151
|
Zhang X, Li Y, Wu Z, Li J, Li J, Deng S, Liu G. Development of carboxymethyl chitosan-coated zein/soy lecithin nanoparticles for the delivery of resveratrol. Food Funct 2023; 14:1636-1647. [PMID: 36691750 DOI: 10.1039/d2fo03180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of this work is to formulate a zein-based nanocomposite for the delivery of natural polyphenols. A proprietary atomizing/antisolvent precipitation (AAP) process was used to prepare carboxymethyl chitosan (CMC)-coated zein/soy lecithin (SL) nanoparticles (ZLC NPs). At a suitable mass ratio of zein/SL/CMC (100 : 30 : 30), ZLC NPs with desirable redispersibility and physicochemical stability were successfully fabricated. After that, resveratrol (Res) as the representative natural polyphenol was encapsulated in ZLC NPs. The optimized Res/ZLC NPs exhibited a spherical morphology, small size (259.43 ± 2.47 nm), large zeta potential (-47.7 ± 0.66 mV), and high encapsulation efficiency (91.32 ± 4.01%) and loading capacity (5.27 ± 0.35%). Further characterization indicated that Res was encapsulated in the hydrophobic core of the ZLC matrix in an amorphous state. Compared to free Res, Res/ZLC NPs showed a 2.55-fold increase in the Res dissolution rate, a 2.27-fold increase in bioaccessibility, and a 1.69-fold increase in ABTS˙+ scavenging activity. Also, Res/ZLC NPs showed a higher Res retention rate (>68.0%) than free Res (<35.0%) over 45 days of storage. Therefore, ZLC NPs have promising potential as vehicles for natural polyphenols.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Yangjia Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Zhenyao Wu
- Apeloa Pharmaceutical Co., Ltd, Hangzhou, China
| | - Jie Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| | - Guijin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.
| |
Collapse
|
152
|
Resveratrol thyro-protective role in fluorosis rat model (histo-morphometric, biochemical and ultrastructural study). Tissue Cell 2023; 80:101986. [PMID: 36470120 DOI: 10.1016/j.tice.2022.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thyroid gland affection by Fluorosis is documented in a number of previous studies. Resveratrol is a natural compound of plant origin. Its protective role was demonstrated previously in mice and rats against fluoride-induced hepatotoxicity and neurotoxicity. AIM to detect the thyro-protective role of Resveratrol in sodium fluoride rat model. MATERIAL AND METHODS Forty adult male albino rats were distributed equally into: Group I (control): given 5 ml distilled water; Group II (Resveratrol): received 30 mg/kg Resveratrol; Group III (Sodium fluoride): given 10 mg/kg of Sodium Fluoride dissolved in 2.5 ml distilled water; Group IV (Sodium fluoride + Resveratrol): received 10 mg/kg of Sodium Fluoride and 30 mg/kg of Resveratrol. All doses were administered once daily by intra-gastric intubation. By the end of the experiment, rats were sedated by intra-peritoneal injection of Sodium thiopental; blood samples were collected, and thyroid lobes were dissected then processed for examination. RESULTS In the control and Resveratrol groups, there were multiple variable follicles filled with homogenous eosinophilic colloid and lined with flat to cuboidal thyrocytes. Large pale-staining Para follicular cells. In the Sodium fluoride - treated group there were multiple dark stained nuclei of shrunken and exfoliated cells, areas of exudate and multiple layered follicular cells with high activity of Para follicular cells immuno-histochemically. Sodium fluoride+ Resveratrol - treated group appeared with almost preserved control appearance. Findings were confirmed using morphometric and electron microscopic studies. CONCLUSION Resveratrol supplementation with sodium fluoride restored almost all damaged appearance and functions of the thyroid cells to normal values. Further studies are necessary to examine the extended effect of Resveratrol with increased dosage or time of treatment.
Collapse
|
153
|
Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2. Biotechnol Appl Biochem 2023; 70:106-119. [PMID: 35231150 DOI: 10.1002/bab.2332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC), occupying a great proportion of lung cancer, threatens the health of patients, and the cyclooxygenase-2 (COX-2) expression is found to be upregulated in lung cancer. Pterostilbene (PTE) is perceived as a novel method for clinical therapy due to its high performance. However, the mechanism underlying and the interaction between PTE and COX-2 remain vague. We simulated radiation circumstances and transfected cells with the interference of PTE and COX-2. Our results showed that radiation or PTE treatment alone restrained cell proliferation and viability while stimulating cell apoptosis, and the above properties were strengthened when the two were in combination. The COX-2 expression was promoted by radiation but was reduced by PTE. PTE reversed the effects of radiation on the COX-2 expression. COX-2 knockdown suppressed COX-2 expression and proliferation and enhanced apoptosis of cells suffering radiation, while COX-2 overexpression reversed the inhibition of PTE. Our study suggested PTE regulated NSCLC cell proliferation and apoptosis via targeting COX-2, which might shed a light on cancer therapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Tingting Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Xu Chen
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Jing Cheng
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Lijuan Wang
- Respiratory and Critical Care Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| |
Collapse
|
154
|
Angellotti G, Di Prima G, Belfiore E, Campisi G, De Caro V. Chemopreventive and Anticancer Role of Resveratrol against Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:275. [PMID: 36678905 PMCID: PMC9866019 DOI: 10.3390/pharmaceutics15010275] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevailing and aggressive head and neck cancers, featuring high morbidity and mortality. The available conventional treatments suffer from several adverse effects and are often inefficient in terms of their survival rates. Thus, seeking novel therapeutic agents and adjuvants is of the utmost importance for modern society. Natural polyphenolic compounds have recently emerged as promising chemopreventive and anticancer agents. Specifically, the natural compound resveratrol (RSV) has recently gained momentum for this purpose. RSV is useful for treating OSCC due to its antiproliferative, antimetastatic, and proapoptotic effects. Additionally, RSV acts against tumor cells while synergically cooperating with chemotherapeutics, overcoming drug resistance phenomena. Despite these wide-spectrum effects, there are few specific investigations regarding RSV's effects against OSCC animal models that consider different routes and vehicles for the administration of RSV. Interestingly, an injectable RSV-loaded liposome-based formulation was proven to be effective against both in vitro and in vivo OSCC models, demonstrating that the development of RSV-loaded drug delivery systems for systemic and/or loco-regional applications may be the turning point in oral cancer treatment, leading to benefits from both RSV's properties as well as from targeted delivery. Given these premises, this review offers a comprehensive overview of the in vitro and in vivo effects of RSV and its main derivative, polydatin (PD), against OSCC-related cell lines and animal models, aiming to guide the scientific community in regard to RSV and PD use in the treatment of oral precancerous and cancerous lesions.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
155
|
Liu WJ, Zhao Y, Chen X, Miao ML, Zhang RQ. Epigenetic modifications in esophageal cancer: An evolving biomarker. Front Genet 2023; 13:1087479. [PMID: 36704345 PMCID: PMC9871503 DOI: 10.3389/fgene.2022.1087479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer is a widespread cancer of the digestive system that has two main subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side effects of conventional treatments remain an urgent challenge to be addressed. Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side effects, and low cost has become a hot research topic in anticancer therapy. Based on this, epigenetics offers an attractive target for the treatment of esophageal cancer, where major mechanisms such as DNA methylation, histone modifications, non-coding RNA regulation, chromatin remodelling and nucleosome localization offer new opportunities for the prevention and treatment of esophageal cancer. Recently, research on epigenetics has remained at a high level of enthusiasm, focusing mainly on translating the basic research into the clinical setting and transforming epigenetic alterations into targets for cancer screening and detection in the clinic. With the increasing emergence of tumour epigenetic markers and antitumor epigenetic drugs, there are also more possibilities for anti-esophageal cancer treatment. This paper focuses on esophageal cancer and epigenetic modifications, with the aim of unravelling the close link between them to facilitate precise and personalized treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Chen
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Man-Li Miao
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
156
|
Shi J, Wang J, Jia N, Sun Q. A network pharmacology study on mechanism of resveratrol in treating preeclampsia via regulation of AGE-RAGE and HIF-1 signalling pathways. Front Endocrinol (Lausanne) 2023; 13:1044775. [PMID: 36686428 PMCID: PMC9849370 DOI: 10.3389/fendo.2022.1044775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Background Preeclampsia (PE) is a hypertensive disorder of pregnancy that threatens the lives of millions of pregnant women and their babies worldwide. Without effective medications, there are thousands of maternal and child mortalities every year. Resveratrol (RSV), a non-flavonoid polyphenol extracted from multiple plants, has shown positive effects in treating hypertension, cardiovascular disorders, and even PE. This study aimed to explore the pharmacological mechanism of RSV in treating PE by using network pharmacology and bioinformatics. Methods With the use of multiple databases, 66 intersecting targets were obtained from the 347 putative targets of RSV and 526 PE-related genes. Then, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to investigate the functions of the intersecting targets. The protein-protein interaction network and target-pathway network were drawn and analyzed to illustrate the correlation between targets and pathways. Finally, molecular docking was conducted to calculate the binding energy between RSV and core targets. Results The results showed that the core targets of RSV were IL6, TNF, IL1B, VEGFA, STAT3, and EGFR. There existed good binding between RSV and IL6, TNF, IL1B, VEGFA, and EGFR. In addition, we found that RSV mainly functioned in the AGE-RAGE and HIF-1 signaling pathways, which are associated with the occurrence and development of PE. Conclusion In conclusion, our findings indicated that RSV has the effects of regulating angiogenesis and anti-inflammation and can be a candidate medicine for treating PE.
Collapse
Affiliation(s)
- Jiamiao Shi
- Health Science Center, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiahao Wang
- Health Science Center, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Ning Jia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qinru Sun
- College of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
157
|
Macvanin MT, Gluvic Z, Zafirovic S, Gao X, Essack M, Isenovic ER. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front Endocrinol (Lausanne) 2023; 13:1092837. [PMID: 36686463 PMCID: PMC9846570 DOI: 10.3389/fendo.2022.1092837] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
An imbalance between pro-oxidative and antioxidative cellular mechanisms is oxidative stress (OxS) which may be systemic or organ-specific. Although OxS is a consequence of normal body and organ physiology, severely impaired oxidative homeostasis results in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' function and viability. The thyroid gland is an organ that exhibits both oxidative and antioxidative processes. In terms of OxS severity, the thyroid gland's response could be physiological (i.e. hormone production and secretion) or pathological (i.e. development of diseases, such as goitre, thyroid cancer, or thyroiditis). Protective nutritional antioxidants may benefit defensive antioxidative systems in resolving pro-oxidative dominance and redox imbalance, preventing or delaying chronic thyroid diseases. This review provides information on nutritional antioxidants and their protective roles against impaired redox homeostasis in various thyroid pathologies. We also review novel findings related to the connection between the thyroid gland and gut microbiome and analyze the effects of probiotics with antioxidant properties on thyroid diseases.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
158
|
Nano-Nutraceuticals for Health: Principles and Applications. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:73-88. [PMID: 36466145 PMCID: PMC9684775 DOI: 10.1007/s43450-022-00338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
The use of nanotechnological products is increasing steadily. In this scenario, the application of nanotechnology in food science and as a technological platform is a reality. Among the several applications, the main use of this technology is for the development of foods and nutraceuticals with higher bioavailability, lower toxicity, and better sustainability. In the health field, nano-nutraceuticals are being used as supplementary products to treat an increasing number of diseases. This review summarizes the main concepts and applications of nano-nutraceuticals for health, with special focus on treating cancer and inflammation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-022-00338-7.
Collapse
|
159
|
Gao Y, Zhang D, Wang P, Qu X, Xu J, Yu Y, Zhou X. Acrylamide-induced meiotic arrest of spermatocytes in adolescent mice by triggering excessive DNA strand breaks: Potential therapeutic effects of resveratrol. Hum Exp Toxicol 2023; 42:9603271231188293. [PMID: 37550604 DOI: 10.1177/09603271231188293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Baked carbohydrate-rich foods are the main source of acrylamide (AA) in the general population and are widely consumed by teenagers. Considering the crucial development of the reproductive system during puberty, the health risks posed by AA in adolescent males have raised public concern.Methods: In this study, we exposed 3-week-old male pubertal mice to AA for 4 weeks to evaluate its effect on spermatogenesis using computer-assisted sperm analysis (CASA) and historical analysis. Flow cytometric analysis and meiocyte spreading assay were conducted to assess meiosis in mice. The expression of meiosis-related proteins and double-strand break (DSB) proteins were evaluated by immunoblot analyses. Additionally, isolated spermatocytes were used to explore the role of resveratrol in AA-induced damages of meiosis.Results: Our results showed that AA decreased the testicular and epididymal indexes, reduced sperm count and motility, and induced morphological disruption of the testes in pubertal mice. Subsequent meiotic analysis revealed that AA increased the proportion of 4C spermatocytes and decreased the proportion of 1C spermatids. The expression levels of meiosis-related proteins (SYCP3, Cyclin A1 and CDK2) were downregulated, and signaling proteins (γH2AX, p-CHK2 and p-ATM) expression levels were upregulated in AA-treated mice testes. Similar expression patterns were observed in primary spermatocytes treated with AA and these effects were reversed significantly by resveratrol.Conclusions: Our results indicate that AA induces meiotic arrest via persistent activation of DSBs, which may contribute to AA-compromised spermatogenesis. Resveratrol could serve as a potential therapeutic agent against AA-induced meiotic toxicity. These data highlight the importance of natural product supplementation for treating AA-related reproductive toxicity.
Collapse
Affiliation(s)
- Y Gao
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - D Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - P Wang
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - X Qu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - J Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - X Zhou
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
160
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
161
|
Hao Y, Song K, Tan X, Ren L, Guo X, Zhou C, Li H, Wen J, Meng Y, Lin M, Zhang Y, Huang H, Wang L, Zheng W. Reactive Oxygen Species-Responsive Polypeptide Drug Delivery System Targeted Activated Hepatic Stellate Cells to Ameliorate Liver Fibrosis. ACS NANO 2022; 16:20739-20757. [PMID: 36454190 DOI: 10.1021/acsnano.2c07796] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hepatic fibrosis is a chronic liver disease that lacks effective pharmacotherapeutic treatments. As part of the disease's mechanism, hepatic stellate cells (HSCs) are activated by damage-related stimuli to secrete excessive extracellular matrix, leading to collagen deposition. Currently, the drug delivery system that targets HSCs in the treatment of liver fibrosis remains an urgent challenge due to the poor controllability of drug release. Since the level of reactive oxygen species (ROS) increases sharply in activated HSCs (aHSCs), we designed ROS-responsive micelles for the HSC-specific delivery of a traditional Chinese medicine, resveratrol (RES), for treatment of liver fibrosis. The micelles were prepared by the ROS-responsive amphiphilic block copolymer poly(l-methionine-block-Nε-trifluoro-acetyl-l-lysine) (PMK) and a PEG shell modified with a CRGD peptide insertion. The CRGD-targeted and ROS-responsive micelles (CRGD-PMK-MCs) could target aHSCs and control the release of RES under conditions of high intracellular ROS in aHSCs. The CRGD-PMK-MCs treatment specifically enhanced the targeted delivery of RES to aHSCs both in vitro and in vivo. In vitro experiments show that CRGD-PMK-MCs could significantly promote ROS consumption, reduce collagen accumulation, and avert activation of aHSCs. In vivo results demonstrate that CRGD-PMK-MCs could alleviate inflammatory infiltration, prevent fibrosis, and protect hepatocytes from damage in fibrotic mice. In conclusion, CRGD-PMK-MCs show great potential for targeted and ROS-responsive controlled drug release in the aHSCs of liver fibrosis.
Collapse
Affiliation(s)
- Yumei Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing 100050, China
| | - Kaichao Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaochuan Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiuping Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chuchu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jin Wen
- Chinese Pharmaceutical Association, Beijing 100022, China
| | - Ya Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongdong Huang
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wensheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
162
|
Green Extraction of Polyphenols from Waste Bentonite to Produce Functional Antioxidant Excipients for Cosmetic and Pharmaceutical Purposes: A Waste-to-Market Approach. Antioxidants (Basel) 2022; 11:antiox11122493. [PMID: 36552701 PMCID: PMC9774313 DOI: 10.3390/antiox11122493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In an ever-growing perspective of circular economy, the development of conscious, sustainable and environmental-friendly strategies to recycle the waste products is the key point. The scope of this work was to validate the waste bentonite from the grape processing industries as a precious matrix to extract polyphenols by applying a waste-to-market approach aimed at producing novel functional excipients. The waste bentonite was recovered after the fining process and opportunely pre-treated. Subsequently, both the freeze dried and the so-called "wet" bentonites were subjected to maceration. PEG200 and Propylene Glycol were selected as solvents due to their ability to dissolve polyphenols and their wide use in the cosmetic/pharmaceutical field. The extracts were evaluated in terms of yield, density, pH after water-dilution, total phenolic (Folin-Ciocalteu) and protein (Bradford) contents, antioxidant power (DPPH), amount of some representative polyphenols (HPLC-DAD), cytocompatibility and stability. Both solvents validated the bentonite as a valuable source of polyphenols and led to colored fluids characterized by an acidic pH after water-dilution. The best extract was obtained from the wet bentonite with PEG200 and highlighted the highest phenolic content and consequently the strongest antioxidant activity. Additionally, it displayed proliferative properties and resulted almost stable over time. Hence, it might be directly used as polyphenols-enriched functional novel raw material for cosmetic and pharmaceutics purposes.
Collapse
|
163
|
Agaj A, Peršurić Ž, Pavelić SK. Mediterranean Food Industry By-Products as a Novel Source of Phytochemicals with a Promising Role in Cancer Prevention. Molecules 2022; 27:8655. [PMID: 36557789 PMCID: PMC9784942 DOI: 10.3390/molecules27248655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet is recognized as a sustainable dietary approach with beneficial health effects. This is highly relevant, although the production of typical Mediterranean food, i.e., olive oil or wine, processed tomatoes and pomegranate products, generates significant amounts of waste. Ideally, this waste should be disposed in an appropriate, eco-friendly way. A number of scientific papers were published recently showing that these by-products can be exploited as a valuable source of biologically active components with health benefits, including anticancer effects. In this review, accordingly, we elaborate on such phytochemicals recovered from the food waste generated during the processing of vegetables and fruits, typical of the Mediterranean diet, with a focus on substances with anticancer activity. The molecular mechanisms of these phytochemicals, which might be included in supporting treatment and prevention of various types of cancer, are presented. The use of bioactive components from food waste may improve the economic feasibility and sustainability of the food processing industry in the Mediterranean region and can provide a new strategy to approach prevention of cancer.
Collapse
Affiliation(s)
- Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ul. Viktora cara Emina 5, 51000 Rijeka, Croatia
| |
Collapse
|
164
|
Differential Uridyl-diphosphate-Glucuronosyl Transferase 1A enzymatic arsenal explains the specific cytotoxicity of resveratrol towards tumor colorectal cells. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
165
|
Innets B, Thongsom S, Petsri K, Racha S, Yokoya M, Moriue S, Chaotham C, Chanvorachote P. Akt/mTOR Targeting Activity of Resveratrol Derivatives in Non-Small Lung Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238268. [PMID: 36500361 PMCID: PMC9739815 DOI: 10.3390/molecules27238268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The Akt-mTOR signal is important for the survival and proliferation of cancer cells and has become an interesting drug target. In this study, five resveratrol derivatives were evaluated for anticancer activity and Akt/mTOR targeting activity in non-small lung cancer cell lines. The effects of resveratrol derivatives on cell proliferation were assessed by 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, nucleus staining, and colony formation assay. Furthermore, the effect of resveratrol derivatives on proliferation-related protein expression was analyzed by immunofluorescence and Western blotting. For the structure-activity relationship (SAR), results reveal that two derivatives of resveratrol which are 4,4'-(ethane-1,2-diyl) bis(2-methoxyphenol) (RD2) and the 4-(3-hydroxy-4-methoxyphenethyl)-2-methoxyphenol (RD3) had very similar structures but exerted different cytotoxicity. The IC50 of RD2 and RD3 were 108.6 ± 10.82 and more than 200 µM in the A549 cell line and 103.5 ± 6.08 and more than 200 µM in H23 cells, respectively. RD2 inhibited cell proliferation and induced apoptosis when compared with the control, while RD3 caused minimal effects. Cells treated with RD2 exhibited apoptotic nuclei in a concomitant with the reduction of cellular p-Akt and p-mTOR. RD3 had minimal effects on such proteins. According to these results, molecular docking analysis revealed a high-affinity interaction between RD2 and an Akt molecule at the ATP-binding and the allosteric sites, indicating this RD2 as a potential Akt inhibitor. This study provides useful information of resveratrol derivatives RD2 for treating lung cancer via Akt/mTOR inhibition.
Collapse
Affiliation(s)
- Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Doctor of Philosophy Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Satapat Racha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Sohsuke Moriue
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-2188-344
| |
Collapse
|
166
|
Chen L, Yuan F, Chen S, Li X, Kong L, Zhang W. Potential Role of Host Microbiome in Areca Nut-Associated Carcinogenesis and Addiction. Molecules 2022; 27:8171. [PMID: 36500264 PMCID: PMC9739811 DOI: 10.3390/molecules27238171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Areca nut (AN) is widely consumed all over the world, bringing great harm to human health and economy. Individuals with AN chewing are at high risk of cardiovascular disease and impaired immune system and metabolic system. Despite a growing number of studies having reported on the adverse effects brought by AN chewing, the exact mechanism of it is limited and the need for additional exploration remains. In recent years, the interaction between microorganisms, especially intestinal microorganism and host, has been extensively studied. AN chewing might disrupt the oral and intestinal microbiota communities through direct connect with the microbes it contains, altering PH, oxygen of oral and intestinal microenvironment, and disturbing the immune homeostasis. These mechanisms provide insights into the interplay between areca nut and host microbiota. Emerging studies have proposed that bidirectional interaction between polyphenols and intestinal microbes might play a potential role in the divergence of polyphenol, extracted from AN, among individuals with or without AN-induced cancer development and progression. Although some AN chewers have been aware of the harmful effects brought by AN, they cannot abolish this habit because of the addiction of AN. Increasing studies have tried to revealed that gut microbiota might influence the onset/development of addictive behaviors. Altogether, this review summarizes the possible reasons for the disturbance of host microbiota caused by areca nut chewing and clarifies the complex interaction between human microbiome and major constituents and the addiction and carcinogenicity of AN, tempting to provide novel insights into the development and utilization of it, and to control the adverse consequences caused by AN chewing.
Collapse
Affiliation(s)
- Lihui Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Sifang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Xiong Li
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| |
Collapse
|
167
|
Dual Inhibition of BRAF-MAPK and STAT3 Signaling Pathways in Resveratrol-Suppressed Anaplastic Thyroid Cancer Cells with BRAF Mutations. Int J Mol Sci 2022; 23:ijms232214385. [PMID: 36430869 PMCID: PMC9692422 DOI: 10.3390/ijms232214385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Anaplastic thyroid cancer is an extremely lethal malignancy without reliable treatment. BRAFV600E point mutation is common in ATCs, which leads to MAPK signaling activation and is regarded as a therapeutic target. Resveratrol inhibits ATC cell growth, while its impact on BRAF-MAPK signaling remains unknown. This study aims to address this issue by elucidating the statuses of BRAF-MAPK and STAT3 signaling activities in resveratrol-treated THJ-11T, THJ-16T, and THJ-21T ATC cells and Nthyori 3-1 thyroid epithelial cells. RT-PCR and Sanger sequencing revealed MKRN1-BRAF fusion mutation in THJ-16T, BRAF V600E point mutation in THJ-21T, and wild-type BRAF genes in THJ-11T and Nthyori 3-1 cells. Western blotting and immunocytochemical staining showed elevated pBRAF, pMEK, and pERK levels in THJ-16T and THJ-21T, but not in THJ-11T or Nthyori 3-1 cells. Calcein/PI, EdU, and TUNEL assays showed that compared with docetaxel and doxorubicin and MAPK-targeting dabrafenib and trametinib, resveratrol exerted more powerful inhibitory effects on mutant BRAF-harboring THJ-16T and THJ-21T cells, accompanied by reduced levels of MAPK pathway-associated proteins and pSTAT3. Trametinib- and dabrafenib-enhanced STAT3 activation was efficiently suppressed by resveratrol. In conclusion, resveratrol acts as dual BRAF-MAPK and STAT3 signaling inhibitor and a promising agent against ATCs with BRAF mutation.
Collapse
|
168
|
Tang L, Chen X, Tong Q, Ran Y, Ma L, Tan Y, Yi Z, Li X. Biocompatible, bacteria-targeting resveratrol nanoparticles fabricated by Mannich molecular condensation for accelerating infected wound healing. J Mater Chem B 2022; 10:9280-9294. [PMID: 36342467 DOI: 10.1039/d2tb01697d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Excessive reactive oxygen species (ROS) and long-term inflammation can delay wound healing and cause tissue damage, while bacterial infection aggravates the wound environment further. It is impossible to resolve all these thorny problems simultaneously with a wound dressing that has only one function. The antioxidative and anti-inflammatory properties of resveratrol (Res) have been proven. However, the effect of Res is non-selective, and high levels of Res can inhibit cell growth and promote oxidation. Res is also difficult to dissolve and possesses insufficient antibacterial properties, so its role is limited. In this study, Res was assembled via Mannich reaction into nanoparticles and functionalized by phenylboric acid, giving rise to targeting bacteria and solving the water-insoluble dilemma of Res. In comparison with Trolox, the assembled Res NPs performed better at scavenging ABTS and DPPH free radicals. Furthermore, Res NPs that targeted bacteria also showed high biocompatibility at concentrations five times higher than pure Res. The activities of Res NPs were comparable to free Res in downregulating the expression of inflammatory cytokines, and reducing intracellular excessive ROS. The gel embedded with Res NPs accelerated the formation of granulation tissue, collagen deposition, and re-epithelialization, facilitating wound healing. The present study suggests that functionalized polyphenol-based materials are preferably suited to the development of tissue engineering biomaterials.
Collapse
Affiliation(s)
- Liwen Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
169
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
170
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
171
|
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022; 12:1647. [PMID: 36358997 PMCID: PMC9687375 DOI: 10.3390/biom12111647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell tumor originating from a post-mitotic lymphoid B-cell lineage. Bortezomib(BTZ), a first-generation protease inhibitor, has increased overall survival, progression-free survival, and remission rates in patients with MM since its clinical approval in 2003. However, the use of BTZ is challenged by the malignant features of MM and drug resistance. Polyphenols, classified into flavonoid and non-flavonoid polyphenols, have potential health-promoting activities, including anti-cancer. Previous preclinical studies have demonstrated the anti-MM potential of some dietary polyphenols. Therefore, these dietary polyphenols have the potential to be alternative therapies in anti-MM treatment regimens. This systematic review examines the synergistic effects of flavonoids and non-flavonoid polyphenols on the anti-MM impacts of BTZ. Preclinical studies on flavonoids and non-flavonoid polyphenols-BTZ synergism in MM were collected from PubMed, Web of Science, and Embase published between 2008 and 2020. 19 valid preclinical studies (Published from 2008 to 2020) were included in this systematic review. These studies demonstrated that eight flavonoids (icariin, icariside II, (-)-epigallocatechin-3-gallate, scutellarein, wogonin, morin, formononetin, daidzin), one plant extract rich in flavonoids (Punica granatum juice) and four non-flavonoid polyphenols (silibinin, resveratrol, curcumin, caffeic acid) synergistically enhanced the anti-MM effect of BTZ. These synergistic effects are mediated through the regulation of cellular signaling pathways associated with proliferation, apoptosis, and drug resistance. Given the above, flavonoids and non-flavonoid polyphenols can benefit MM patients by overcoming the challenges faced in BTZ treatment. Despite the positive nature of this preclinical evidence, some additional investigations are still needed before proceeding with clinical studies. For this purpose, we conclude by providing some suggestions for future research directions.
Collapse
|
172
|
Sinha S, Chatterjee S, Paul S, Das B, Dash SR, Das C, Kundu CN. Olaparib enhances the Resveratrol-mediated apoptosis in breast cancer cells by inhibiting the homologous recombination repair pathway. Exp Cell Res 2022; 420:113338. [PMID: 36075449 DOI: 10.1016/j.yexcr.2022.113338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
Although sensitization of BRCA-mutated, homologous recombination (HR)-deficient breast cancer cells through PARP inhibitor is widely studied, not much is known about the treatment of BRCA-wild-type, HR-proficient breast cancer. Here, we aim to investigate whether a bioactive compound, Resveratrol (RES), can induce DNA double-strand breaks in HR-proficient breast cancer cells and Olaparib (OLA), a PARP inhibitor, can enhance the RES-mediated apoptosis by deregulating the HR repair pathway. The detailed mechanism of anti-cancer action of RES + OLA combination in breast cancer has been evaluated using in vitro, ex vivo, and in vivo preclinical model systems. OLA increased RES-mediated DNA damage, downregulated the HR pathway proteins, caused a late S/G2 cell cycle arrest, enhanced apoptosis and cell death in RES pre-treated breast cancer cells at much lower concentrations than their individual treatments. Direct measurement of HR pathway activity using a GFP plasmid-based assay demonstrated reduced HR efficiency in I-SceI endonuclease-transfected cells treated with OLA. Moreover, RES + OLA treatment also caused significant reduction in PARP1-mediated PARylation and efficiently trapped PARP1 at the DNA damage site. Upon RES treatment, PARylated PARP1 was found to interact with BRCA1, which then activated other HR pathway proteins. But after addition of OLA in RES pre-treated cells, PARP1 could not interact with BRCA1 due to inhibition of PARylation. This resulted in deregulation of HR pathway. To further confirm the role of BRCA1 in PARP1-mediated HR pathway activation, BRCA1 was knocked down that caused complete inhibition of HR pathway activity, and further enhanced apoptosis after RES + OLA treatment in BRCA1-silenced cells. In agreement with in vitro data, similar experimental results were obtained in ex vivo patient-derived breast cancer cells and in vivo xenograft mice. Thus, RES + OLA combination treatment enhanced breast cancer cell death by causing excessive DNA damage and also simultaneously inhibiting the HR pathway.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
173
|
Wang J, Lai X, Yuan D, Liu Y, Wang J, Liang Y. Effects of ferulic acid, a major component of rice bran, on proliferation, apoptosis, and autophagy of HepG2 cells. Food Res Int 2022; 161:111816. [DOI: 10.1016/j.foodres.2022.111816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023]
|
174
|
Qi X, Jha SK, Jha NK, Dewanjee S, Dey A, Deka R, Pritam P, Ramgopal K, Liu W, Hou K. Antioxidants in brain tumors: current therapeutic significance and future prospects. Mol Cancer 2022; 21:204. [PMID: 36307808 PMCID: PMC9615186 DOI: 10.1186/s12943-022-01668-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.
Collapse
Affiliation(s)
- Xuchen Qi
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.,Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India. .,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India. .,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700032, India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kritika Ramgopal
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China.
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China. .,School of Public Health, Shantou University, Shantou, 515000, Guangdong, China.
| |
Collapse
|
175
|
Vuković JS, Filipović VV, Babić Radić MM, Vukomanović M, Milivojevic D, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds. Polymers (Basel) 2022; 14:polym14204459. [PMID: 36298041 PMCID: PMC9610835 DOI: 10.3390/polym14204459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
Scaffold hydrogel biomaterials designed to have advantageous biofunctional properties, which can be applied for controlled bioactive agent release, represent an important concept in biomedical tissue engineering. Our goal was to create scaffolding materials that mimic living tissue for biomedical utilization. In this study, two novel series of interpenetrating hydrogel networks (IPNs) based on 2-hydroxyethyl methacrylate/gelatin and 2-hydroxyethyl methacrylate/alginate were crosslinked using N-ethyl-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Characterization included examining the effects of crosslinker type and concentration on structure, morphological and mechanical properties, in vitro swelling, hydrophilicity as well as on the in vitro cell viability (fibroblast cells) and in vivo (Caenorhabditis elegans) interactions of novel biomaterials. The engineered IPN hydrogel scaffolds show an interconnected pore morphology and porosity range of 62.36 to 85.20%, favorable in vitro swelling capacity, full hydrophilicity, and Young's modulus values in the range of 1.40 to 7.50 MPa. In vitro assay on healthy human fibroblast (MRC5 cells) by MTT test and in vivo (Caenorhabditis elegans) survival assays show the advantageous biocompatible properties of novel IPN hydrogel scaffolds. Furthermore, in vitro controlled release study of the therapeutic agent resveratrol showed that these novel scaffolding systems are suitable controlled release platforms. The results revealed that the use of EDC and the combination of EDC/NHS crosslinkers can be applied to prepare and tune the properties of the IPN 2-hydroxyethyl methacrylate/alginate and 2-hydroxyethyl methacrylate/gelatin hydrogel scaffolds series, which have shown great potential for biomedical engineering applications.
Collapse
Affiliation(s)
- Jovana S. Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vuk V. Filipović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Marija M. Babić Radić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija Vukomanović
- Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Dusan Milivojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Simonida Lj. Tomić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303-630
| |
Collapse
|
176
|
Wu Y, Zhang C, Guo M, Hu W, Qiu Y, Li M, Xu D, Wu P, Sun J, Shi R, Zhang Z, Jiang K. Targeting pancreatic stellate cells in chronic pancreatitis: Focus on therapeutic drugs and natural compounds. Front Pharmacol 2022; 13:1042651. [PMID: 36339568 PMCID: PMC9627273 DOI: 10.3389/fphar.2022.1042651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic pancreatitis (CP) is a precancerous illness linked to pancreatic ductal adenocarcinoma (PDAC), although the evolutionary mechanism is uncertain. CP is distinguished by severe fibrosis caused by the activation of pancreatic stellate cells (PSCs). The current clinical therapeutic protocol for CP lacks specific therapeutic medicines for the prevention and suppression of inflammation and fibrosis aggravating in CP. More research on specifically targeting PSCs would help facilitate the development of novel therapies for pancreatic fibrosis. Notably, using natural compounds from medicinal plants as new antifibrotic agents has become a focus of recent research and is widely employed as an alternative and complementary approach. Our goal was to shed light on the role of PSCs in the development of CP and provide a focused update on the new potential therapeutic strategies against PSCs in CP models. Future studies can refer to these possible strategies for drug design, bioavailability, pharmacokinetics, and other issues to obtain better clinical outcomes for treating CP.
Collapse
Affiliation(s)
- Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Zhang
- Gastroenterology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong Xu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
177
|
Turna Demir F. Protective effects of resveratrol against genotoxicity induced by nano and bulk hydroxyapatite in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:850-865. [PMID: 35848415 DOI: 10.1080/15287394.2022.2101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp) is a naturally occurring calcium phosphate mineral predominantly used for its biocompatibility in a number of areas such as bone grafting, prosthesis coating in dentistry, and targeted drug delivery. Since the nano form of HAp (nHAp) has gained popularity attributed to a re-mineralizing effect in dental repair procedures, concerns have been raised over safety and biocompatibility of these nanoparticles (NP). This study, therefore, aimed to (1) investigate mechanisms of potential genotoxicity and enhanced generation of reactive oxygen species (ROS) initiated by bulk and nano forms of HAp and (2) test in vivo whether resveratrol, a type of natural phenol, might mitigate the extent of potential DNA damage. The size of nHAp was determined to be 192.13 ± 9.91 nm after dispersion using transmission electron microscopy (TEM). Drosophila melanogaster was employed as a model organism to determine the genotoxic potential and adverse effects of HAp by use of (comet assay), mutagenic and recombinogenic activity (wing spot test), and ROS-mediated damage. Drosophila wing-spot tests demonstrated that exposure to nontoxic bulk and nHAp concentrations (1, 2.5, 5 or 10 mM) produced no significant recombination effects or mutagenicity. However, bulk and nHAp at certain doses (2.5, 5 or 10 mM) induced genotoxicity in hemocytes and enhanced ROS production. Resveratrol was found to ameliorate the genotoxic effects induced by bulk HAp and nHAp in comet assay. Data demonstrate that treatment with nano and bulk Hap-induced DNA damage and increased ROS generation D. melanogaster which was alleviated by treatment with resveratrol.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
178
|
Samanta S, Sarkar T, Chakraborty R, Rebezov M, Shariati MA, Thiruvengadam M, Rengasamy KR. Dark chocolate: An overview of its biological activity, processing, and fortification approaches. Curr Res Food Sci 2022; 5:1916-1943. [PMID: 36300165 PMCID: PMC9589144 DOI: 10.1016/j.crfs.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Dark chocolate gets popularity for several decades due to its enormous health benefits. It contains several health-promoting factors (bioactive components - polyphenols, flavonoids, procyanidins, theobromines, etc, and vitamins and minerals) that positively modulate the immune system of human beings. It confers safeguards against cardiovascular diseases, certain types of cancers, and other brain-related disorders like Alzheimer's disease, Parkinson's disease, etc. Dark chocolate is considered a functional food due to its anti-diabetic, anti-inflammatory, and anti-microbial properties. It also has a well-established role in weight management and the alteration of a lipid profile to a healthy direction. But during the processing of dark chocolate, several nutrients are lost (polyphenol, flavonoids, flavan 3 ol, ascorbic acid, and thiamine). So, fortification would be an effective method of enhancing the overall nutrient content and also making the dark chocolate self-sufficient. Thus, the focus of this review study is to gather all the experimental studies done on dark chocolate fortification. Several ingredients were used for the fortification, such as fruits (mulberry, chokeberries, and elderberries), spices (cinnamon), phytosterols, peanut oil, probiotics (mainly Lactobacillus, bacillus spices), prebiotics (inulin, xanthan gum, and maltodextrin), flavonoids, flavan-3-ols, etc. Those fortifications were done to raise the total antioxidant content as well as essential fatty acid content simultaneously reducing total calorie content. Sometimes, the fortification was done to improve physical properties like viscosity, rheological propertiesand also improve overall consumer acceptance by modifying its bitter taste.
Collapse
Affiliation(s)
- Sharmistha Samanta
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, 127550, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, 127550, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kannan R.R. Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| |
Collapse
|
179
|
Resveratrol Induces Apoptosis, Suppresses Migration, and Invasion of Cervical Cancer Cells by Inhibiting the Hedgehog Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8453011. [PMID: 36246980 PMCID: PMC9568329 DOI: 10.1155/2022/8453011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
To investigate the effect and mechanism of resveratrol on the biological behavior of cervical cancer cells (HeLa cells), the apoptosis, migration, and invasion of HeLa cells were detected by flow cytometry, wound healing, and transwell assays. The expression levels of Hedgehog signal pathway proteins (smoothened (SMO), zinc finger transcription factors (Gli1), and sonic hedgehog homolog (Shh)) were detected by quantitative real-time PCR (qPCR) and western blotting. Compared with that control group, resveratrol (RES) significantly induced apoptosis, inhibited the migration and invasion of the HeLa cells. The expression of SMO, Gli1, and Shh were downregulated in the HeLa cells treated with RES. The Hedgehog agonist purmorphamine (PUR) reversed the RES-induced increase of apoptosis and reduction of migration and invasion in the HeLa cells. In conclusion, RES induced the apoptosis and suppressed the migration and invasion of HeLa cells by inhibiting Hedgehog signal pathway.
Collapse
|
180
|
Gao S, Jiang X, Wang L, Jiang S, Luo H, Chen Y, Peng C. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances. Front Pharmacol 2022; 13:1029601. [PMID: 36278230 PMCID: PMC9581229 DOI: 10.3389/fphar.2022.1029601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related deaths in the world and has become an urgent problem for global public health. Bioactive substances are widely used for the treatment of liver cancer due to their widespread availability and reduced side effects. This review summarizes the main pathogenic factors involved in the development of liver cancer, including metabolic fatty liver disease, viral infection, and alcoholic cirrhosis, and focuses on the mechanism of action of bioactive components such as polysaccharides, alkaloids, phenols, peptides, and active bacteria/fungi. In addition, we also summarize transformation methods, combined therapy and modification of bioactive substances to improve the treatment efficiency against liver cancer, highlighting new ideas in this field.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| |
Collapse
|
181
|
Qin X, Luo H, Deng Y, Yao X, Zhang J, He B. Resveratrol inhibits proliferation and induces apoptosis via the Hippo/YAP pathway in human colon cancer cells. Biochem Biophys Res Commun 2022; 636:197-204. [DOI: 10.1016/j.bbrc.2022.10.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/30/2022]
|
182
|
Mesoporous Silica Nanoparticles Loaded with Resveratrol Are Used for Targeted Breast Cancer Therapy. JOURNAL OF ONCOLOGY 2022; 2022:8471331. [PMID: 36245986 PMCID: PMC9553529 DOI: 10.1155/2022/8471331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Objective The characteristics of poor pharmacokinetics, stability, and low solubility seriously limited the clinical application of resveratrol (Res) in breast cancer. Thus, this study intends to develop a delivery system for Res which could be better used in breast cancer therapy. Methods Resveratrol-modified mesoporous silica nanoparticles (MSN-Res) were chemically constructed. Their shape and encapsulation were detected by transmission electron microscope, Fourier transforms infrared spectrometer, and UV spectroscopy, respectively. MGF-7 tumor-bearing mice were established by subcutaneous injection, and the pathological changes were detected by hematoxylin-eosin staining. CCK-8 and Ki-67 immunohistochemical staining were used for proliferation evaluation in vitro and in vivo. Flow cytometry, TUNEL, wound healing, and transwell assay detected cell apoptosis, invasion, and migration. Results MSN-Res was successfully prepared with high biosafety. MSN-Res inhibited MGF-7 cell proliferation, invasion, and migration and promoted apoptosis in vitro. Furthermore, MSN-Res showed better performance compared Res in breast cancer mouse models. In addition, we found that MSN-Res inhibited tumor growth via inhibiting the NF-κB signaling pathway. Conclusion MSN-Res inhibited breast cancer progression with better efficacy compared with Res treatment alone by inhibiting the NF-κB signaling pathway, suggesting that MSN-Res is a more effective adjuvant treatment method for breast cancer. Thus, our findings may provide a new and safer means of using phytochemicals in combinatorial therapy of breast cancer.
Collapse
|
183
|
Sufianova G, Gareev I, Beylerli O, Wu J, Shumadalova A, Sufianov A, Chen X, Zhao S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front Cell Dev Biol 2022; 10:1011435. [PMID: 36172282 PMCID: PMC9512088 DOI: 10.3389/fcell.2022.1011435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Xin Chen
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| |
Collapse
|
184
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
185
|
Kaneda N. [Studies on the Isolation and Molecular Mechanisms of Bioactive Phytochemicals]. YAKUGAKU ZASSHI 2022; 142:977-991. [PMID: 36047225 DOI: 10.1248/yakushi.22-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies on the isolation and molecular mechanisms of phytochemicals with anti-tumor or anti-inflammatory properties are important to developing new drugs for cancer and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. In the course of a study to screen bioactive isoflavones from Erythrina poeppigiana (Leguminosae), we isolated an isoflavone with potent apoptosis-inducing activity against human leukemia HL-60 cells. It was designated erypoegin K. The studies demonstrated an enantiomer, (S)-erypoegin K, displayed selective cytotoxic activity, was a novel inhibitor of topoisomerase II, and possessed anti-tumor activity both in vitro and in vivo. We identified other apoptosis-inducing isoflavones with the ability to inhibit glyoxalase I. Dimeric acridone alkaloids, carbazole alkaloids, and coumarin and quinoline derivatives-all obtained mainly from plants in the family Rutaceae-induced apoptosis of HL-60 cells via the production of reactive oxygen species and mitochondrial dysfunction. We also identified terpenoid coumarins, carbazole quinones, rotenoid derivatives, and quinolone alkaloids with anti-inflammatory activities. These compounds reduced nitric oxide (NO) production from RAW264.7 macrophage cells stimulated with lipopolysaccharides and interferon-γ. Some of the compounds displayed neuroprotective activity by reducing NO production. This review primarily describes our recent studies on erypoegin K, and other compounds with apoptosis-inducing and anti-inflammatory activities.
Collapse
|
186
|
Pereira IC, Mascarenhas IF, Capetini VC, Ferreira PMP, Rogero MM, Torres-Leal FL. Cellular reprogramming, chemoresistance, and dietary interventions in breast cancer. Crit Rev Oncol Hematol 2022; 179:103796. [PMID: 36049616 DOI: 10.1016/j.critrevonc.2022.103796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/16/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022] Open
Abstract
Breast cancer (BC) diagnosis has been associated with significant risk factors, including family history, late menopause, obesity, poor eating habits, and alcoholism. Despite the advances in the last decades regarding cancer treatment, some obstacles still hinder the effectiveness of therapy. For example, chemotherapy resistance is common in locally advanced or metastatic cancer, reducing treatment options and contributing to mortality. In this review, we provide an overview of BC metabolic changes, including the impact of restrictive diets associated with chemoresistance, the therapeutic potential of the diet on tumor progression, pathways related to metabolic health in oncology, and perspectives on the future in the area of oncological nutrition.
Collapse
Affiliation(s)
- Irislene Costa Pereira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Isabele Frazão Mascarenhas
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Sao Paulo, Brazil
| | - Francisco Leonardo Torres-Leal
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
187
|
Levenson AS. Dietary stilbenes as modulators of specific miRNAs in prostate cancer. Front Pharmacol 2022; 13:970280. [PMID: 36091792 PMCID: PMC9449421 DOI: 10.3389/fphar.2022.970280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulated experimental data have suggested that natural plant products may be effective miRNA-modulating chemopreventive and therapeutic agents. Dietary polyphenols such as flavonoids, stilbenes, and lignans, among others, have been intensively studied for their miRNA-mediated cardioprotective, antioxidant, anti-inflammatory and anticancer properties. The aim of this review is to outline known stilbene-regulated miRNAs in cancer, with a special focus on the interplay between various miRNAs and MTA1 signaling in prostate cancer. MTA1 is an epigenetic reader and an oncogenic transcription factor that is overexpressed in advanced prostate cancer and metastasis. Not surprisingly, miRNAs that are linked to MTA1 affect cancer progression and the metastatic potential of cells. Studies led to the identification of MTA1-associated pro-oncogenic miRNAs, which are regulated by stilbenes such as resveratrol and pterostilbene. Specifically, it has been shown that inhibition of the activity of the MTA1 regulated oncogenic miR-17 family of miRNAs, miR-22, and miR-34a by stilbenes leads to inhibition of prostatic hyperplasia and tumor progression in mice and reduction of proliferation, survival and invasion of prostate cancer cells in vitro. Taken together, these findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
|
188
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
189
|
Rodriguez ME, Tekiel V, Campo VA. In vitro evaluation of Resveratrol as a potential pre-exposure prophylactic drug against Trypanosoma cruzi infection. Int J Parasitol Drugs Drug Resist 2022; 20:54-64. [PMID: 36099853 PMCID: PMC9474288 DOI: 10.1016/j.ijpddr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Chagas' disease or American trypanosomiasis, caused by Trypanosoma cruzi infection, is an endemic disease in Latin America, which has spread worldwide in the past years. The drugs presently used for treatment have shown limited efficacy due to the appearance of resistant parasites and severe side effects. Some of the most recent studies on anti-parasitic drugs have been focused on protein acetylation, a reversible reaction modulated by Acetyl Transferases (KATs) and Deacetylases (KDACs). We have previously reported the anti-parasite activity of resveratrol (RSV), an activator of KDACs type III (or sirtuins), and showed that this drug can reduce the growth of T. cruzi epimastigotes and the infectivity of trypomastigotes. Since RSV is now widely used in humans due to its beneficial effects as an antioxidant, it has become an attractive candidate as a repurposing drug. In this context, the aim of the present study was to evaluate the ability of this drug to protect three different types of host cells from parasite infection. RSV treatment before parasite infection reduced the percentage of infected cells by 50-70% depending on the cell type. Although the mammalian cell lines tested showed different sensitivity to RSV, apoptosis was not significantly affected, showing that RSV was able to protect cells from infection without the activation of this process. Since autophagy has been described as a key process in parasite invasion, we also monitored this process on host cells pretreated with RSV. The results showed that, at the concentrations and incubation times tested, autophagy was not induced in any of the cell types evaluated. Our results show a partial protective effect of RSV in vitro, which justifies extending studies to an in vivo model to elucidate the mechanism by which this effect occurs.
Collapse
Affiliation(s)
| | | | - Vanina A. Campo
- Corresponding author. IIB: Instituto de Investigaciones Biotecnologicas, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina.
| |
Collapse
|
190
|
Ganji A, Jalali-Mashayekhi F, Hajihossein R, Eslamirad Z, Bayat PD, Sakhaie M. Anti-parasitic effects of resveratrol on protoscolices and hydatid cyst layers. Exp Parasitol 2022; 241:108360. [PMID: 35995249 DOI: 10.1016/j.exppara.2022.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
The main goal of the current study was to evaluate the effectiveness of resveratrol (RESV) on protoscolices and hydatid cysts of Echinococcus granolosus. Echinococcus granolosus protoscolices and hydatid cyst were exposed to RPMI, DMSO, formalin, mebendazole, and different concentrations of RESV in vitro. Then, viability, GGT, and caspase-3 activity of protoscolices were evaluated using light microscopy, colorimetric, and enzymatic assay, respectively. Tissue changes and expression of caspase-3 apoptosis were analyzed on the hydatid cyst wall by histologic and immunohistochemistry methods. The cell toxicity effect of RESV was evaluated on mouse PBMCs by Annexin V-FITC assay. The RESV-treated protoscolices showed loss of viability, increased gamma-glutamyl transpeptidase, and caspase-3 activity with significant differences compared to all control groups (P < 0.05). Dose and time dependence of mortality, GGT, and caspase-3 enzymatic activity was confirmed in the protoscolices of Echinococcus granulosus treated by RESV. Also, the tissue changes and apoptosis were prominent in RESV-treated hydatid cyst layers; however, tissue changes were only time-dependent, and RESV concentration had no apparent effect on tissue. In cell toxicity evaluation, RESV is safe without any significant apoptosis induction from 31.5 to 250 μg/ml; however, it was significant at 350 and 500 μg/ml in PBMCs.
Collapse
Affiliation(s)
- Ali Ganji
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Farideh Jalali-Mashayekhi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Reza Hajihossein
- Department of Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Zahra Eslamirad
- Department of Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Parvin-Dokht Bayat
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohammadhasan Sakhaie
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
191
|
Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Front Oncol 2022; 12:933827. [PMID: 35992779 PMCID: PMC9389465 DOI: 10.3389/fonc.2022.933827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is of great importance in cancer cellular metabolism. Working together with several glucose transporters (GLUTs), it provides enough energy for biological growth. The main glucose transporters in endometrial cancer (EC) are Class 1 (GLUTs 1-4) and Class 3 (GLUTs 6 and 8), and the overexpression of these GLUTs has been observed. Apart from providing abundant glucose uptake, these highly expressed GLUTs also participate in the activation of many crucial signaling pathways concerning the proliferation, angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT inhibitors may hopefully become a sensitizer for EC precision-targeted therapies. This review aims to summarize the expression regulation, function, and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for better diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jing Dong
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Clinical Research Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
192
|
Resveratrol from Dietary Supplement to a Drug Candidate: An Assessment of Potential. Pharmaceuticals (Basel) 2022; 15:ph15080957. [PMID: 36015105 PMCID: PMC9412308 DOI: 10.3390/ph15080957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Resveratrol (RVT) is a well known phyto-chemical and is widely used in dietary supplements and botanical products. It shows a wide range of pharmacological/beneficial effects. Therefore, it can be a potential candidate to be developed as phyto-pharmaceutical. Multiple diseases are reported to be treated by the therapeutic effect of RVT since it has antioxidant, anti-cancer activity and anti-inflammatory activities. It also has a major role in diabetes, arthritis, cardiac disorder and platelet aggregation etc. The major requirements are establishments regarding safety, efficacy profile and physicochemical characterization. As it is already being consumed in variable maximum daily dose, there should not be a major safety concern but the dose needs to be established for different indications. Clinical trials are also being reported in different parts of the world. Physicochemical properties of the moiety are also well reported. Moreover, due to its beneficial effect on health it leads to the development of some intellectual property in the form of patents.
Collapse
|
193
|
Beyoğlu D, Park EJ, Quiñones-Lombraña A, Dave A, Parande F, Pezzuto JM, Idle JR. Addition of grapes to both a standard and a high-fat Western pattern diet modifies hepatic and urinary metabolite profiles in the mouse. Food Funct 2022; 13:8489-8499. [PMID: 35876245 DOI: 10.1039/d2fo00961g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The benefits of fruit and vegetable dietary consumption are largely defined in epidemiological terms. Relatively little is known about the discrete effects on metabolic pathways elicited by individual dietary fruits and vegetables. To address this, grape powder was added to both a standard and a high-fat Western pattern diet given to 10-week-old female C57BL/6J mice for a period of 91 days, whereupon 24 h urines were collected and the mice euthanized after a 12 h fast for the collection of liver tissue. Alterations in hepatic and urinary metabolite patterns were determined by gas chromatography-mass spectrometry-based metabolomics. Urinary excretion of the gut microbiota metabolites 4-hydroxyphenylacetic acid, 5-hydroxyindole, glyceric acid, gluconic acid and myo-inositol was attenuated when grape was added to the standard diet but the gut microbiota metabolites gluconic acid, scyllo-inositol, mannitol, xylitol, 5-hydroxyindole and 2-deoxyribonic acid were increased in urine when grape was added to the high-fat diet. Increased hepatic ascorbic acid and 5-oxoproline levels indicated the anti-oxidant effect of grape powder on the liver. Pathway enrichment analysis demonstrated that for both standard and high-fat diets, grape addition significantly upregulated the malate-aspartate shuttle indicating enhanced hepatic utilization of glucose via cytosolic glycolysis for mitochondrial ATP production. It is concluded that a grape diet reprogrammes gut microbiota metabolism, attenuates the hepatic oxidative stress of a high-fat diet and increases the efficiency of glucose utilization by the liver for energy production.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - Eun-Jung Park
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - Adolfo Quiñones-Lombraña
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA. .,Darwin Research Facility, Division of Biosciences, University College London, London, UK
| | - Asim Dave
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - Falguni Parande
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| | - John M Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Jeffrey R Idle
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA.
| |
Collapse
|
194
|
Yang S, Sun M, Zhang X. Protective Effect of Resveratrol on Knee Osteoarthritis and its Molecular Mechanisms: A Recent Review in Preclinical and Clinical Trials. Front Pharmacol 2022; 13:921003. [PMID: 35959426 PMCID: PMC9357872 DOI: 10.3389/fphar.2022.921003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is one of the progressing chronic joint associated with by many complex factors such as age, obesity, and trauma. Knee osteoarthritis (KOA) is the most common type of OA. KOA is characterized by articular cartilage destruction and degeneration, synovial inflammation, and abnormal subchondral bone changes. To date, no practical clinical approach has been able to modify the pathological progression of KOA. Drug therapy is limited to pain control and may lead to serious side effects when taken for a long time. Therefore, searching for safer and more reliable treatments has become necessary. Interestingly, more and more research has focused on natural products, and monomeric compounds derived from natural products have received much attention as drug candidates for KOA treatment. Resveratrol (RES), a natural phenolic compound, has various pharmacological and biological activities, including anti-cancer, anti-apoptotic, and anti-decay. Recently, studies on the effects of RES on maintaining the normal homeostasis of chondrocytes in KOA have received increasing attention, which seems to be attributed to the multi-targeted effects of RES on chondrocyte function. This review summarizes preclinical trials, clinical trials, and emerging tissue engineering studies of RES for KOA and discusses the specific mechanisms by which RES alleviates KOA. A better understanding of the pharmacological role of RES in KOA could provide clinical implications for intervention in the development of KOA.
Collapse
Affiliation(s)
| | - Mingli Sun
- *Correspondence: Mingli Sun, ; Xinan Zhang,
| | | |
Collapse
|
195
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
196
|
Zheng Y, Jia R, Li J, Tian X, Qian Y. Curcumin- and resveratrol-co-loaded nanoparticles in synergistic treatment of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:339. [PMID: 35858935 PMCID: PMC9301856 DOI: 10.1186/s12951-022-01554-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Currently, systemic therapies for patients with advanced-stage hepatocellular carcinoma (HCC) rely mainly on systemic drugs. However, traditional systemic drugs have a high rate of serious adverse events, and the curative effects of some potential anticancer drugs, such as curcumin (CUR) and resveratrol (RSV), are less apparent due to their poor bioavailability. Therefore, it is urgent to develop a highly effective therapy to improve patient prognosis. Herein, an injectable HCC-targeted nanoparticle (NP) was designed to deliver CUR and RSV to hepatoma cells. RESULTS The molecular self-assembled NPs showed higher tumour retention through the enhanced permeability and retention (EPR) effect of the NPs and surface modification with the HCC-specific peptide moiety SP94 to effectively treat HCC. These HCC-targeted NPs led to a significant reduction in the drug dosage, delayed the rate of drug release and improved the bioavailability of the encapsulated drugs. The drug concentrations in the vicinity of the tumour increased, and a good therapeutic effect was observed without obvious side effects. CONCLUSIONS These SP94-mediated NPs allowed large amounts of antitumor drugs to accumulate in tumours, providing a novel strategy for innovative HCC therapy. This nanoplatform also offers an idea for exploring other potential chemotherapeutics.
Collapse
Affiliation(s)
- Yongshun Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ran Jia
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiaohe Tian
- Department of Radiology and National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Centre (HMRRC), West China Hospital of Sichuan University, Chengdu, 610000, China.
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, School of Life Science, Anhui University, Hefei, 230000, China.
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
197
|
Tan J, Song R, Luo S, Fu W, Ma Y, Zheng L, He Z. Efficacy of Resveratrol in Experimental Subarachnoid Hemorrhage Animal Models: A Stratified Meta-Analysis. Front Pharmacol 2022; 13:905208. [PMID: 35847035 PMCID: PMC9277348 DOI: 10.3389/fphar.2022.905208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a serious neurosurgical emergency with extremely high morbidity and mortality rates. Resveratrol (RES), a natural polyphenolic phytoalexin, is broadly presented in a wide variety of plants. Previous research had reasonably revealed its neuroprotective effects on experimental SAH animal models to some extent. But the results were more controversial. Therefore, we conducted a meta-analysis to evaluate the evidence on the effectiveness of RES in improving outcomes in SAH animal models. Methods: A systematic literature review was conducted in PubMed, EMBASE, and Web of Science databases to incorporate experimental control studies on the efficacy of RES on SAH models into our research. The standardized mean difference (SMD) was used to compare the brain water content (BWC) and neurological score (NS) between the treatment and control groups. Results: Overall, 16 articles published from 2014 to 2022 met the inclusion criteria. The meta-analysis of BWC showed a significant difference in favor of RES treatment (SMD: -1.026; 95% CI: -1.380, -0.672; p = 0.000) with significant heterogeneity (Q = 84.97; I2 = 60.0%; p = 0.000). Further stratified analysis was performed for methodological differences, especially dosage, time of treatments, and time-point of outcome assessment. The meta-analysis of NS showed a significant difference in favor of RES treatment (SMD: 1.342; 95% CI: 1.089, 1.595; p = 0.000) with low heterogeneity (Q = 25.58; I2 = 17.9%; p = 0.223). Conclusion: Generally, RES treatment showed an improvement in both pathological and behavioral outcomes in SAH animal models. The results of this study may provide a reference for preclinical and clinical studies in the future to some extent, with great significance for human health.
Collapse
Affiliation(s)
- Jiahe Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Song
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyue Luo
- Clinical Medicine, The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinrui Ma
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian Zheng
- Department of Neurosurgery, The Fifth People's Hospital of Chongqing Municipality, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
198
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
199
|
Li Y, Zhang J, Zhou H, Du Z. Anticancer effects of natural phytochemicals in anaplastic thyroid cancer (Review). Oncol Rep 2022; 48:156. [PMID: 35856443 PMCID: PMC9471558 DOI: 10.3892/or.2022.8368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive and lethal malignancy having a dismal prognosis. Phytochemicals are bioactive components obtained from plants that have been proven useful to treat numerous diseases. Phytochemicals are also an important source of novel anticancer drugs and an important area of research due to the numerous available candidates that can potentially treat cancers. This review discusses naturally occurring phytochemicals and their derivatives that show promising anticancer effects in anaplastic thyroid cancer. Anticancer effects include cell growth inhibition, induction of apoptosis, promoting cell cycle arrest, suppressing angiogenesis, modulating autophagy, and increasing the production of reactive oxygen species. Phytochemicals are not only prospective candidates in the therapy of anaplastic thyroid cancer but also exhibit potential as adjuvants to improve the anticancer effects of other drugs. Although some phytochemicals have excellent anticancer properties, drug resistance observed during the use of resveratrol and artemisinin in different anaplastic thyroid cancer cell lines is still a problem. Anaplastic thyroid cancer cells have several biological, clinical, and drug-resistance features that differ from differentiated thyroid cancer cells. Phytochemicals such as resveratrol and quercetin exhibit different biological effects in anaplastic thyroid cancer and differentiated thyroid cancer. Tumor cells depend on increased aerobic glycolysis by mitochondrial oxidative phosphorylation to provide energy for their rapid growth, invasiveness, and drug resistance. Phytochemicals can alter signaling cascades, modulate the metabolic properties of cancer cells, and influence the mitochondrial membrane potential of anaplastic thyroid cancer cells. These findings enrich our knowledge of the anticancer effects of phytochemicals and highlight alternative therapies to prevent drug resistance in anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Yitian Li
- Department of Hygiene, Public Health College, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jing Zhang
- Department of Hygiene, Public Health College, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Huihui Zhou
- Department of Hygiene, Public Health College, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhen Du
- Department of Hygiene, Public Health College, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
200
|
Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, Tabrez S, Zughaibi TA, Alsaieedi A, Hakeem IJ, Suhail M. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022; 11:cells11142209. [PMID: 35883653 PMCID: PMC9318484 DOI: 10.3390/cells11142209] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, Saint Louis, MO 63130, USA;
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO 65211, USA;
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Mohammad Ashraf
- Department of Chemistry, Bundelkhand University Jhansi, Jhansi 284128, Uttar Pradesh, India;
| | - Ramesh Raliya
- IFFCO Nano Biotechnology Research Center, Kalol 382423, Gujarat, India;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence:
| |
Collapse
|