151
|
Chao PW, Yang KM, Chiang YC, Chiang PY. The formulation and the release of low–methoxyl pectin liquid-core beads containing an emulsion of soybean isoflavones. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
152
|
Transglutaminase-Induced Free-Fat Yogurt Gels Supplemented with Tarragon Essential Oil-Loaded Nanoemulsions: Development, Optimization, Characterization, Bioactivity, and Storability. Gels 2022; 8:gels8090551. [PMID: 36135262 PMCID: PMC9498499 DOI: 10.3390/gels8090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is a high demand for designing healthy-functional dairy gels with a newly structured protein network in the food industry. Non-fat yogurt gels enriched with stable tarragon essential oil-nanoemulsions (TEO-NEs) using crosslinking of microbial transglutaminase (MTGase) were developed. The gas chromatography-mass spectrometry analysis showed that methyl chavicol (85.66%) was the major component in TEO extracted by the hydrodistillation process. The storage-dependent droplet size and physicochemical stability data of samples at room temperature for 30 days revealed that the TEO-NE containing 0.5% tween-80 and 1:2 TEO/sunflower oil had the lowest peroxide value and droplet growth ratio. The response surface methodology-based formulation optimization of free-fat yogurt gels using MTGase (0.15–0.85 U/g) and the best TEO-NE (0.5–3.02%) using the fitted second-order polynomial models proved that the combination of 0.87% TEO-NE and 0.70 U/g MTGase led to the desired pH (4.569) and acidity (88.3% lactic acid), minimum syneresis (27.03 mL/100 g), and maximum viscosity (6.93 Pa s) and firmness (0.207 N) responses. Scanning electron microscopy images visualized that the MTGase-induced crosslinks improved the gel structure to increase the firmness and viscosity with a reduction in the syneresis rate. The optimal yogurt gel as a nutritious diet not only provided the highest organoleptic scores but also maintained its storage-related quality with the lowest mold/yeast growth and free-radical oxidation changes.
Collapse
|
153
|
Saini A, Panesar PS, Dilbaghi N, Prasad M, Bera MB. Lutein extract loaded nanoemulsions: Preparation, characterization, and application in dairy product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anuradha Saini
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur India
| | - Parmjit Singh Panesar
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Neeraj Dilbaghi
- Department of Bio & Nano Technology Guru Jambheshwar University of Science & Technology Haryana India
| | - Minakshi Prasad
- Department of Animal Biotechnology Lala Lajpat Rai University of Veterinary and Animal Sciences Hisar India
| | - Manab Bandhu Bera
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
154
|
Rodrigues JPB, Liberal Â, Petropoulos SA, Ferreira ICFR, Oliveira MBPP, Fernandes Â, Barros L. Agri-Food Surplus, Waste and Loss as Sustainable Biobased Ingredients: A Review. Molecules 2022; 27:molecules27165200. [PMID: 36014439 PMCID: PMC9412510 DOI: 10.3390/molecules27165200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ensuring a sustainable supply of food for the world’s fast growing population is a major challenge in today’s economy, as modern lifestyle and increasing consumer concern with maintaining a balanced and nutritious diet is an important challenge for the agricultural sector worldwide. This market niche for healthier products, especially fruits and vegetables, has increased their production, consequently resulting in increased amounts of agri-food surplus, waste, and loss (SWL) generated during crop production, transportation, storage, and processing. Although many of these materials are not utilized, negatively affecting the environmental, economic, and social segments, they are a rich source of valuable compounds that could be used for different purposes, thus preventing the losses of natural resources and boosting a circular economy. This review aimed to give insights on the efficient management of agri-food SWL, considering conventional and emerging recovery and reuse techniques. Particularly, we explored and summarized the chemical composition of three worldwide cultivated and consumed vegetables (carrots, broccoli and lettuce) and evaluate the potential of their residues as a sustainable alternative for extracting value-added ingredients for the development of new biodynamic products.
Collapse
Affiliation(s)
- Joana P. B. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 384 46 Volos, Greece
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (Â.F.); (L.B.)
| |
Collapse
|
155
|
Ali Mahdi A, Mohammed JK, Al‐Ansi W, Al‐Maqtari QA, Al‐Adeeb A, Cui H, Lin L. Stabilization of the water‐in‐oil emulsions of
Citrus reticulata
essential oil by different combinations of gum arabic/maltodextrin/whey protein. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amer Ali Mahdi
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
| | | | - Waleed Al‐Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | - Qais Ali Al‐Maqtari
- Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University Sana'a Yemen
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | | | - Haiying Cui
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Lin Lin
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- State Key Laboratory of Utilization of Woody Oil Resource Hunan Academy of Forestry Changsha China
| |
Collapse
|
156
|
Mavalizadeh A, Fazlara A, PourMahdi M, Bavarsad N. The effect of separate and combined treatments of nisin, Rosmarinus officinalis essential oil (nanoemulsion and free form) and chitosan coating on the shelf life of refrigerated chicken fillets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
157
|
Wang C, Li J, Sun Y, Wang C, Guo M. Fabrication and characterization of a cannabidiol-loaded emulsion stabilized by a whey protein-maltodextrin conjugate and rosmarinic acid complex. J Dairy Sci 2022; 105:6431-6446. [PMID: 35688741 DOI: 10.3168/jds.2022-21862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2023]
Abstract
A cannabidiol (CBD)-loaded oil-in-water emulsion stabilized by a whey protein (WP)-maltodextrin (MD) conjugate and rosmarinic acid (RA) complex was fabricated, and its stability characteristics were investigated under various environmental conditions. The WP-MD conjugates were formed via dry-heating. The interaction between WP and MD was assessed by browning intensity, reduced amount of free amino groups, the formation of high molecular weight components in sodium dodecyl sulfate-PAGE, and changes in secondary structure of whey proteins. The WP-MD-RA noncovalent complex was prepared and confirmed by fluorescence quenching and Fourier-transform infrared spectroscopy spectra. Emulsions stabilized by WP, WP-MD, and WP-RA were used as references to evaluate the effect of WP-MD-RA as a novel emulsifier. Results showed that WP-MD-RA was an effective emulsifier to produce fine droplets for a CBD-loaded emulsion and remarkably improved the pH and salt stabilities of emulsions in comparison with WP. An emulsion prepared with WP-MD-RA showed the highest protection of CBD against UV and heat-induced degradation among all emulsions. The ternary complex kept emulsions in small particle size during storage at 4°C. Data from the current study may offer useful information for designing emulsion-based delivery systems which can protect active substance against environmental stresses.
Collapse
Affiliation(s)
- Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ji Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yonghai Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405; College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
158
|
Gorjian H, Mihankhah P, Khaligh NG. Influence of tween nature and type on physicochemical properties and stability of spearmint essential oil (Mentha spicata L.) stabilized with basil seed mucilage nanoemulsion. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
159
|
Lagreca E, Vecchione R, Di Cicco C, D’Aria F, La Rocca A, De Gregorio E, Izzo L, Crispino R, Mollo V, Bedini E, Imparato G, Ritieni A, Giancola C, Netti PA. Physicochemical and in vitro biological validation of food grade secondary oil in water nanoemulsions with enhanced mucus-adhesion properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
160
|
Wang S, Wang T, Li X, Cui Y, Sun Y, Yu G, Cheng J. Fabrication of emulsions prepared by rice bran protein hydrolysate and ferulic acid covalent conjugate: Focus on ultrasonic emulsification. ULTRASONICS SONOCHEMISTRY 2022; 88:106064. [PMID: 35749957 PMCID: PMC9234231 DOI: 10.1016/j.ultsonch.2022.106064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 05/07/2023]
Abstract
The aim of the paper was to investigate the effect of ultrasonic emulsification treatment on the fabrication mechanism and stability of the emulsion. The covalent conjugate made with rice bran protein hydrolysate (RBPH) and ferulic acid (FA) was used as the emulsifier. The effects of high intensity ultrasound (HIU) power with different level (0 W, 150 W, 300 W, 450 W and 600 W) on the stability of emulsion were evaluated. The results showed that ultrasonic emulsification can significantly improve the stability of the emulsions (p < 0.05). The emulsion gained better stability and emulsifying property at 300 W. It was able to fabricate emulsion with smaller particle size, more uniform distribution and higher interfacial protein content. It was confirmed by fluorescent microscopy and cryo-scanning electron microscopy (cryo-SEM) furtherly. And it was also proved that the emulsion treated by proper HIU treatment at 300 W had better storage stability. Excessive HIU treatment (450 W, 600 W) had negative effects on the stability of emulsion. The stability of emulsion (300 W) against different environmental stresses was further explored, which established a theoretical basis for the industrial application of emulsion in food industry.
Collapse
Affiliation(s)
- Shirang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tengyu Wang
- School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Xiaoyi Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingju Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
161
|
Sarkar S, Ohshima H, Gopmandal PP. Gel Electrophoresis of a Hydrophobic Liquid Droplet with an Equipotential Slip Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8943-8953. [PMID: 35830337 DOI: 10.1021/acs.langmuir.2c01112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A theoretical study has been carried out on the electrophoresis of charged dielectric liquid droplets with an equipotential and hydrodynamically slipping surface moving in a quenched polymeric charged hydrogel medium. The liquid inside the droplet is electrically neutral. The Brinkman-Debye-Bueche model is employed to study the gel electrophoresis of such a hydrophobic and equipotential liquid droplet considering the long-range hydrodynamic interaction between a migrating droplet and the gel skeleton. Within the weak field and Debye-Hückel electrostatic framework, we derive an original closed-form expression for electrophoretic mobility, which further recovers the existing mobility expressions derived under several limiting conditions. The derived expressions for electrophoretic mobility explicitly involve exponential integrals, which are not so convenient for practical applications. Thus, the exact forms of the electrophoretic mobility under various electrohydrodynamic conditions are further approximated to make them free from exponential integrals. The approximate forms are found to be in excellent agreement with the exact results with maximum relative errors of about 1.5%.
Collapse
Affiliation(s)
- Sankar Sarkar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata - 700108, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur - 713209, India
| |
Collapse
|
162
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022; 11:2194. [PMID: 35892779 PMCID: PMC9331899 DOI: 10.3390/foods11152194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers' presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions' stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions' organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
- SAS GENIALIS, Route d’Achères, 18250 Henrichemont, France;
| | - Sylvie Desobry-Banon
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| | | | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| |
Collapse
|
163
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
164
|
Kavya M, Calister MW, Jayamurthy P, Nisha P. Red Palm Oil Pickering emulsion with pectin yields improved
in‐vitro
beta carotene bioaccessibility and oil stability: Physico‐chemical characterization and shelf stability studies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohan Kavya
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad ‐ 201002 India
| | - Makebe Wingang Calister
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Ecole Nationale Supérieure des Sciences Agro‐Industrielles (ENSAI) Université de Ngaoundéré Cameroon
| | - P. Jayamurthy
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad ‐ 201002 India
| | - P. Nisha
- CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad ‐ 201002 India
| |
Collapse
|
165
|
Abstract
Advances in microfabrication and biomaterials have enabled the development of microfluidic chips for studying tissue and organ models. While these platforms have been developed primarily for modeling human diseases, they are also used to uncover cellular and molecular mechanisms through in vitro studies, especially in the neurovascular system, where physiological mechanisms and three-dimensional (3D) architecture are difficult to reconstruct via conventional assays. An extracellular matrix (ECM) model with a stable structure possessing the ability to mimic the natural extracellular environment of the cell efficiently is useful for tissue engineering applications. Conventionally used techniques for this purpose, for example, Matrigels, have drawbacks of owning complex fabrication procedures, in some cases not efficient enough in terms of functionality and expenses. Here, we proposed a fabrication protocol for a GelMA hydrogel, which has shown structural stability and the ability to imitate the natural environment of the cell accurately, inside a microfluidic chip utilizing co-culturing of two human cell lines. The chemical composition of the synthesized GelMA was identified by Fourier transform infrared spectrophotometry (FTIR), its surface morphology was observed by field emission electron microscopy (FESEM), and the structural properties were analyzed by atomic force microscopy (AFM). The swelling behavior of the hydrogel in the microfluidic chip was imaged, and its porosity was examined for 72 h by tracking cell localization using immunofluorescence. GelMA exhibited the desired biomechanical properties, and the viability of cells in both platforms was more than 80% for seven days. Furthermore, GelMA was a viable platform for 3D cell culture studies and was structurally stable over long periods, even when prepared by photopolymerization in a microfluidic platform. This work demonstrated a viable strategy to conduct co-culturing experiments as well as modeling invasion and migration events. This microfluidic assay may have application in drug delivery and dosage optimization studies.
Collapse
|
166
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
167
|
Hunter SJ, Armes SP. Long-Term Stability of Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles: Effect of Nanoparticle Core Crosslinking, Oil Type, and the Role Played by Excess Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8021-8029. [PMID: 35737742 PMCID: PMC9261185 DOI: 10.1021/acs.langmuir.2c00821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/06/2022] [Indexed: 05/28/2023]
Abstract
A poly(N,N'-dimethylacrylamide) (PDMAC) precursor is chain-extended via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of diacetone acrylamide (PDAAM) to produce PDMAC77-PDAAM40 spherical nanoparticles. Post-polymerization core-crosslinking of such nanoparticles was performed at 20 °C, and the resulting covalently stabilized nanoparticles survive exposure to methanol. The linear and core-crosslinked nanoparticles were subjected to high-shear homogenization in turn in the presence of n-dodecane to form macroemulsions. Subsequent processing of these macroemulsions via high-pressure microfluidization produced nanoemulsions. When using the core crosslinked nanoparticles, the droplet diameter was strongly dependent on the copolymer concentration. This indicates that such nanoparticles remain intact under the processing conditions, leading to formation of genuine Pickering nanoemulsions with a z-average diameter of 244 ± 60 nm. In contrast, the linear nanoparticles undergo disassembly to afford molecularly dissolved diblock copolymer chains, which stabilize oil droplets of 170 ± 59 nm diameter. The long-term stability of these two types of n-dodecane-in-water nanoemulsions with respect to Ostwald ripening was examined using analytical centrifugation. When prepared at the same copolymer concentration, Pickering nanoemulsions stabilized by core-crosslinked nanoparticles proved to be significantly more stable than the nanoemulsion stabilized by the amphiphilic PDMAC77-PDAAM40 chains. Moreover, higher copolymer concentrations led to a significantly faster rate of droplet growth. This is attributed to excess copolymer facilitating the diffusion of n-dodecane through the aqueous phase. Finally, analytical centrifugation is used to assess the long-term stability of the analogous squalane-in-water nanoemulsions. These systems are much more stable than the corresponding n-dodecane-in-water nanoemulsions, regardless of whether the copolymer is adsorbed as sterically stabilized nanoparticles or surface-active chains.
Collapse
Affiliation(s)
- Saul J. Hunter
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
168
|
Impact of Oil Phase Solubility on Droplet Ripening when Nanoemulsions are Mixed with Emulsions. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
169
|
Study of the spontaneous nano-emulsification process with different octadecyl succinic anhydride derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
170
|
Sanchez A, García MC, Martín-Piñero MJ, Muñoz J, Alfaro-Rodríguez MC. Elaboration and characterization of nanoemulsion with orange essential oil and pectin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3543-3550. [PMID: 34854080 DOI: 10.1002/jsfa.11698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nanoemulsions formulated with citric essential oils are currently of interest because of their physical and chemical properties and multiple applications in areas such as the food industry or agrochemicals. These are thermodynamically unstable and have almost Newtonian flow behaviour, but a suitable formulation allows systems to be obtained with good physical stability and rheological properties. The addition of pectin makes this possible. In this work, food nanoemulsions formulated with pectin, orange essential oil (5 wt%), and Tween 80 were obtained by microfluidization. First, the effect of Tween 80 concentration from 1 to 5 wt% on emulsions without pectin was evaluated. Then, pectin was added to the most stable nanoemulsion obtained and two variables were studied: the pectin solution concentration (from 2 to 6 wt%) and the pectin/emulsion ratio (1:1 or 2:1) at a fixed pectin concentration. RESULTS Rheological, laser diffraction, and multiple light scattering techniques were employed to determine the content of Tween 80 that results in the most stable nanoemulsion without pectin, which was 3 wt%. In addition, these techniques were used to determine the structure and physical stability of the nanoemulsions containing orange essential oil and pectin. The results obtained showed that the emulsions containing 2 wt% pectin were destabilized before 24 h. Furthermore, the emulsion with 6 wt% pectin and a 2:1 pectin/emulsion ratio showed the highest viscosity and the lowest mean diameters, and therefore the greatest stability. CONCLUSION This work extends the knowledge of formulation of nanoemulsions and using essential oils. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Sanchez
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - María Carmen García
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - María José Martín-Piñero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - José Muñoz
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
171
|
Multi target interactions of essential oil nanoemulsion of Cinnamomum travancoricum against diabetes mellitus via in vitro, in vivo and in silico approaches. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
172
|
Miranda M, Ribeiro MDMM, Spricigo PC, Pilon L, Mitsuyuki MC, Correa DS, Ferreira MD. Carnauba wax nanoemulsion applied as an edible coating on fresh tomato for postharvest quality evaluation. Heliyon 2022; 8:e09803. [PMID: 35800251 PMCID: PMC9254341 DOI: 10.1016/j.heliyon.2022.e09803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 12/22/2022] Open
Abstract
Edible coatings to extend the shelf life and preserve the quality of fruit and vegetables are highly demanded nowadays. Recently, plant-based edible coatings have gained importance in the context of sustainability, which in combination with suitable top-down process can render “greener” nanoemulsions with optimized properties. Herein we developed a carnauba wax nanoemulsion (CWN) by using a high-pressure processing to be applied as an edible coating for fruit and vegetables. The as-developed nanoemulsion properties were compared to conventional carnauba wax emulsion (CWM), where CWN showed particle size diameter of 44 nm and narrow distribution, while CWM displayed larger particles and wider size distribution (from 200 to 1700 nm). For assessment of the postharvest quality, cv. ‘Debora’ tomatoes, employed here as a model, were coated with CWN or CWM, at concentrations of 9 and 18%, and then compared to uncoated fruit during storage at 23 °C for 15 days. Evaluation of fruit quality, including sugar, acids, pH, water vapor loss, firmness, gloss, color, ethylene and respiratory activity, were assessed at every 3 days, while sensory test were carried out at the end of storage. Uncoated tomatoes presented the highest water loss values, meanwhile, firmness, ethylene, and respiratory activity were not largely modified by the coatings during storage. Tomatoes coated with the CWN exhibited the highest instrumental gloss and were preferred by consumers in sensory evaluations, indicating the potential of the as-developed carnauba wax green nanoemulsion for postharvest applications.
Collapse
Affiliation(s)
- Marcela Miranda
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
- PPGBiotec, Center for Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, CEP 13565-905, Brazil
| | | | - Poliana C. Spricigo
- University of São Paulo - Luiz de Queiroz College of Agriculture, Piracicaba, SP, CEP 13418-900, Brazil
| | - Lucimeire Pilon
- Embrapa Hortaliças, Rodovia BR060, Km 9, Caixa Postal 218, Brasília, DF, 70351-970, Brazil
| | - Milene C. Mitsuyuki
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
| | - Daniel S. Correa
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
- PPGBiotec, Center for Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, CEP 13565-905, Brazil
- Corresponding author.
| | - Marcos D. Ferreira
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos, SP, 13560-970, Brazil
- PPGBiotec, Center for Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, CEP 13565-905, Brazil
- Corresponding author.
| |
Collapse
|
173
|
Jafarinia S, Fallah AA, Dehkordi SH. Effect of virgin olive oil nanoemulsion combined with ajowan (Carum copticum) essential oil on the quality of lamb loins stored under chilled condition. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
174
|
Adinepour F, Pouramin S, Rashidinejad A, Jafari SM. Fortification/enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Res Int 2022; 157:111212. [DOI: 10.1016/j.foodres.2022.111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
|
175
|
Hebishy E, Collette L, Iheozor‐Ejiofor P, Onarinde B. Stability and antimicrobial activity of lemongrass essential oil in nanoemulsions produced by high‐intensity ultrasounds and stabilized by soy lecithin, hydrolysed whey proteins, gum Arabic or their ternary admixture. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Essam Hebishy
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Laurine Collette
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
- IUT‐Dijon‐Auxerre, Department of BioEngineering Dijon Cedex France
| | - Pamela Iheozor‐Ejiofor
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| | - Bukola Onarinde
- Centre of Excellence in Agri‐food Technologies, National Centre for Food Manufacturing College of Sciences, University of Lincoln Holbeach Spalding United Kingdom
| |
Collapse
|
176
|
Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods 2022; 11:foods11131858. [PMID: 35804672 PMCID: PMC9265609 DOI: 10.3390/foods11131858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs’ preparation is tailored to enhance not only physical stability but also resulting Eos’ antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.
Collapse
Affiliation(s)
- Asma Jayari
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-964-135
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| |
Collapse
|
177
|
Ke L, Tan Y, Xu Y, Gao G, Wang H, Luo S, Zhou J, Wang Q. Effects of peroxidase and superoxide dismutase on physicochemical stability of fish oil-in-water emulsion. NPJ Sci Food 2022; 6:31. [PMID: 35739194 PMCID: PMC9226006 DOI: 10.1038/s41538-022-00146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
How to maintain the physicochemical stability of oil emulsion has been one of the major challenges in food industry. Previously we reported the demulsification effects of catalase in the fish oil emulsion. In comparison, the influences of other two metal ion-containing oxidoreductases, horseradish peroxidase (HRP) and copper/zinc superoxide dismutase (SOD), on the emulsion’s stability were investigated. Submicron fish oil-in-water emulsion stabilized by polysorbate 80 was prepared by high-speed homogenization. Its physical stability was evaluated by visual and microscopic observation, turbidity and light scattering measurements, while chemical stability by the hydroperoxide content and lipid peroxidation. HRP demulsified the emulsion in a concentration-responsive manner after 3–7 days’ incubation, resulting in a decreased turbidity and significant delamination. The enlargement of oil-polysorbate droplets and protein precipitates were confirmed by size distribution and TEM observation. HRP initially elevated the emulsion’s hydroperoxide then decreased it while raising TBARS levels during 7-Day incubation. In contrary, SOD stabilized the emulsion physically and chemically. The demulsification was correspondingly attributed to the oxidation catalyzing activity of the peroxidase and the electrostatic and hydrophobic interaction between lipids and proteins. This study adds new insight to the influences of the two oxidoreductases on the stability, lipids and peroxides of food emulsions, proposes an exciting subject of elucidating the underlying mechanism.
Collapse
Affiliation(s)
- Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ying Tan
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yang Xu
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Guanzhen Gao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Sihao Luo
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
178
|
Almeida F, Corrêa M, Zaera AM, Garrigues T, Isaac V. Influence of different surfactants on development of nanoemulsion containing fixed oil from an Amazon palm species. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
179
|
Effect of pectin on the properties of nanoemulsions stabilized by sodium caseinate at neutral pH. Int J Biol Macromol 2022; 209:1858-1866. [PMID: 35489623 DOI: 10.1016/j.ijbiomac.2022.04.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022]
Abstract
The effect of different concentrations of low methoxyl pectin (LMP) on lipid oxidation and physical stability of sodium caseinate (CAS) stabilized nanoemulsions under neutral pH was investigated. The addition of pectin at low concentration (≤ 0.10 wt%) had no significant effect on the average size of nanoemulsions, but a slight size increase and phase separation were observed at higher concentrations of pectin (≥ 0.25 wt%). This result suggests that LMP can not adsorb at the oil/water interfacial CAS membrane at neutral pH. However, in the presence of LMP, the physical stability of nanoemulsions against high salt concentrations and freeze-thaw cycles was significantly enhanced. Moreover, nanoemulsions containing pectin have a better ability to inhibit lipid and protein oxidation than nanoemulsions without pectin after 3 weeks, and the lowest lipid hydroperoxide content was observed for nanoemulsions containing 0.25 wt% pectin.
Collapse
|
180
|
Combination of microwave heating and transglutaminase cross-linking enhances the stability of limonene emulsion carried by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
181
|
|
182
|
Ozogul Y, Karsli GT, Durmuş M, Yazgan H, Oztop HM, McClements DJ, Ozogul F. Recent developments in industrial applications of nanoemulsions. Adv Colloid Interface Sci 2022; 304:102685. [PMID: 35504214 DOI: 10.1016/j.cis.2022.102685] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology is being utilized in various industries to increase the quality, safety, shelf-life, and functional performance of commercial products. Nanoemulsions are thermodynamically unstable colloidal dispersions that consist of at least two immiscible liquids (typically oil and water), as well as various stabilizers (including emulsifiers, texture modifiers, ripening inhibitors, and weighting agents). They have unique properties that make them particularly suitable for some applications, including their small droplet size, high surface area, good physical stability, rapid digestibility, and high bioavailability. This article reviews recent developments in the formulation, fabrication, functional performance, and gastrointestinal fate of nanoemulsions suitable for use in the pharmaceutical, cosmetic, nutraceutical, and food industries, as well as providing an overview of regulatory and health concerns. Nanoemulsion-based delivery systems can enhance the water-dispersibility, stability, and bioavailability of hydrophobic bioactive compounds. Nevertheless, they must be carefully formulated to obtain the required functional attributes. In particular, the concentration, size, charge, and physical properties of the nano-droplets must be taken into consideration for each specific application. Before launching a nanoscale product onto the market, determination of physicochemical characteristics of nanoparticles and their potential health and environmental risks should be evaluated. In addition, legal, consumer, and economic factors must also be considered when creating these systems.
Collapse
Affiliation(s)
- Yesim Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey.
| | | | - Mustafa Durmuş
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| | - Hatice Yazgan
- Cukurova University, Faculty of Ceyhan Veterinary Medicine, Department of Food Hygiene and Technology of Veterinary Medicine, Adana, Turkey
| | - Halil Mecit Oztop
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey
| | | | - Fatih Ozogul
- Cukurova University, Seafood Processing Technology, Adana, Turkey
| |
Collapse
|
183
|
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8:e09394. [PMID: 35600452 PMCID: PMC9118483 DOI: 10.1016/j.heliyon.2022.e09394] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes are now considered the most commonly used nanocarriers for various potentially active hydrophobic and hydrophilic molecules due to their high biocompatibility, biodegradability, and low immunogenicity. Liposomes also proved to enhance drug solubility and controlled distribution, as well as their capacity for surface modifications for targeted, prolonged, and sustained release. Based on the composition, liposomes can be considered to have evolved from conventional, long-circulating, targeted, and immune-liposomes to stimuli-responsive and actively targeted liposomes. Many liposomal-based drug delivery systems are currently clinically approved to treat several diseases, such as cancer, fungal and viral infections; more liposomes have reached advanced phases in clinical trials. This review describes liposomes structure, composition, preparation methods, and clinical applications.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan
| | - Usama Sayed
- Department of Biology, The University of Jordan, Amman, 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
184
|
Abbasi S, Scanlon MG. Microemulsion: a novel alternative technique for edible oil extraction_a mechanistic viewpoint. Crit Rev Food Sci Nutr 2022; 63:10461-10482. [PMID: 35608028 DOI: 10.1080/10408398.2022.2078786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microemulsions, as isotropic, transparent, nano size (<100 nm), and thermodynamically stable dispersions, are potentially capable of being used in food formulations, functional foods, pharmaceuticals, and in many other fields for various purposes, particularly for nano-encapsulation, extraction of bioactive compounds and oils, and as nano-reactors. However, their functionalities, and more importantly their oil extraction capability, strongly depend on, and are determined by, their formulation, molecular structures and the type, ratio and functionality of surfactants and co-surfactants. This review extensively describes microemulsions (definition, fabrication, thermodynamic aspects, and applications), and their various mechanisms of oil extraction (roll-up, snap-off, and solubilization including those by Winsor Types I, II, III, and IV systems). Applications of various food grade (natural or synthetic) and extended surfactants for edible oil extraction are then covered based on these concepts.
Collapse
Affiliation(s)
- Soleiman Abbasi
- Food Colloids and Rheology Lab., Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin G Scanlon
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
185
|
Zamaniahari S, Jamshidi A, Moosavy MH, Khatibi SA. Preparation and evaluation of Mentha spicata L. essential oil nanoemulsion: physicochemical properties, antibacterial activity against foodborne pathogens and antioxidant properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01436-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
186
|
|
187
|
Characterization of Turpentine nanoemulsion and assessment of its antibiofilm potential against methicillin-resistant Staphylococcus aureus. Microb Pathog 2022; 166:105530. [DOI: 10.1016/j.micpath.2022.105530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
|
188
|
|
189
|
Liu Y, Zhang C, Cui B, Zhou Q, Wang Y, Chen X, Fu H, Wang Y. Effect of emulsifier composition on oil-in-water nano-emulsions: Fabrication, structural characterization and delivery of zeaxanthin dipalmitate from Lycium barbarum L. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
190
|
Ling JKU, Chan YS, Nandong J. Insights into the release mechanisms of antioxidants from nanoemulsion droplets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1677-1691. [PMID: 35531405 PMCID: PMC9046499 DOI: 10.1007/s13197-021-05128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The therapeutic effects of antioxidant-loaded nanoemulsion can be often optimized by controlling the release rate in human body. Release kinetic models can be used to predict the release profile of antioxidant compounds and allow identification of key parameters that affect the release rate. It is known that one of the critical aspects in establishing a reliable release kinetic model is to understand the underlying release mechanisms. Presently, the underlying release mechanisms of antioxidants from nanoemulsion droplets are not yet fully understood. In this context, this review scrutinized the current formulation strategies to encapsulate antioxidant compounds and provide an outlook into the future of this research area by elucidating possible release mechanisms of antioxidant compounds from nanoemulsion system.
Collapse
Affiliation(s)
- Jordy Kim Ung Ling
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Jobrun Nandong
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| |
Collapse
|
191
|
Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis. Gels 2022; 8:gels8050250. [PMID: 35621548 PMCID: PMC9140647 DOI: 10.3390/gels8050250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency distresses nearly 50% of the population globally and multiple studies have highlighted the association of Vitamin D with a number of clinical manifestations, including musculoskeletal, cardiovascular, cerebrovascular, and neurological disorders. In the current study, vitamin D oil-in-water (O/W) nanoemulsions were developed and incorporated in edible gummies to enhance bioavailability, stability, and patient compliance. The spontaneous emulsification method was employed to produce a nano-emulsion using corn oil with tween 20 and lecithin as emulsifiers. Optimization was carried out using pseudo-ternary phase diagrams and the average particle size and polydispersity index (PDI) of the optimized nanoemulsion were found to be 118.6 ± 4.3 nm and 0.11 ± 0.30, respectively. HPLC stability analysis demonstrated that the nano-emulsion prevented the degradation and it retained more than 97% of active vitamin D over 15 days compared to 94.5% in oil solution. Similar results were obtained over further storage analysis. Vitamin D gummies based on emulsion-based gelled matrices were then developed using gelatin as hydrocolloid and varying quantities of corn oil. Texture analysis revealed that gummies formulated with 10% corn oil had the optimum hardness of 3095.6 ± 201.7 g on the first day which remained consistent on day 45 with similar values of 3594.4 ± 210.6 g. Sensory evaluation by 19 judges using the nine-point hedonic scale highlighted that the taste and overall acceptance of formulated gummies did not change significantly (p > 0.05) over 45 days storage. This study suggested that nanoemulsions consistently prevent the environmental degradation of vitamin D, already known to offer protection in GI by providing sustained intestinal release and enhancing overall bioavailability. Soft chewable matrices were easy to chew and swallow, and they provided greater patient compliance.
Collapse
|
192
|
Tang M, Liu F, Wang Q, Wang D, Wang D, Zhu Y, Sun Z, Xu W. Physicochemical characteristics of ginger essential oil nanoemulsion encapsulated by zein/NaCas and antimicrobial control on chilled chicken. Food Chem 2022; 374:131624. [PMID: 34838399 DOI: 10.1016/j.foodchem.2021.131624] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/23/2021] [Accepted: 11/14/2021] [Indexed: 12/31/2022]
Abstract
An efficient antibacterial nanoemulsion was prepared using zein and NaCas to encapsulate ginger essential oil (GEO). Physical, optical, and mechanical properties as well as the antibacterial activities of GEO nanoemulsion were investigated. At 1:1 mass ratio of zein/NaCas, the GEO nanoemulsion possessed the highest solubility, entrapment efficiency and stability. The GEO/zein/NaCas complex was confirmed by ultraviolet and fluorescence spectroscopy. The addition of GEO led to more amorphous structure formation and the secondary structure changes of zein/NaCas improved the solubility and stability of GEO. GEO nanoemulsion inactivated two common foodborne bacteria, namely, Staphylococcus aureus and Pseudomonas aeruginosa, by destroying the cell membrane. Meanwhile, the GEO nanoemulsion exhibited better preservation effects on chilled chicken breasts than non-emulsified GEO and could effectively prolong the shelf life of chicken breasts for 6 days. This research provides a green and low-cost method for preparing GEO nanoemulsion to control the risk of foodborne pathogens.
Collapse
Affiliation(s)
- Minmin Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Qian Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Debao Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yongzhi Zhu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Weimin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| |
Collapse
|
193
|
Amiri-Rigi A, Abbasi S, Emmambux MN. Background, Limitations, and Future Perspectives in Food Grade Microemulsions and Nanoemulsions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2059808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Atefeh Amiri-Rigi
- Food Research Laboratory, Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Soleiman Abbasi
- Food Colloids and Rheology Laboratory, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Naushad Emmambux
- Food Research Laboratory, Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
194
|
Fontes-Candia C, Martínez JC, López-Rubio A, Salvia-Trujillo L, Martín-Belloso O, Martínez-Sanz M. Emulsion gels and oil-filled aerogels as curcumin carriers: Nanostructural characterization of gastrointestinal digestion products. Food Chem 2022; 387:132877. [PMID: 35397271 DOI: 10.1016/j.foodchem.2022.132877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023]
Abstract
Agar and κ-carrageenan emulsion gels and oil-filled aerogels were investigated as curcumin carriers and their structure and mechanical properties, as well as their structural changes upon in vitro gastrointestinal digestion were characterized. Agar emulsion gels presented stiffer behaviour, with smaller and more homogeneous oil droplets (ϕ ∼ 12 µm) than those from κ-carrageenan (ϕ ∼ 243 µm). The structure of κ-carrageenan gels was characterized by the presence of rigid swollen linear chains, while agar produced more branched networks. After simulated gastrointestinal digestion bile salt lamellae/micelles (∼5 nm) and larger vesicles of partially digested oil (Rg ∼ 20-50 nm) were the predominant structures, being their proportion dependent of the polysaccharide type and the physical state of the gel network. The presence of curcumin induced the formation of larger vesicles and limited the formation of mixed lamellae/micelles.
Collapse
Affiliation(s)
- Cynthia Fontes-Candia
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Juan Carlos Martínez
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallés, Barcelona, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Laura Salvia-Trujillo
- Department of Food Technology, University of Lleida - Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
195
|
Lesov I, Glushkova D, Cholakova D, Georgiev M, Tcholakova S, Smoukov S, Denkov N. Flow reactor for preparation of lipid nanoparticles via temperature variations. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
196
|
Effects of psyllium husk powder on the emulsifying stability, rheological properties, microstructure, and oxidative stability of oil-in-water emulsions. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
197
|
Pascual-Mathey L, Briones-Concha J, Jiménez M, Beristain C, Pascual-Pineda L. Elaboration of essential oil nanoemulsions of Rosemary (Rosmarinus officinalis L.) and its effect on liver injury prevention. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
198
|
Bahrami A, Delshadi R, Cacciotti I, Faridi Esfanjani A, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Capanoglu Guven E, Williams L, Jafari SM. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interface Sci 2022; 302:102622. [PMID: 35248971 DOI: 10.1016/j.cis.2022.102622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The incorporation of antibiotics and bioactive compounds into non-toxic nanoparticles has been popularly used to produce effective antimicrobial nanocarriers against foodborne pathogens. These systems can protect antimicrobials against harsh environments, control their release, and increase their antimicrobial activities; however, their functions can be decreased by some major barriers. Intracellular localization of bacteria protects them from the host immune system and antimicrobial agents. Also, bacteria can cause constant infection by nestling in professional phagocytic cells. In the last years, surface functionalization of nanocarriers by passive and active modification methods has been applied for their protection against clearance from the blood, increasing both circulation time and uptake by target cells. For achieving this objective, different functional agents such as specifically targeted peptides internalize ligands, saccharide ligands, or even therapeutic molecules (e.g., antibodies or enzymes) are used. In this review, techniques for functionalizing the surface of antimicrobial-loaded nanocarriers have been described. This article offers a comprehensive review of the potential of functional nanoparticles to increase the performance of antimicrobials against foodborne pathogens through targeting delivery.
Collapse
|
199
|
Gutiérrez-Méndez N, Chavez-Garay DR, Leal-Ramos MY. Lecithins: A comprehensive review of their properties and their use in formulating microemulsions. J Food Biochem 2022; 46:e14157. [PMID: 35355280 DOI: 10.1111/jfbc.14157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food and pharmaceutical ingredient. Lecithins' popularity as an ingredient in the pharmaceutical and food industries arises from their particular properties, such as their hydrophilic-lipophilic balance, critical micellar concentration, and assembly properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- and food-grade microemulsions. Unlike conventional emulsions, microemulsions are thermodynamically stable systems that offer long-term stability. Besides, microemulsions show nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds in pharmaceutical and food products. PRACTICAL APPLICATIONS: Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food ingredient. Lecithin phospholipids are commonly used as emulsifier agents in the food and pharmaceutical industries because of their particular properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- or food-grade microemulsions. Unlike conventional emulsions, microemulsions are stable systems that offer long-term stability, nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds such as vitamins, flavors, antioxidants, nutrients, colors, antimicrobials, and polyphenols.
Collapse
|
200
|
Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The food industry is trying to reformulate many of its products to replace functional ingredients that are chemically synthesized or isolated from animal sources (such as meat, fish, eggs, or milk) with ingredients derived from plant or microbial sources. This effort is largely a result of the demand for foods that are better for the environment, human health, and animal welfare. Many new kinds of plant- or microbial-derived proteins are being isolated for potential utilization as functional ingredients by the food industry. A major challenge in this area is the lack of standardized methods to measure and compare the functional performance of proteins under conditions they might be used in food applications. This information is required to select the most appropriate protein for each application. In this article, we discuss the physicochemical principles of emulsifier functionality and then present a series of analytical tests that can be used to quantify the ability of proteins to form and stabilize emulsions. These tests include methods for characterizing the effectiveness of the proteins to promote the formation and stability of the small droplets generated during homogenization, as well as their ability to stabilize the droplets against aggregation under different conditions (e.g., pH, ionic composition, temperature, and shearing). This information should be useful to the food industry when it is trying to identify alternative proteins to replace existing emulsifiers in specific food applications.
Collapse
|