomodulation causes undesirable side effects that impair bones, such as osteoporosis. Glucocorticoid therapy is a major risk factor for developing steroid-induced osteonecrosis of the femur head (ONFH). Since ONFH is incurable, therapy with mesenchymal stem cells (MSCs) that can differentiate into osteoblasts are a first-line choice. Bone marrow-derived MSCs (BM-MSCs) are often used as a source of stem cell therapy for ONFH, but their proliferative activity is impaired after steroid treatment. Adipose tissue-derived MSCs (AT-MSCs) may be an attractive alternative source; however, it is unknown whether AT-MSCs from steroid-induced ONFH (sAT-MSCs) have the same differentiation ability as BM-MSCs or normal AT-MSCs (nAT-MSCs). In this study, we demonstrate that nAT-MSCs chronically exposed to glucocorticoids show lower alkaline phosphatase activity leading to reduced osteogenic differentiation ability. This impaired osteogenesis is mediated by high expression of Dickkopf1 (Dkk-1) that inhibits wnt/β-catenin signaling. Increased Dkk-1 also causes impaired osteogenesis along with reductions in bone regenerative capacity in sAT-MSCs. Of note, plasma Dkk-1 levels are elevated in steroid-induced ONFH patients. Collectively, our findings suggest that glucocorticoid-induced expression of Dkk-1 could be a key factor in modulating the differentiation ability of MSCs used for ONFH and other stem cell therapies.
Collapse
Affiliation(s)
- Toshiki Kato
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan .,2 School of Integrative Global Majors, University of Tsukuba , Tsukuba, Japan
| | - Vuong Cat Khanh
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Kazutoshi Sato
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Kenichi Kimura
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Toshiharu Yamashita
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Hisashi Sugaya
- 3 Department of Orthopedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan .,4 Division of Regenerative Medicine for Musculoskeletal System, Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba , Tsukuba, Japan
| | - Tomokazu Yoshioka
- 3 Department of Orthopedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan .,4 Division of Regenerative Medicine for Musculoskeletal System, Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba , Tsukuba, Japan
| | - Hajime Mishima
- 3 Department of Orthopedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Osamu Ohneda
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| |
Collapse
|
160
|
Haupt J, Stanley A, McLeod CM, Cosgrove BD, Culbert AL, Wang L, Mourkioti F, Mauck RL, Shore EM. ACVR1 R206H FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Mol Biol Cell 2018; 30:17-29. [PMID: 30379592 PMCID: PMC6337906 DOI: 10.1091/mbc.e18-05-0311] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An activating bone morphogenetic proteins (BMP) type I receptor ACVR1 (ACVR1R206H) mutation enhances BMP pathway signaling and causes the rare genetic disorder of heterotopic (extraskeletal) bone formation fibrodysplasia ossificans progressiva. Heterotopic ossification frequently occurs following injury as cells aberrantly differentiate during tissue repair. Biomechanical signals from the tissue microenvironment and cellular responses to these physical cues, such as stiffness and rigidity, are important determinants of cell differentiation and are modulated by BMP signaling. We used an Acvr1R206H/+ mouse model of injury-induced heterotopic ossification to examine the fibroproliferative tissue preceding heterotopic bone and identified pathologic stiffening at this stage of repair. In response to microenvironment stiffness, in vitro assays showed that Acvr1R206H/+ cells inappropriately sense their environment, responding to soft substrates with a spread morphology similar to wild-type cells on stiff substrates and to cells undergoing osteoblastogenesis. Increased activation of RhoA and its downstream effectors demonstrated increased mechanosignaling. Nuclear localization of the pro-osteoblastic factor RUNX2 on soft and stiff substrates suggests a predisposition to this cell fate. Our data support that increased BMP signaling in Acvr1R206H/+ cells alters the tissue microenvironment and results in misinterpretation of the tissue microenvironment through altered sensitivity to mechanical stimuli that lowers the threshold for commitment to chondro/osteogenic lineages.
Collapse
Affiliation(s)
- Julia Haupt
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexandra Stanley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Claire M McLeod
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Brian D Cosgrove
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Andria L Culbert
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Linda Wang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.,Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Eileen M Shore
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
161
|
Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis. Sci Rep 2018; 8:15499. [PMID: 30341348 PMCID: PMC6195601 DOI: 10.1038/s41598-018-33779-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disorder with increasing impact in an aging society. While genetic and transcriptomic analyses have revealed some genes and non-coding loci associated to OA, the pathogenesis remains incompletely understood. Chromatin profiling, which provides insight into gene regulation, has not been reported in OA mainly due to technical difficulties. Here, we employed Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) to map the accessible chromatin landscape in articular knee cartilage of OA patients. We identified 109,215 accessible chromatin regions for cartilages, of which 71% were annotated as enhancers. By overlaying them with genetic and DNA methylation data, we have determined potential OA-relevant enhancers and their putative target genes. Furthermore, through integration with RNA-seq data, we characterized genes that are altered both at epigenomic and transcriptomic levels in OA. These genes are enriched in pathways regulating ossification and mesenchymal stem cell (MSC) differentiation. Consistently, the differentially accessible regions in OA are enriched for MSC-specific enhancers and motifs of transcription factor families involved in osteoblast differentiation. In conclusion, we demonstrate how direct chromatin profiling of clinical tissues can provide comprehensive epigenetic information for a disease and suggest candidate genes and enhancers of translational potential.
Collapse
|
162
|
Hyaluronan negatively regulates vascular calcification involving BMP2 signaling. J Transl Med 2018; 98:1320-1332. [PMID: 29785051 DOI: 10.1038/s41374-018-0076-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Vascular calcification is a highly regulated biological process similar to bone formation involving osteogenic differentiation of vascular smooth muscle cells (VSMCs). Hyaluronan (HA), a major structural component of the extracellular matrix in cartilage, has been shown to inhibit osteoblast differentiation. However, whether HA affects osteogenic differentiation and calcification of VSMCs remains unclear. In the present study, we used in vitro and ex vivo models of vascular calcification to investigate the role of HA in vascular calcification. Both high and low molecular weight HA treatment significantly reduced calcification of rat VSMCs in a dose-dependent manner, as detected by alizarin red staining and calcium content assay. Ex vivo study further confirmed the inhibitory effect of HA on vascular calcification. Similarly, HA treatment decreased ALP activity and expression of bone-related molecules including Runx2, BMP2 and Msx2. By contrast, inhibition of HA synthesis by 4-methylumbelliferone (4MU) promoted calcification of rat VSMCs. In addition, adenovirus-mediated overexpression of HA synthase 2 (HAS2), a major HA synthase in VSMCs, also inhibited calcification of VSMCs, whereas CRISPR/Cas9-mediated HAS2 knockout promoted calcification of rat A10 cells. Furthermore, we found that BMP2 signaling was inhibited in VSMCs after HA treatment. Recombinant BMP2 enhanced high calcium and phosphate-induced VSMC calcification, which can be blocked by HA treatment. Taken together, these findings suggest that HA inhibits vascular calcification involving BMP2 signaling.
Collapse
|
163
|
Chao Y, Gao S, Wang X, Li N, Zhao H, Wen X, Lou Z, Dong X. Untargeted lipidomics based on UPLC-QTOF-MS/MS and structural characterization reveals dramatic compositional changes in serum and renal lipids in mice with glyoxylate-induced nephrolithiasis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:258-266. [DOI: 10.1016/j.jchromb.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|
164
|
Hokmabad VR, Davaran S, Aghazadeh M, Alizadeh E, Salehi R, Ramazani A. A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering. Tissue Eng Regen Med 2018; 15:735-750. [PMID: 30603592 DOI: 10.1007/s13770-018-0140-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022] Open
Abstract
Background The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica (n-SiO2) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. Methods We evaluated the effect of n-HA and n-SiO2 incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. Results All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with n-SiO2. While the hydrophilicity of n-SiO2 incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to n-SiO2 incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and n-SiO2. Conclusion Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
| | - Soodabeh Davaran
- 2Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Marziyeh Aghazadeh
- 3Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran.,4Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Effat Alizadeh
- 3Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran.,5Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Roya Salehi
- 2Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Ali Ramazani
- 1Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
165
|
Osterix functions downstream of anti-Müllerian hormone signaling to regulate Müllerian duct regression. Proc Natl Acad Sci U S A 2018; 115:8382-8387. [PMID: 30061417 DOI: 10.1073/pnas.1721793115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, the developing reproductive tract primordium of male and female fetuses consists of the Wolffian duct and the Müllerian duct (MD), two epithelial tube pairs surrounded by mesenchyme. During male development, mesenchyme-epithelia interactions mediate MD regression to prevent its development into a uterus, oviduct, and upper vagina. It is well established that transforming growth factor-β family member anti-Müllerian hormone (AMH) secreted from the fetal testis and its type 1 and 2 receptors expressed in MD mesenchyme regulate MD regression. However, little is known about the molecular network regulating downstream actions of AMH signaling. To identify potential AMH-induced genes and regulatory networks controlling MD regression in a global nonbiased manner, we examined transcriptome differences in MD mesenchyme between males (AMH signaling on) and females (AMH signaling off) by RNA-seq analysis of purified fetal MD mesenchymal cells. This analysis found 82 genes up-regulated in males during MD regression and identified Osterix (Osx)/Sp7, a key transcriptional regulator of osteoblast differentiation and bone formation, as a downstream effector of AMH signaling during MD regression. Osx/OSX was expressed in a male-specific pattern in MD mesenchyme during MD regression. OSX expression was lost in mutant males without AMH signaling. In addition, transgenic mice ectopically expressing human AMH in females induced a male pattern of Osx expression. Together, these results indicate that AMH signaling is necessary and sufficient for Osx expression in the MD mesenchyme. In addition, MD regression was delayed in Osx-null males, identifying Osx as a factor that regulates MD regression.
Collapse
|
166
|
Hu S, Chen H, Zhou X, Chen G, Hu K, Cheng Y, Wang L, Zhang F. Thermally induced self-agglomeration 3D scaffolds with BMP-2-loaded core-shell fibers for enhanced osteogenic differentiation of rat adipose-derived stem cells. Int J Nanomedicine 2018; 13:4145-4155. [PMID: 30046239 PMCID: PMC6054293 DOI: 10.2147/ijn.s167035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction Scaffold structure plays a vital role in cell behaviors. Compared with two-dimensional structure, 3D scaffolds can mimic natural extracellular matrix (ECM) and promote cell–cell and cell–matrix interactions. The combination of osteoconductive scaffolds and osteoinductive growth factors is considered to have synergistic effects on bone regeneration. Materials and methods In this study, core–shell poly(lactide-co-glycolide) (PLGA)/polycaprolactone (PCL)–BMP-2 (PP–B) fibrous scaffolds were prepared through coaxial electrospinning. Next, we fabricated 3D scaffolds based on PP–B fibers with thermally induced self-agglomeration (TISA) method and compared with conventional PLGA/PCL scaffolds in terms of scaffold morphology and BMP-2 release behaviors. Then, rat adipose-derived stem cells (rADSCs) were seeded on the scaffolds, and the effects on cell proliferation, cell morphology, and osteogenic differentiation of rADSCs were detected. Results The results demonstrated that 3D scaffold incorporated with BMP-2 significantly increased proliferation and osteogenic differentiation of rADSCs, followed by PP–B group. Conclusion Our findings indicate that scaffolds with 3D structure and osteoinductive growth factors have great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Shuying Hu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gang Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Basic Medical Science, Nanjing Medical University, Nanjing 210000, China
| | - Yi Cheng
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Lili Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| |
Collapse
|
167
|
Zhu Z, Xie Q, Huang Y, Zhang S, Chen Y. Aucubin suppresses Titanium particles‑mediated apoptosis of MC3T3‑E1 cells and facilitates osteogenesis by affecting the BMP2/Smads/RunX2 signaling pathway. Mol Med Rep 2018; 18:2561-2570. [PMID: 30015916 PMCID: PMC6102688 DOI: 10.3892/mmr.2018.9286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Aucubin represents an iridoid glucoside separated from multiple Chinese herbs, which has been demonstrated to possess numerous pharmacological activities. In the present study, the aim was to investigate the roles and mechanisms of aucubin in the suppression of mouse MC3T3-E1 osteoblast apoptosis induced by Titanium particles and the promotion of bone formation. MTT assay and flow cytometry were performed to analyze cell viability and apoptosis, respectively. ELISA and para-nitrophenyl phosphate colorimetry were carried out to evaluate the oxidative stress markers and alkaline phosphatase (ALP). Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to evaluate the associated mRNA and protein expression. The results revealed that aucubin enhanced the cell activity of MC3T3-E1 cells treated with Ti particles. Aucubin suppressed the apoptosis of Ti particles-induced MC3T3-E1 cells and facilitated osteogenesis by affecting the B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein, ALP and associated osteogenic factors expression. Aucubin reduced the oxidative stress in Ti particles-induced MC3T3-E1 cells. In addition, aucubin upregulated the bone morphogenetic protein 2 (BMP2)/Smads/runt related transcription factor 2 (RunX2) pathway in Ti particles-induced MC3T3-E1 cells. In conclusion, the present study confirmed that aucubin suppressed the Ti particles-mediated apoptosis of MC3T3-E1 cells and facilitated osteogenesis by affecting the BMP2/Smads/RunX2 signaling pathway.
Collapse
Affiliation(s)
- Ziguan Zhu
- Department of Hand Surgery and Reconstruction Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qingping Xie
- Department of Hand Surgery and Reconstruction Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yazeng Huang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shuijun Zhang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yu Chen
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
168
|
Gao K, Wang X, Liu Q, Chen W, Wang G, Zhang D, Liu L. Evaluation of osteoblast differentiation and function when cultured on mesoporous bioactive glass adsorbed with testosterone. J Cell Biochem 2018; 119:5222-5232. [PMID: 29240236 DOI: 10.1002/jcb.26566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023]
Abstract
Mesoporous bioactive glass (MBG), a kind of porous materials with great osteoconductive and osteoinductive ability, shows promising application in bone tissue engineering due to its high specific surface area, orderly channel structure, and large pore volume. Here we reported that the proliferation, differentiation, and mineralization were promoted in MC3T3-E1 cells cultured on MBG which adsorbed with testosterone (MBG/T). We found that transcriptional activity of Runx2 which is a critical transcription factor is increased in MC3T3-E1 cells cultured on MBG/T. Intriguingly, we observed that ERK phosphorylation was enhanced in MC3T3-E1 cells cultured on MBG/T. We showed that activated Runx2 in MC3T3-E1 cells cultured on MBG/T is through Erk1/2 phosphorylation. Consistent with this result, we also found that the expression of osteoblastic marker genes were increased. Therefore, we concluded that osteoblast differentiation and mineralization was enhanced after cells cultured on MBG/T through Erk1/2-activated Runx2 pathway. Our findings provided that MBG/T is a potential material in the process of bone repair.
Collapse
Affiliation(s)
- Kai Gao
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Xiaoyan Wang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Qianqian Liu
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Wei Chen
- Department of Life Sciences, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P.R. China
| | - Gan Wang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Dongyi Zhang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Long Liu
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, Hunan, P.R. China
| |
Collapse
|
169
|
Xiao L, Zhou Y, Zhu L, Yang S, Huang R, Shi W, Peng B, Xiao Y. SPHK1-S1PR1-RANKL Axis Regulates the Interactions Between Macrophages and BMSCs in Inflammatory Bone Loss. J Bone Miner Res 2018; 33:1090-1104. [PMID: 29377379 DOI: 10.1002/jbmr.3396] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that the immune and skeletal systems interact with each other through various regulators during the osteoclastogenic process. Among these regulators, the bioactive lipid sphingosine-1-phosphate (S1P), which is synthesized by sphingosine kinase 1/2 (SPHK1/2), has recently been recognized to play a role in immunity and bone remodeling through its receptor sphingosine-1-phosphate receptor 1 (S1PR1). However, little is known regarding the potential role of S1PR1 signaling in inflammatory bone loss. We observed that SPHK1 and S1PR1 were upregulated in human apical periodontitis, accompanied by macrophage infiltration and enhanced expression of receptor activator of NF-κB ligand (RANKL, an indispensable factor in osteoclastogenesis and bone resorption) and increased numbers of S1PR1-RANKL double-positive cells in lesion tissues. Using an in vitro co-culture model of macrophages and bone marrow stromal cells (BMSCs), it was revealed that in the presence of lipopolysaccharide (LPS) stimulation, macrophages could significantly induce SPHK1 activity, which resulted in activated S1PR1 in BMSCs. The activated S1P-S1PR1 signaling was responsible for the increased RANKL production in BMSCs, as S1PR1-blockage abolished this effect. Applying a potent S1P-S1PR1 signaling modulator, Fingolimod (FTY720), in a Wistar rat apical periodontitis model effectively prevented bone lesions in vivo via downregulation of RANKL production, osteoclastogenesis, and bone resorption. Our data unveiled the regulatory role of SPHK1-S1PR1-RANKL axis in inflammatory bone lesions and proposed a potential therapeutic intervention by targeting this cell-signaling pathway to prevent bone loss. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shasha Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Wei Shi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
170
|
Abdullah AR, Hapidin H, Abdullah H. The Role of Semipurified Fractions Isolated from Quercus infectoria on Bone Metabolism by Using hFOB 1.19 Human Fetal Osteoblast Cell Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5319528. [PMID: 29861772 PMCID: PMC5971332 DOI: 10.1155/2018/5319528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/27/2018] [Accepted: 03/18/2018] [Indexed: 01/03/2023]
Abstract
Background. Quercus infectoria (QI) is a plant used in traditional medicines in Asia. The plant was reported to contain various active phytochemical compounds that have potential to stimulate bone formation. However, the precise mechanism of the stimulation effect of QI on osteoblast has not been elucidated. The present study was carried out to isolate QI semipurified fractions from aqueous QI extract and to delineate the molecular mechanism of QI semipurified fraction that enhanced bone formation by using hFOB1.19 human fetal osteoblast cell model. Methods. Isolation of QI semipurified fractions was established by means of column chromatography and thin layer chromatography. Established QI semipurified fractions were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). Cells were treated with derived QI semipurified fractions and investigated for mineralization deposition and protein expression level of BMP-2, Runx2, and OPN by ELISA followed gene expression analysis of BMP-2 and Runx2 by RT-PCR. Results. Column chromatography isolation and purification yield Fractions A, B, and C. LC-MS analysis reveals the presence of polyphenols in each fraction. Results show that QI semipurified fractions increased the activity and upregulated the gene expression of BMP-2 and Runx2 at day 1, day 3, and day 7. OPN activity increased in cells treated with QI semipurified fractions at day 1 and day 3. Meanwhile, at day 7, expression of OPN decreased in activity. Furthermore, the study showed that combination of Fractions A, B, and C with osteoporotic drug (pamidronate) further increased the activity and upregulated the gene expression of BMP-2 and Runx2. Conclusions. These findings demonstrated that polyphenols from semipurified fractions of QI enhanced bone formation through expression of the investigated bone-related marker that is its potential role when combined with readily available osteoporotic drug.
Collapse
Affiliation(s)
- Amira Raudhah Abdullah
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hermizi Hapidin
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- Environmental and Occupational Health Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
171
|
Sakagami N, Matsushita Y, Syklawer-Howle S, Kronenberg HM, Ono W, Ono N. Msx2 Marks Spatially Restricted Populations of Mesenchymal Precursors. J Dent Res 2018; 97:1260-1267. [PMID: 29746183 DOI: 10.1177/0022034518771014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Craniofacial development requires a set of patterning codes that define the identities of postmigratory mesenchymal cells in a region-specific manner, in which locally expressed morphogens, including fibroblast growth factors (FGFs) and bone morphogenetic proteins (BMPs), provide instructive cues. Msx2, a bona fide target of BMP signaling, is a transcription factor regulating Runx2 and osterix (Osx), whose mutations are associated with cranial deformities in humans. Here we show that Msx2 defines osteo-chondro precursor cells in specific regions of the craniofacial mesenchyme at the postmigratory stage, particularly in the mandibular process and the posterior cranial vault. Analysis of Msx2-creER mice revealed that early mesenchymal cells in proximity to the BMP4-expressing mesenchyme were marked upon tamoxifen injection, and their descendants contributed to diverse types of mesenchymal cells in the later stage, such as chondrocytes and perichondrial cells of the transient cartilage, as well as osteoblasts and suture mesenchymal cells. By contrast, Osx-creER marked osteoblast precursors at the later stage, and their descendants continued to become osteoblasts well into the postnatal stage. Therefore, Msx2 marks spatially restricted populations of mesenchymal precursor cells with diverse differentiation potential, suggesting that extrinsic molecular cues can dictate the nature of postmigratory mesenchymal cells in craniofacial development.
Collapse
Affiliation(s)
- N Sakagami
- 1 University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Y Matsushita
- 1 University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - S Syklawer-Howle
- 1 University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - H M Kronenberg
- 2 Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W Ono
- 1 University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - N Ono
- 1 University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
172
|
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol 2018; 10:a022202. [PMID: 28507020 PMCID: PMC5932590 DOI: 10.1101/cshperspect.a022202] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Collapse
Affiliation(s)
- Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Taylor Nicholas Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
173
|
Sun WL, Wang N, Xu Y. Impact of miR-302b on Calcium-phosphorus Metabolism and Vascular Calcification of Rats with Chronic Renal Failure by Regulating BMP-2/Runx2/Osterix Signaling Pathway. Arch Med Res 2018; 49:164-171. [DOI: 10.1016/j.arcmed.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/30/2018] [Indexed: 12/22/2022]
|
174
|
Takeno A, Kanazawa I, Notsu M, Tanaka KI, Sugimoto T. Inhibition of adenosine monophosphate-activated protein kinase suppresses bone morphogenetic protein-2-induced mineralization of osteoblasts via Smad-independent mechanisms. Endocr J 2018; 65:291-298. [PMID: 29249772 DOI: 10.1507/endocrj.ej17-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Previous studies showed that adenosine monophosphate-activated protein kinase (AMPK), which plays as an intracellular energy sensor, promotes the differentiation and mineralization of osteoblasts via enhancing expression of bone morphogenetic protein (BMP)-2, which is a potent inducer of osteoblastogenesis. Thus, the aim of this study was to examine the roles of AMPK in BMP-2-induced osteoblastogenesis. We used a murine osteoblastic cell line MC3T3-E1 and a murine marrow stromal cell line ST2. BMP-2 (50 and 100 ng/mL) stimulated alkaline phosphatase (ALP) activity and enhanced mineralization of MC3T3-E1 cells, while the effects of BMP-2 were partly abolished by an inhibitor of AMPK, ara-A (0.1 mM). Real-time PCR showed that BMP-2 significantly increased the mRNA expressions of Alp, osteocalcin (Ocn), Runx2, Osterix and Dlx-5 in MC3T3-E1 cells, while co-incubation of ara-A significantly decreased the BMP-2-stimulated expression of Alp, Ocn, and Runx2. Moreover, co-incubation of ara-A suppressed the BMP-2-induced upregulation of Alp and Ocn in ST2 cells. Western blot analysis showed that BMP-2 phosphorylated Smad1/5 although it did not affect AMPK phosphorylation in MC3T3-E1 cells. Furthermore, a BMP receptor inhibitor LDN-193189 inhibited the phosphorylation of Smad1/5, but did not affect AMPK. In addition, co-incubation of ara-A did not affect BMP-2-induced phosphorylation of Smad1/5. These findings suggest that the inhibition of AMPK activation reduces the osteo-inductive effects of BMP-2 by decreasing the expression of Alp, Ocn, and Runx2 through Smad-independent mechanisms in osteoblastic cells.
Collapse
Affiliation(s)
- Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan
| | - Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan
| | - Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan
| | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, Shimane 693-8501, Japan
| |
Collapse
|
175
|
Saito A, Ooki A, Nakamura T, Onodera S, Hayashi K, Hasegawa D, Okudaira T, Watanabe K, Kato H, Onda T, Watanabe A, Kosaki K, Nishimura K, Ohtaka M, Nakanishi M, Sakamoto T, Yamaguchi A, Sueishi K, Azuma T. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model. Stem Cell Res Ther 2018; 9:12. [PMID: 29357927 PMCID: PMC5778688 DOI: 10.1186/s13287-017-0754-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/24/2017] [Accepted: 12/19/2017] [Indexed: 01/11/2023] Open
Abstract
Background Runt-related transcription factor 2 (RUNX2) haploinsufficiency causes cleidocranial dysplasia (CCD) which is characterized by supernumerary teeth, short stature, clavicular dysplasia, and osteoporosis. At present, as a therapeutic strategy for osteoporosis, mesenchymal stem cell (MSC) transplantation therapy is performed in addition to drug therapy. However, MSC-based therapy for osteoporosis in CCD patients is difficult due to a reduction in the ability of MSCs to differentiate into osteoblasts resulting from impaired RUNX2 function. Here, we investigated whether induced pluripotent stem cells (iPSCs) properly differentiate into osteoblasts after repairing the RUNX2 mutation in iPSCs derived from CCD patients to establish normal iPSCs, and whether engraftment of osteoblasts derived from properly reverted iPSCs results in better regeneration in immunodeficient rat calvarial bone defect models. Methods Two cases of CCD patient-derived induced pluripotent stem cells (CCD-iPSCs) were generated using retroviral vectors (OCT3/4, SOX2, KLF4, and c-MYC) or a Sendai virus SeVdp vector (KOSM302L). Reverted iPSCs were established using programmable nucleases, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-derived RNA-guided endonucleases, to correct mutations in CCD-iPSCs. The mRNA expressions of osteoblast-specific markers were analyzed using quantitative reverse-transcriptase polymerase chain reaction. iPSCs-derived osteoblasts were transplanted into rat calvarial bone defects, and bone regeneration was evaluated using microcomputed tomography analysis and histological analysis. Results Mutation analysis showed that both contained nonsense mutations: one at the very beginning of exon 1 and the other at the initial position of the nuclear matrix-targeting signal. The osteoblasts derived from CCD-iPSCs (CCD-OBs) expressed low levels of several osteoblast differentiation markers, and transplantation of these osteoblasts into calvarial bone defects created in rats with severe combined immunodeficiency showed poor regeneration. However, reverted iPSCs improved the abnormal osteoblast differentiation which resulted in much better engraftment into the rat calvarial bone defect. Conclusions Taken together, these results demonstrate that patient-specific iPSC technology can not only provide a useful disease model to elucidate the role of RUNX2 in osteoblastic differentiation but also raises the tantalizing prospect that reverted iPSCs might provide a practical medical treatment for CCD. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0754-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan.
| | - Akio Ooki
- Department of Orthodontics, Tokyo Dental College, Tokyo, Japan
| | | | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Kamichika Hayashi
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Daigo Hasegawa
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Takahito Okudaira
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Katsuhito Watanabe
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Hiroshi Kato
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Takeshi Onda
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Akira Watanabe
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Teruo Sakamoto
- Department of Orthodontics, Tokyo Dental College, Tokyo, Japan
| | - Akira Yamaguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental College, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
176
|
Nishimura R, Hata K, Nakamura E, Murakami T, Takahata Y. Transcriptional network systems in cartilage development and disease. Histochem Cell Biol 2018; 149:353-363. [PMID: 29308531 DOI: 10.1007/s00418-017-1628-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/13/2022]
Abstract
Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
177
|
Choi YH, Han Y, Jin SW, Lee GH, Kim GS, Lee DY, Chung YC, Lee KY, Jeong HG. Pseudoshikonin I enhances osteoblast differentiation by stimulating Runx2 and Osterix. J Cell Biochem 2018; 119:748-757. [PMID: 28657691 DOI: 10.1002/jcb.26238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/26/2017] [Indexed: 12/24/2022]
Abstract
Pseudoshikonin I (PSI), a novel biomaterial isolated from Lithospermi radix, has been recognized as an herbal medicine for the treatment of infectious and inflammatory diseases. Bone remodeling maintains a balance through bone resorption (osteoclastogenesis) and bone formation (osteoblastogenesis). Bone formation is generally attributed to osteoblasts. However, the effects of PSI on the bone are not well known. In this study, we found that the ethanol extracts of PSI induced osteoblast differentiation by increasing the expression of bone morphogenic protein 4 (BMP 4). PSI positively regulates the transcriptional expression and osteogenic activity of osteoblast-specific transcription factors such as Runx2 and Osterix. To identify the signaling pathways that mediate PSI-induced osteoblastogenesis, we examined the effects of serine-threonine kinase inhibitors that are known regulators of Osterix and Runx2. PSI-induced upregulation of Osterix and Runx2 was suppressed by treatment with AKT and PKA inhibitors. These results suggest that PSI enhances osteoblast differentiation by stimulating Osterix and Runx2 via the AKT and PKA signaling pathways. Thus, the activation of Runx2 and Osterix is modulated by PSI, thereby demonstrating its potential as a treatment target for bone disease.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Younho Han
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- Department of Oral Pharmacology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Geum Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
178
|
Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep 2017; 7:17696. [PMID: 29255201 PMCID: PMC5735093 DOI: 10.1038/s41598-017-18089-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.
Collapse
|
179
|
Jung H, Mbimba T, Unal M, Akkus O. Repetitive short‐span application of extracellular calcium is osteopromotive to osteoprogenitor cells. J Tissue Eng Regen Med 2017; 12:e1349-e1359. [PMID: 28715143 DOI: 10.1002/term.2518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Hyungjin Jung
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Thomas Mbimba
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Mustafa Unal
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH USA
- Department of Orthopedics Case Western Reserve University Cleveland OH USA
| |
Collapse
|
180
|
Kim KM, Jang WG. Zaluzanin C (ZC) induces osteoblast differentiation through regulating of osteogenic genes expressions in early stage of differentiation. Bioorg Med Chem Lett 2017; 27:4789-4793. [DOI: 10.1016/j.bmcl.2017.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 11/24/2022]
|
181
|
Zhang Y, Shen L, Mao Z, Wang N, Wang X, Huang X, Hu Y, Shou D, Wen C. Icariin Enhances Bone Repair in Rabbits with Bone Infection during Post-infection Treatment and Prevents Inhibition of Osteoblasts by Vancomycin. Front Pharmacol 2017; 8:784. [PMID: 29163169 PMCID: PMC5671559 DOI: 10.3389/fphar.2017.00784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Vancomycin is an effective antibiotic for treatment of bone infection caused by Staphylococcus aureus, however, a high local concentration of vancomycin might induce a delay in bone union. Icariin has been reported to suppress osteoclastogenes and promote osteogenesis. Our study aimed to investigate the effect of icariin on bone repair after anti-infection treatment in vivo and to explore the resisting effect of icariin on rat calvarial osteoblasts (ROBs) inhibited with high doses of vancomycin. Rabbits with bone infection of S. aureus were treated with implanted vancomycin-calcium sulfate (VCS) and icariin at 10.86 mg/kg/day for consecutive 8 weeks. Micro-CT, morphology, blood biochemistry were evaluated. In addition, ROBs were treated with vancomycin and icariin at different doses. Cell proliferation and differentiation capabilities, BMP2, Runx2, OPG, RANKL mRNA levels and protein expression were assessed. The results indicated that high dose of vancomycin significantly decreased bone mass and inhibited osteocalcin secretion; icariin increased these indicators compared with the single vancomycin treatment. Over 0.1 mg/mL of vancomycin inhibited the proliferation and differentiation of ROBs, while icariin resisted the inhibition of vancomycin by regulating cell cycle and promoting the Alkaline phosphatase (ALP) activity. Moreover, icariin promote bone formation by up-regulating BMP2/Runx2 and OPG/RANKL pathways. Icariin exhibited osteoplastic properties on osteoblasts that had been inhibited with high doses of vancomycin. Therefore, icariin is helpful for post-infection treatment of bone infection.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou, China
| | - Zhujun Mao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xiaowen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo, China
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chengping Wen
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
182
|
Targeted Pth4-expressing cell ablation impairs skeletal mineralization in zebrafish. PLoS One 2017; 12:e0186444. [PMID: 29040309 PMCID: PMC5645135 DOI: 10.1371/journal.pone.0186444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Skeletal development and mineralization are essential processes driven by the coordinated action of neural signals, circulating molecules and local factors. Our previous studies revealed that the novel neuropeptide Pth4, synthesized by hypothalamic cells, was involved in bone metabolism via phosphate regulation in adult zebrafish. Here, we investigate the role of pth4 during skeletal development using single-cell resolution, two-photon laser ablation of Pth4:eGFP-expressing cells and confocal imaging in vivo. Using a stable transgenic Pth4:eGFP zebrafish line, we identify Pth4:eGFP-expressing cells as post-mitotic neurons. After targeted ablation of eGFP-expressing cells in the hypothalamus, the experimental larvae exhibited impaired mineralization of the craniofacial bones whereas cartilage development was normal. In addition to a decrease in pth4 transcript levels, we noted altered expression of phex and entpd5, genes associated with phosphate homeostasis and mineralization, as well as a delay in the expression of osteoblast differentiation markers such as sp7 and sparc. Taken together, these results suggest that Pth4-expressing hypothalamic neurons participate in the regulation of bone metabolism, possibly through regulating phosphate balance during zebrafish development.
Collapse
|
183
|
BARINDA AGIANJEFFILANO, IKEDA KOJI, HIRATA KENICHI, EMOTO NORIAKI. Macrophages Highly Express Carbonic Anhydrase 2 and Play a Significant Role in Demineralization of the Ectopic Calcification. THE KOBE JOURNAL OF MEDICAL SCIENCES 2017; 63:E45-E50. [PMID: 29434174 PMCID: PMC5826019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 06/08/2023]
Abstract
Vascular calcification is an important risk factor for cardiovascular disease, and is closely associated with all-cause mortality. Recently, it has been revealed that vascular calcification is not a passive precipitation of circulating minerals, but is a process actively regulated through machinery similar to bone formation. During the bone remodeling, osteoclasts execute the bone resorption by releasing hydrogen ions to dissolve minerals; however, molecular mechanisms underlying decalcification of ectopically calcified lesions remain largely unknown. Here, we identified a significant role of macrophages in decalcifying the ectopic calcification. Since carbonic anhydrase-2 (CA2) is critically involved in synthesizing hydrogen ions, we investigated its expression in various cells, and found that macrophages highly express CA2. We established a cell free assay system in which ectopic calcification is quantitatively analyzed in vitro, and using this assay system, we revealed that macrophages efficiently decalcify the ectopic calcification. Interestingly, M1 polarized macrophages showed reduced CA2 expression, whereas treatment with inflammatory cytokines and vasoactive peptides decreased CA2 expression in macrophages. Of note, treatment with angiotensin II significantly reduced the decalcification capacity in macrophages in association with reduced CA2 expression. Furthermore, overexpression of CA2 enhanced decalcification capacity in C2C12 myoblast cells. Together, we unveiled a potential role of macrophages in decalcifying the ectopic calcification, and identified that CA2 is critically involved in the cellular decalcification capacity. Activating cellular CA2 has a therapeutic potential in the treatment of ectopic calcification, especially in regressing vascular calcification.
Collapse
Affiliation(s)
- AGIAN JEFFILANO BARINDA
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 6500017, Japan
| | - KOJI IKEDA
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe 658-8558, Japan
| | - KEN-ICHI HIRATA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 6500017, Japan
| | - NORIAKI EMOTO
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 6500017, Japan
| |
Collapse
|
184
|
Li X, Chang B, Wang B, Bu W, Zhao L, Liu J, Meng L, Wang L, Xin Y, Wang D, Tang Q, Zheng C, Sun H. Rapamycin promotes osteogenesis under inflammatory conditions. Mol Med Rep 2017; 16:8923-8929. [PMID: 28990080 PMCID: PMC5779975 DOI: 10.3892/mmr.2017.7693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic periodontitis, a common oral disease, usually results in irreversible bone resorption. Bone regeneration is a complex process between bone-forming activity of osteoblasts and bone-resorbing activity of osteoclasts, and still remains a challenge for physicians clinically. A previous study demonstrated that the mechanistic target of rapamycin signaling pathway is involved in osteogenic differentiation of mesenchymal stromal cells. Herein, whether rapamycin could be used to induce osteogenic differentiation of primary bone marrow-derived mesenchymal stem cells (BMSCs) in vitro and promote new bone formation in vivo were evaluated. The results demonstrated that rapamycin alone was not enough to fully induce osteoblast differentiation in vitro and enhanced bone regeneration in vivo. Interestingly, rapamycin in rapamycin plus lipopolysaccharide (LPS)-treated BMSCs significantly increased the gene expression levels of Sp7 transcription factor, runt related transcription factor 2, alkaline phosphatase (ALP) and collagen I (Col I), ALP activity, and calcium nodule at different time points in vitro, indicating that osteoblast differentiation occurs by rapamycin when BMSCs are exposed to LPS simultaneously. It was also demonstrated that rapamycin in rapamycin plus LPS-treated rats promoted bone regeneration in vivo. These results suggest that rapamycin may influence osteoblast differentiation and new bone formation after LPS induces an inflammatory environment. Rapamycin may be used to treat periodontitis associated with bone loss in future clinical practice.
Collapse
Affiliation(s)
- Xing Li
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bei Chang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Banchao Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenhuan Bu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liang Zhao
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jie Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Meng
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lu Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Xin
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dandan Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qi Tang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
185
|
BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci Rep 2017; 7:10775. [PMID: 28883412 PMCID: PMC5589848 DOI: 10.1038/s41598-017-10908-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 01/18/2023] Open
Abstract
Dentin sialophosphoprotein (Dspp) as a differentiation marker of odontoblasts is regulated by BMP-2. However, the intimate mechanism is still unknown. Transcription factors Dlx3 and Osx are essential for odontoblasts differentiation. We hypothesized that BMP-2 regulation of Dspp transcription was mediated by Dlx3 and/or Osx in odontoblasts. In the present investigation, we found that BMP-2 stimulated expression and nuclear translocation of Dlx3 and Osx in odontoblasts both in vitro and in vivo. Osx was a downstream target of Dlx3 and both of them stimulated Dsp expression. Both Dlx3 and Osx were able to activate Dspp promoter from nucleotides (nt) -318 to +54 by transfections of luciferase reports containing different lengths of mouse Dspp promoters. The binding of Dlx3 and Osx with nt -318 to +54 of Dspp promoter was verified by chromatin immunoprecipitation in vivo. Two Dlx3 binding sites and one Osx binding site on Dspp promoter were found by EMSA. Furthermore, the exact biological function of these binding sites was confirmed by site-directed mutagenesis. At last, the protein-protein interaction between Dlx3 and Osx in odontoblasts was detected by co-immunoprecipitation. In conclusion, in this study we found a novel signaling pathway in which BMP-2 activates Dspp gene transcription via Dlx3/Osx pathway.
Collapse
|
186
|
Xu H, Wu F, Zhang H, Yang C, Li K, Wang H, Yang H, Liu Y, Ding B, Tan Y, Yuan M, Li Y, Dai Z. Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity. Biochimie 2017; 138:184-193. [PMID: 28457943 DOI: 10.1016/j.biochi.2017.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Microgravity influences the activity of osteoblast, induces actin microfilament disruption and leads to bone loss during spaceflight. Mechanical stress such as gravity, regulates cell function, response and differentiation through dynamic cytoskeleton changes, but the mechanotransduction mechanism remains to be fully elucidated. Previous, we demonstrated actin microfilament mediated osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity (SMG). Here, we explored a potential molecular and its detailed mechanism of actin cytoskeleton functioning on BMP2-Smad signaling in MC3T3-E1 under SMG. Results showed that the actin microfilament-disrupting agent, cytochalasin B (CB), reduced BMP2-induced activation, translocation of Smad1/5/8 and Runx2 expression. SMG also inhibited BMP2-Smad signaling, which was rescued by actin cytoskeleton stabilizing agent, Jasplakinolide (JAS). Furthermore, we found that siRNA mediated knockdown of calponin 1 (CNN1), an actin binding protein, markedly promoted BMP2-Smad signaling and abolished both inhibition of CB, SMG on BMP2-Smad signaling and the rescue action of JAS. Overexpression of CNN1 inhibited the p-Smad induced by BMP2. Bidirectional Co-IP experiments demonstrated CNN1 could interacted with Smad or p-Smad protein. Furthermore, CB or SMG decreased the phosphorylated CNN1 and increased its interaction with Smad or p-Smad. Combined with the phosphorylation of CNN1 inhibites its actin binding activity, these results indicate that actin cytoskeleton depolymerization inhibites BMP2 signaling via blocking of Smad by dephosphorylated CNN1 in osteoblast cells. Thus, we provide new important insights into the mechanism of mechanotransduction under SMG condition, which probably contribute to bone formation decrease induced by SMG.
Collapse
Affiliation(s)
- Hongjie Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Honghui Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yue Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bai Ding
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
187
|
Effects of rhBMP-2 gene transfection to periodontal ligament cells on osteogenesis. Biosci Rep 2017; 37:BSR20160585. [PMID: 28396514 PMCID: PMC5484033 DOI: 10.1042/bsr20160585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aims to investigate the effect of recombinant human bone
morphogenetic protein-2 (rhBMP-2) on the osteogenesis of periodontal ligament (PDL)
cells. The expression vector of rhBMP-2 (pcDNA3.1-rhBMP-2) was established. PDL cells
were obtained through the enzymatic digestion and tissue explant methods and verified
by immunohistochemistry. Cells were classified into experimental (cells transfected
with pcDNA3.1/rhBMP-2-EGFP), blank (cells with no transfection) and control
group (cells transfected with empty plasmid). rhBMP-2 expression was assessed via
Western blotting analysis. The mineralization ability, alkaline phosphatase (ALP)
activity and level of related osteogenic biomarkers were detected to evaluate the
osteogenic characteristics of PDL cells. The rhBMP-2 expression vector
(pcDNA3.1-rhBMP-2) was successfully established. Primary PDL cells displayed a star
or long, spindle shape. The cultured cells were long, spindle-shaped, had a plump
cell body and homogeneous cytoplasm and the ellipse nucleus contained two or three
nucleoli. Cells displayed a radial, sheaf-like or eddy-like arrangement after
adherence growth. Immunohistochemical staining confirmed that cells originated from
mesenchymal opposed to epithelium. The experimental group exhibited an enhanced
mineralization ability, higher ALP activity and increased expression of rhBMP-2 and
osteogenic biomarkers (Runx2, collagen type I and osteocalcin) than the blank and
control group. The present study demonstrated that rhBMP-2 transfection enhances the
osteogenesis of PDL cells and provides a possibility for the application of rhBMP-2
expression products in dental disease treatment.
Collapse
|
188
|
Zhang ZR, Leung WN, Li G, Kong SK, Lu X, Wong YM, Chan CW. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo. Nutrients 2017; 9:E588. [PMID: 28629115 PMCID: PMC5490567 DOI: 10.3390/nu9060588] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/24/2022] Open
Abstract
Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.
Collapse
Affiliation(s)
- Zhong-Rong Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wing Nang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Siu Kai Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yin Mei Wong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Chun Wai Chan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
189
|
Xi L, Guoqing C, Weidong T. [Effect of hypoxia on the biological characteristics of human dental follicle cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:245-252. [PMID: 28675007 DOI: 10.7518/hxkq.2017.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of hypoxia on the characteristics of human dental follicle cells (hDFCs). METHODS The tissue explant collagenase method was used to isolate hDFCs from young permanent teeth. The immunofluorescence technique was used to detect cell surface markers, and the multi-differentiation potential was detected by multilineage differentiation induction assay. Then, the hypoxic microenvironment was physically mimicked, and the cells were divided into the normoxia group (20%O₂) and the hypoxia group (2%O₂). The effects of hypoxia on cell migration and proliferation were examined by Transwell chamber test and CCK-8 assay, respectively. The gene and protein expression levels of stemness-related markers at both oxygen concentrations were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. After osteogenic induction of both groups, qRT-PCR was performed to evaluate the osteogenesis-related gene, and alizarin red staining was used to assess the formation of mineralized nodules. RESULTS With the multi-differentiation capacity of osteogenic cells, adipogenic cells, and nerves, hDFCs demonstrate strong stem cell characteristics and possess the criteria of mesenchymal stem cells, which can meet the requirements of seed cells in dental tissue engineering. Hypoxia was conducive to the maintenance of hDFC stemness. Hypoxia promoted the migration and proliferation of hDFCs. The hDFCs were induced to osteogenic differentiation under hypoxic conditions, thereby enhancing osteogenesis. CONCLUSIONS Hypoxic microenvironment plays an important role in maintaining the stemness and promoting the proliferation, migration, and differentiation of hDFCs. Thus, this microenvironment could also serve several important functions in future clinical applications.
Collapse
Affiliation(s)
- Liang Xi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Oral and Maxillofacial Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Guoqing
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tian Weidong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Oral and Maxillofacial Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
190
|
Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2. PLoS One 2017; 12:e0178520. [PMID: 28542607 PMCID: PMC5444833 DOI: 10.1371/journal.pone.0178520] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Activation of SIRT1 has previously been shown to protect mice against osteoporosis through yet ill-defined mechanisms. In this study, we outline a role for SIRT1 as a positive regulator of the master osteoblast transcription factor, RUNX2. We find that ex vivo deletion of sirt1 leads to decreased expression of runx2 downstream targets, but not runx2 itself, along with reduced osteoblast differentiation. Reciprocally, treatment with a SIRT1 agonist promotes osteoblast differentiation, as well as the expression of runx2 downstream targets, in a SIRT1-dependent manner. Biochemical and luciferase reporter assays demonstrate that SIRT1 interacts with and promotes the transactivation potential of RUNX2. Intriguingly, mice treated with the SIRT1 agonist, resveratrol, show similar increases in the expression of RUNX2 targets in their calvaria (bone tissue), validating SIRT1 as a physiologically relevant regulator of RUNX2.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Cassie J. Liu
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, Massachusetts, United States of America
| | - Leonard Guarente
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
191
|
Le TDH, Liaudanskaya V, Bonani W, Migliaresi C, Motta A. Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications. J Tissue Eng Regen Med 2017; 12:89-97. [DOI: 10.1002/term.2373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/01/2016] [Accepted: 11/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Thi Duy Hanh Le
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
| | - Volha Liaudanskaya
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - Walter Bonani
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Claudio Migliaresi
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| |
Collapse
|
192
|
Augustyniak E, Suchorska WM, Trzeciak T, Richter M. Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part B. Mol Med Rep 2017; 15:2402-2414. [PMID: 28447733 PMCID: PMC5428858 DOI: 10.3892/mmr.2017.6335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/26/2017] [Indexed: 01/15/2023] Open
Abstract
The development of human induced pluripotent stem cells (hiPSCs) is considered a turning point in tissue engineering. However, more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte‑like cells and the relative value of cell differentiation markers. The main aims of the present study were as follows: To determine the gene expression profile of chondrogenic‑like cells derived from hiPSCs cultured in mediums conditioned with HC‑402‑05a cells or supplemented with transforming growth factor β3 (TGF‑β3), and to assess the relative utility of the most commonly‑used chondrogenic markers as indicators of cell differentiation. These issues are relevant with regard to the use of human fibroblasts in the reprogramming process to obtain hiPSCs. Human fibroblasts are derived from mesoderm and thus share a wide range of properties with chondrocytes, which originate from the mesenchyme. The hiPSCs were obtained from human primary dermal fibroblasts during a reprogramming process. Two methods, both involving embryoid bodies (EB), were used to obtain chondrocytes from the hiPSCs: EBs formed in the presence of a chondrogenic medium with TGF‑β3 (10 ng/ml) and EBs formed in a medium conditioned with growth factors from HC‑402‑05a cells. Based on reverse transcription-quantitative polymerase chain reaction analysis, the results demonstrated that hiPSCs are capable of effective chondrogenic differentiation, with the cells obtained in the HC‑402‑05a medium presenting with morphological features and markers characteristic of mature human chondrocytes. In contrast, cells differentiated in the presence of TGF‑β3 presented with certain undesirable hypertrophic characteristics. Several genes, most notably runt‑related transcription factor 2, transforming growth factor β2 and transforming growth factor β3, were good markers of advanced and late hiPSC chondrogenic differentiation, whereas transforming growth factor β3I, II, III receptors and bone morphogenetic protein-2, bone morphogenetic protein-4 and growth differentiation factor 5 were less valuable. These findings provide valuable data on the use of stem cells in cartilage tissue regeneration.
Collapse
Affiliation(s)
- Ewelina Augustyniak
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| | | | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61‑545 Poznan, Poland
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61‑545 Poznan, Poland
| |
Collapse
|
193
|
Roh SY, Park JC. The role of nuclear factor I-C in tooth and bone development. J Korean Assoc Oral Maxillofac Surg 2017; 43:63-69. [PMID: 28462188 PMCID: PMC5410429 DOI: 10.5125/jkaoms.2017.43.2.63] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/15/2023] Open
Abstract
Nuclear factor I-C (NFI-C) plays a pivotal role in various cellular processes such as odontoblast and osteoblast differentiation. Nfic-deficient mice showed abnormal tooth and bone formation. The transplantation of Nfic-expressing mouse bone marrow stromal cells rescued the impaired bone formation in Nfic-/- mice. Studies suggest that NFI-C regulate osteogenesis and dentinogenesis in concert with several factors including transforming growth factor-β1, Krüppel-like factor 4, and β-catenin. This review will focus on the function of NFI-C during tooth and bone formation and on the relevant pathways that involve NFI-C.
Collapse
Affiliation(s)
- Song Yi Roh
- Department of Oral Histology-Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
194
|
Kumagai M, Nishikawa K, Mishima T, Yoshida I, Ide M, Koizumi K, Nakamura M, Morimoto Y. Synthesis of novel 5,6-dehydrokawain analogs as osteogenic inducers and their action mechanisms. Bioorg Med Chem Lett 2017; 27:2401-2406. [PMID: 28427810 DOI: 10.1016/j.bmcl.2017.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022]
Abstract
An imbalance between bone resorption by osteoclasts and bone formation by osteoblasts can cause bone loss and bone-related disease. In a previous search for natural products that increase osteogenic activity, we found that 5,6-dehydrokawain (1) from Alpinia zerumbet promotes osteoblastogenesis. In this study, we synthesized and evaluated series of 5,6-dehydrokawain analogs. Our structure-activity relationships revealed that alkylation of para or meta position of aromatic ring of 1 promote osteogenic activity. Among the potential analogs we synthesized, (E)-6-(4-Ethylstyryl)-4-methoxy-2H-pyran-2-one (14) and (E)-6-(4-Butylstyryl)-4-methoxy-2H-pyran-2-one (21) both significantly up-regulated Runx2 and Osterix mRNA expression at 10µM. These osteogenic activities could be mediated by bone morphogenetic protein (BMP) and activation of p38 MAPK signaling pathways. Compounds 14 and 21 also inhibited RANKL-induced osteoclast differentiation of RAW264 cells. These results indicated that novel 5,6-dehydrokawain analogs not only increase osteogenic activity but also inhibit osteoclast differentiation, and could be potential lead compounds for the development of anti-osteoporosis agents.
Collapse
Affiliation(s)
- Momochika Kumagai
- Department of Research and Development, Japan Food Research Laboratories, Osaka 567-0085, Japan; Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Keisuke Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takashi Mishima
- Department of Research and Development, Japan Food Research Laboratories, Osaka 567-0085, Japan
| | - Izumi Yoshida
- Department of Research and Development, Japan Food Research Laboratories, Osaka 567-0085, Japan
| | - Masahiro Ide
- Department of Research and Development, Japan Food Research Laboratories, Osaka 567-0085, Japan
| | - Keiko Koizumi
- Department of Research and Development, Japan Food Research Laboratories, Osaka 567-0085, Japan
| | - Munetomo Nakamura
- Department of Research and Development, Japan Food Research Laboratories, Osaka 567-0085, Japan
| | - Yoshiki Morimoto
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
195
|
Song R, Fullerton DA, Ao L, Zhao KS, Meng X. An epigenetic regulatory loop controls pro-osteogenic activation by TGF-β1 or bone morphogenetic protein 2 in human aortic valve interstitial cells. J Biol Chem 2017; 292:8657-8666. [PMID: 28377507 DOI: 10.1074/jbc.m117.783308] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/03/2017] [Indexed: 01/04/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is common in the elderly population, but pharmacological interventions for managing valvular calcification are unavailable. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) induce pro-osteogenic activation of human aortic valve interstitial cells (AVICs) that play an important role in valvular calcification. However, the molecular mechanism underlying pro-osteogenic activation in AVICs is incompletely understood. Here, we investigated an epigenetic regulatory mechanism in human AVIC pro-osteogenic activation induced by TGF-β1 and BMP-2. Microarray and real-time PCR analyses revealed that microRNA (miR)-486 up-regulation and miR-204 down-regulation were characteristic changes in TGF-β1- and BMP-2-stimulated normal AVICs and in AVICs from calcified valves. Both TGF-β1 and BMP-2 down-regulated miR-204 through Smad pathways. Interestingly, an miR-486 antagomir diminished the effect of TGF-β1 and BMP-2 on miR-204 levels and calcium deposit formation. Furthermore, the miR-486 antagomir increased the expression of Smurf2, a Smad inhibitor, in the presence or absence of TGF-β1 or BMP-2 stimulation, whereas a miR-486 mimic reduced Smurf2 expression. Smurf2 knockdown augmented TGF-β1- or BMP-2-induced miR-204 down-regulation and resulted in increased expression of the osteoblastic biomarkers Osx and Runx2. In summary, we found that TGF-β1 and BMP-2 up-regulate miR-486 and down-regulate miR-204 in human AVICs to promote pro-osteogenic activity and that miR-486 inhibits Smurf2 expression to augment the miR-204 down-regulation. We conclude that the miR-486-Smurf2-Smad loop plays an important role in regulating AVIC pro-osteogenic activation in response to TGF-β1 or BMP-2. Targeting this regulatory loop may have therapeutic potential for suppressing aortic valve calcification.
Collapse
Affiliation(s)
- Rui Song
- From the Department of Surgery, University of Colorado Denver, Aurora, Colorado 80045 and
| | - David A Fullerton
- From the Department of Surgery, University of Colorado Denver, Aurora, Colorado 80045 and
| | - Lihua Ao
- From the Department of Surgery, University of Colorado Denver, Aurora, Colorado 80045 and
| | - Ke-Seng Zhao
- the Department of Pathophysiology, Guangdong Key Laboratory of Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, China
| | - Xianzhong Meng
- From the Department of Surgery, University of Colorado Denver, Aurora, Colorado 80045 and
| |
Collapse
|
196
|
Ma XN, Ma CX, Shi WG, Zhou J, Ma HP, Gao YH, Xian CJ, Chen KM. Primary cilium is required for the stimulating effect of icaritin on osteogenic differentiation and mineralization of osteoblasts in vitro. J Endocrinol Invest 2017; 40:357-366. [PMID: 27770387 DOI: 10.1007/s40618-016-0568-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Icaritin, one effective metabolite of Herba Epimedii-derived flavonoid icariin, has a strong osteogenic activity. However, its action mechanism remains unclear. Since primary cilia have been shown to play a pivotal role in regulating the osteogenesis, we hypothesized primary cilia are indispensable in mediating icaritin osteogenic effect. MATERIALS AND METHODS Primary rat calvarial osteoblasts were transfected with siRNA1 targeting intraflagellar transport protein 88 (IFT88), a protein required for ciliogenesis, to prevent formation of primary cilium and were treated with 10-6 M icaritin. RESULTS Alkaline phosphatase (ALP) activity was significantly increased after 3 days in cells transfected with scrambled siRNA control and treated by icaritin (SC+I group) compared to cells transfected with scrambled siRNA control only (SC group). ALP activity after IFT88 siRNA1 transfection and icaritin treatment (siRNA1+I group) was significantly lower than that of SC+I group. Formation of ALP positively stained colonies after 6 days, osteocalcin secretion after 9 days and formation of calcified nodules after 12 days displayed a similar tendency among the three groups. mRNA expression of osteogenesis-related genes ALP, BMP-2, COL1α, RUNX-2 and OSX after 24 h was significantly increased in SC+I group, but was not different with SC group in siRNA1+I group. Protein levels of BMP-2, COL1α, RUNX-2 and OSX after 48 h showed the similar tendency with gene expression. CONCLUSION Primary cilia are important in mediating icaritin-stimulated osteogenic differentiation and may be a novel target for pharmacological therapies for bone loss.
Collapse
Affiliation(s)
- X-N Ma
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - C-X Ma
- Department of Laboratory, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - W-G Shi
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
| | - J Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
| | - H-P Ma
- Department of Pharmacy, Lanzhou General Hospital of CPLA, Lanzhou, 730050, People's Republic of China
| | - Y-H Gao
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
| | - C J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - K-M Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
197
|
Merlin Rajesh Lal LP, Suraishkumar GK, Nair PD. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton's Jelly mesenchymal stem cells. J Biomed Mater Res A 2017; 105:1845-1855. [DOI: 10.1002/jbm.a.36054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- L. P. Merlin Rajesh Lal
- Department of Biotechnology; IIT Madras; Chennai Tamil Nadu 600036 India
- Division of Tissue Engineering and Regeneration Technologies; Sree Chitra Tirunal Institute for Medical Sciences and Technology; BMT Wing Trivandrum Kerala 695012 India
| | - G. K. Suraishkumar
- Division of Tissue Engineering and Regeneration Technologies; Sree Chitra Tirunal Institute for Medical Sciences and Technology; BMT Wing Trivandrum Kerala 695012 India
| | - Prabha D. Nair
- Division of Tissue Engineering and Regeneration Technologies; Sree Chitra Tirunal Institute for Medical Sciences and Technology; BMT Wing Trivandrum Kerala 695012 India
| |
Collapse
|
198
|
Hughes A, Oxford AE, Tawara K, Jorcyk CL, Oxford JT. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis. Int J Mol Sci 2017; 18:ijms18030665. [PMID: 28335520 PMCID: PMC5372677 DOI: 10.3390/ijms18030665] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/11/2022] Open
Abstract
Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.
Collapse
Affiliation(s)
- Alexandria Hughes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Alexandra E Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Ken Tawara
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
199
|
mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol 2017; 37:MCB.00668-16. [PMID: 28069737 DOI: 10.1128/mcb.00668-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor (Rptor) in Osterix-expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro, osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation.
Collapse
|
200
|
Sun P, Li L, Zhao C, Pan M, Qian Z, Su X. Deficiency of α7 nicotinic acetylcholine receptor attenuates bleomycin-induced lung fibrosis in mice. Mol Med 2017; 23:34-39. [PMID: 28283678 DOI: 10.2119/molmed.2016.00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 02/14/2017] [Indexed: 01/21/2023] Open
Abstract
α7 nicotinic acetylcholine receptor (α7 nAChR, coded by Chrna7) is indispensible in dampening proinflammatory responses. However, whether α7 nAChR would play a role in regulating bleomycin (BLM)-induced lung fibrosis is less investigated. Here, we intratracheally challenged wildtype and Chrna7-/- mice with BLM to elicit lung fibrosis. Taken advantage of this model, we measured body weight loss, lung fibrogenic genes (Acta2, Col1a1, Fsp1, and Fstl1), histology, Masson's trichrome staining, hydroxyproline levels, and expression of α-SMA at protein levels in the BLM-challenged lung for evaluating severity of lung fibrosis. We also pretreated human fibroblasts (MRC5 cell line) and isolated mouse lung fibroblasts with GTS-21 (an α7 nAChR agonist) to study its effects on TGF-β-stimulated profibrotic profiles. We found that lung Chrna7 expression and CD4+CHAT+ (Choline acetyltransferase, an enzyme for local acetylcholine synthesis) cells were 12-fold and 4.5-fold respectively elevated in the early stage of lung fibrosis. Deletion of Chrna7 prevented body weight loss and reduced lung fibrogenic genes (Acta2, Col1a1, Fsp1, and Fstl1) and Arg 1 (coding arginase 1). Deletion of Chrna7 attenuated lung arginase 1+Ly6C+ cells, Masson's trichrome staining, hydroxyproline levels, and expression of α-SMA at protein levels in BLM-challenged mice. Mechanistically, activation of α7 nAChR in human fibroblasts increased TGF-β-induced phosphorylation of Smad2/3 and transcription of fibrogenic genes (Acta2, Col1a1). In isolated mouse lung fibroblasts, activation of α7 nAChR also enhanced TGF-β induced-transcription of fibrogenic genes; however, deletion of Chrna7 diminished these effects. Taken together, deficiency of α7 nAChR could suppress the development of BLM-induced lung fibrosis. Thus, α7 nAChR might be a novel therapeutic target for treating lung fibrosis.
Collapse
Affiliation(s)
- Peiyu Sun
- Life and Environment Science College, Shanghai Normal University, Shanghai, China
| | - Ling Li
- Unit of Respiratory Infection and Immunity, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengyao Pan
- Unit of Respiratory Infection and Immunity, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|