151
|
Gierl L, Horn H, Wagner M. Impact of Fe 2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms-A Bacillus subtilis Case Study. Microorganisms 2022; 10:2234. [PMID: 36422304 PMCID: PMC9699539 DOI: 10.3390/microorganisms10112234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
Bivalent cations are known to affect the structural and mechanical properties of biofilms. In order to reveal the impact of Fe2+ ions within the cultivation medium on biofilm development, structure and stability, Bacillus subtilis biofilms were cultivated in mini-fluidic flow cells. Two different Fe2+ inflow concentrations (0.25 and 2.5 mg/L, respectively) and wall shear stress levels (0.05 and 0.27 Pa, respectively) were tested. Mesoscopic biofilm structure was determined daily in situ and non-invasively by means of optical coherence tomography. A set of ten structural parameters was used to quantify biofilm structure, its development and change. The study focused on characterizing biofilm structure and development at the mesoscale (mm-range). Therefore, biofilm replicates (n = 10) were cultivated and analyzed. Three hypotheses were defined in order to estimate the effect of Fe2+ inflow concentration and/or wall shear stress on biofilm development and structure, respectively. It was not the intention to investigate and describe the underlying mechanisms of iron incorporation as this would require a different set of tools applied at microscopic levels as well as the use of, i.e., omic approaches. Fe2+ addition influenced biofilm development (e.g., biofilm accumulation) and structure markedly. Experiments revealed the accumulation of FeO(OH) within the biofilm matrix and a positive correlation of Fe2+ inflow concentration and biofilm accumulation. In more detail, independent of the wall shear stress applied during cultivation, biofilms grew approximately four times thicker at 2.5 mg Fe2+/L (44.8 µmol/L; high inflow concentration) compared to the low Fe2+ inflow concentration of 0.25 mg Fe2+/L (4.48 µmol/L). This finding was statistically verified (Scheirer-Ray-Hare test, ANOVA) and hints at a higher stability of Bacillus subtilis biofilms (e.g., elevated cohesive and adhesive strength) when grown at elevated Fe2+ inflow concentrations.
Collapse
Affiliation(s)
- Luisa Gierl
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Harald Horn
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- German Technical and Scientific Association for Gas and Water (DVGW) Research Site at Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Michael Wagner
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
152
|
Pernas-Pleite C, Conejo-Martínez AM, Marín I, Abad JP. Green Extracellular Synthesis of Silver Nanoparticles by Pseudomonas alloputida, Their Growth and Biofilm-Formation Inhibitory Activities and Synergic Behavior with Three Classical Antibiotics. Molecules 2022; 27:7589. [PMID: 36364415 PMCID: PMC9656067 DOI: 10.3390/molecules27217589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
Bacterial resistance to antibiotics is on the rise and hinders the fight against bacterial infections, which are expected to cause millions of deaths by 2050. New antibiotics are difficult to find, so alternatives are needed. One could be metal-based drugs, such as silver nanoparticles (AgNPs). In general, chemical methods for AgNPs' production are potentially toxic, and the physical ones expensive, while green approaches are not. In this paper, we present the green synthesis of AgNPs using two Pseudomonas alloputida B003 UAM culture broths, sampled from their exponential and stationary growth phases. AgNPs were physicochemically characterized by transmission electron microscopy (TEM), total reflection X-ray fluorescence (TXRF), infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), showing differential characteristics depending on the synthesis method used. Antibacterial activity was tested in three assays, and we compared the growth and biofilm-formation inhibition of six test bacteria: Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We also monitored nanoparticles' synergic behavior through the growth inhibition of E. coli and S. aureus by three classical antibiotics: ampicillin, nalidixic acid, and streptomycin. The results indicate that very good AgNP activity was obtained with particularly low MICs for the three tested strains of P. aeruginosa. A good synergistic effect on streptomycin activity was observed for all the nanoparticles. For ampicillin, a synergic effect was detected only against S. aureus. ROS production was found to be related to the AgNPs' antibacterial activity.
Collapse
Affiliation(s)
| | | | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
153
|
Garg A, Mejia E, Nam W, Vikesland P, Zhou W. Biomimetic Transparent Nanoplasmonic Meshes by Reverse-Nanoimprinting for Bio-Interfaced Spatiotemporal Multimodal SERS Bioanalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204517. [PMID: 36161480 DOI: 10.1002/smll.202204517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Multicellular systems, such as microbial biofilms and cancerous tumors, feature complex biological activities coordinated by cellular interactions mediated via different signaling and regulatory pathways, which are intrinsically heterogeneous, dynamic, and adaptive. However, due to their invasiveness or their inability to interface with native cellular networks, standard bioanalysis methods do not allow in situ spatiotemporal biochemical monitoring of multicellular systems to capture holistic spatiotemporal pictures of systems-level biology. Here, a high-throughput reverse nanoimprint lithography approach is reported to create biomimetic transparent nanoplasmonic microporous mesh (BTNMM) devices with ultrathin flexible microporous structures for spatiotemporal multimodal surface-enhanced Raman spectroscopy (SERS) measurements at the bio-interface. It is demonstrated that BTNMMs, supporting uniform and ultrasensitive SERS hotspots, can simultaneously enable spatiotemporal multimodal SERS measurements for targeted pH sensing and non-targeted molecular detection to resolve the diffusion dynamics for pH, adenine, and Rhodamine 6G molecules in agarose gel. Moreover, it is demonstrated that BTNMMs can act as multifunctional bio-interfaced SERS sensors to conduct in situ spatiotemporal pH mapping and molecular profiling of Escherichia coli biofilms. It is envisioned that the ultrasensitive multimodal SERS capability, transport permeability, and biomechanical compatibility of the BTNMMs can open exciting avenues for bio-interfaced multifunctional sensing applications both in vitro and in vivo.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
154
|
Pamukçu A, Erdoğan N, Şen Karaman D. Polyethylenimine-grafted mesoporous silica nanocarriers markedly enhance the bactericidal effect of curcumin against Staphylococcus aureus biofilm. J Biomed Mater Res B Appl Biomater 2022; 110:2506-2520. [PMID: 35735075 PMCID: PMC9541607 DOI: 10.1002/jbm.b.35108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022]
Abstract
The recalcitrant nature of biofilms makes biofilm-associated infections difficult to treat in modern medicine. Biofilms have a high vulnerability to antibiotics and a limited repertoire of antibiotics could act on matured biofilms. This issue has resulted in a gradual paradigm shift in drug discovery and therapy, with anti-biofilm compounds being sought alongside new drug carriers. A potential solution to biofilm-associated infections is to employ antibiofilm treatments, which can attack biofilms from many fronts. Nanocarriers are promising in this regard because they can be entrapped within biofilm matrix, target biofilm matrix, and provide local drug delivery to inhibit biofilm formation. In this study, curcumin as an herbal extract was loaded onto hyperbranched polyethylenimine-grafted mesoporous silica nanoparticles (F-MSN-PEI/Cur) and antibiofilm investigations were performed. The F-MSN-PEI/Cur design has the potential to repurpose curcumin as an antibiofilm agent by increasing its solubility and lowering the required doses for the destruction of matured biofilms as well as suppressing biofilm development. Using imaging and spectroscopic techniques, we assessed the interaction of F-MSN-PEI/Cur with Staphylococcus aureus bacterial cells and determined the impact of F-MSN-PEI/Cur on eradicating matured biofilms and suppressing biofilm development. The F-MSN-PEI/Cur design is highly cytocompatible, as observed by the cytotoxicity screening investigations on L929 mouse fibroblast cell line. Our findings show that F-MSN-PEI/Cur design reduces the bacterial cell viability, inhibits biofilm formation, and induces biofilm eradication, which is attributed to F-MSN-PEI/Cur design having the potential to repurpose the antibiofilm activity of curcumin-herbal extract.
Collapse
Affiliation(s)
- Ayşenur Pamukçu
- Department of Biomedical Technologies, Graduate School of Natural and Applied SciencesIzmir Katip Çelebi UniversityIzmirTurkey
| | - Nursu Erdoğan
- Department of Biomedical Technologies, Graduate School of Natural and Applied SciencesIzmir Katip Çelebi UniversityIzmirTurkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureIzmir Katip Çelebi UniversityIzmirTurkey
- Pharmaceutical Sciences Laboratory, Faculty of Science and EngineeringÅbo Akademi UniversityFinland
| |
Collapse
|
155
|
Rosca AS, Castro J, França Â, Vaneechoutte M, Cerca N. Gardnerella Vaginalis Dominates Multi-Species Biofilms in both Pre-Conditioned and Competitive In Vitro Biofilm Formation Models. MICROBIAL ECOLOGY 2022; 84:1278-1287. [PMID: 34741647 DOI: 10.1007/s00248-021-01917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Bacterial vaginosis (BV) is one of the most common bacterial vaginal infections worldwide. Despite its high prevalence, BV etiology is still unknown. Nevertheless, a hallmark of BV is the presence of a highly structured polymicrobial biofilm on the vaginal epithelium, formed primarily by Gardnerella spp. and other anaerobic species, of which co-colonization with Fannyhessea vaginae is considered an important diagnostic marker. We previously developed an in vitro biofilm model wherein Gardnerella was first allowed to establish an early biofilm that served as a scaffold for other species to adhere to. To better understand ecological interactions between BV-associated bacteria, we compared triple-species biofilms formed using two distinct models: a pre-conditioned (wherein Gardnerella vaginalis formed the early biofilm) model and a competitive (wherein all three bacteria were co-incubated together) model. Interestingly, synergistic growth interactions were more significant in the competitive model. Furthermore, the biofilm structure and species-specific distribution, as assessed by confocal laser scanning microscopy and using peptide nucleic acid fluorescence in situ hybridization method, revealed two very different triple-species morphotypes, suggesting that different interactions occur in the different models. Interestingly, independent of the model or triple-species consortium tested, we observed that G. vaginalis represented most of the biofilm bacterial composition, further highlighting the relevance of this taxon in BV.
Collapse
Affiliation(s)
- Aliona S Rosca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal
- Laboratory Bacteriology Research (LBR), Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Joana Castro
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal
| | - Ângela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research (LBR), Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Rua da Universidade, 4710-057, Braga, Portugal.
| |
Collapse
|
156
|
Maximum thickness of non-buffer limited electro-active biofilms decreases at higher anode potentials. Biofilm 2022; 4:100092. [DOI: 10.1016/j.bioflm.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
|
157
|
Palau M, Muñoz E, Lujan E, Larrosa N, Gomis X, Márquez E, Len O, Almirante B, Abellà J, Colominas S, Gavaldà J. In Vitro and In Vivo Antimicrobial Activity of Hypochlorous Acid against Drug-Resistant and Biofilm-Producing Strains. Microbiol Spectr 2022; 10:e0236522. [PMID: 36190404 PMCID: PMC9602778 DOI: 10.1128/spectrum.02365-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023] Open
Abstract
The aims of this study were as follows. First, we determined the antimicrobial efficacy of hypochlorous acid (HClO) against bacterial, fungal, and yeast strains growing planktonically and growing in biofilms. Second, we sought to compare the activity of the combination of daptomycin and HClO versus those of the antimicrobial agents alone for the treatment of experimental catheter-related Staphylococcus epidermidis infection (CRI) using the antibiotic lock technique (ALT) in a rabbit model. HClO was generated through direct electric current (DC) shots at determined amperages and times. For planktonic susceptibility studies, 1 to 3 DC shots of 2, 5, and 10 mA from 0 to 300 s were applied. A DC shot of 20 mA from 0 to 20 min was applied to biofilm-producing strains. Central venous catheters were inserted into New Zealand White rabbits, inoculated with an S. epidermidis strain, and treated with saline solution or ALT using daptomycin (50 mg/mL), HClO (20 mA for 45 min), or daptomycin plus HClO. One hundred percent of the planktonic bacterial, fungal, and yeast strains were killed by applying one DC shot of 2, 5, and 10 mA, respectively. One DC shot of 20 mA for 20 min was sufficient to eradicate 100% of the tested biofilm-producing strains. Daptomycin plus HClO lock therapy showed the highest activity for experimental CRI with S. epidermidis. HClO could be an effective strategy for treating infections caused by extensively drug-resistant or multidrug-resistant and biofilm-producing strains in medical devices and chronic wounds. The results of the ALT using daptomycin plus HClO may be promising. IMPORTANCE Currently, drug-resistant infections are increasing and there are fewer antibiotics available to treat them. Therefore, there is an urgent need to find new antibiotics and nonantimicrobial strategies to treat these infections. We present a new nonantibiotic strategy based on hypochlorous acid generation to treat long-term catheter-related and chronic wounds infections.
Collapse
Affiliation(s)
- Marta Palau
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Muñoz
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Enric Lujan
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Nieves Larrosa
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Xavier Gomis
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Márquez
- Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Oscar Len
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Benito Almirante
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Joan Gavaldà
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
158
|
Antibiofilm Combinatory Strategy: Moxifloxacin-Loaded Nanosystems and Encapsulated N-Acetyl-L-Cysteine. Pharmaceutics 2022; 14:pharmaceutics14112294. [PMID: 36365113 PMCID: PMC9699636 DOI: 10.3390/pharmaceutics14112294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms of Staphylococcus aureus, formed on implants, have a massive impact on the increasing number of antimicrobial resistance cases. The current treatment for biofilm-associated infections is based on the administration of antibiotics, failing to target the biofilm matrix. This work is focused on the development of multiple lipid nanoparticles (MLNs) encapsulating the antibiotic moxifloxacin (MOX). The nanoparticles were functionalized with d-amino acids to target the biofilm matrix. The produced formulations exhibited a mean hydrodynamic diameter below 300 nm, a low polydispersity index, and high encapsulation efficiency. The nanoparticles exhibited low cytotoxicity towards fibroblasts and low hemolytic activity. To target bacterial cells and the biofilm matrix, MOX-loaded MLNs were combined with a nanosystem encapsulating a matrix-disruptive agent: N-acetyl-L-cysteine (NAC). The nanosystems alone showed a significant reduction of both S. aureus biofilm viability and biomass, using the microtiter plate biofilm model. Further, biofilms grown inside polyurethane catheters were used to assess the effect of combining MOX-loaded and NAC-loaded nanosystems on biofilm viability. An increased antibiofilm efficacy was observed when combining the functionalized MOX-loaded MLNs and NAC-loaded nanosystems. Thus, nanosystems as carriers of bactericidal and matrix-disruptive agents are a promising combinatory strategy towards the eradication of S. aureus biofilms.
Collapse
|
159
|
Romeu MJ, Lima M, Gomes LC, de Jong ED, Morais J, Vasconcelos V, Pereira MFR, Soares OSGP, Sjollema J, Mergulhão FJ. The Use of 3D Optical Coherence Tomography to Analyze the Architecture of Cyanobacterial Biofilms Formed on a Carbon Nanotube Composite. Polymers (Basel) 2022; 14:polym14204410. [PMID: 36297988 PMCID: PMC9607013 DOI: 10.3390/polym14204410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions. Their impact on the cyanobacterial biofilm architecture was evaluated by novel parameters obtained from three-dimensional (3D) OCT analysis, such as the contour coefficient, total biofilm volume, biovolume, volume of non-connected pores, and the average size of non-connected pores. The results showed that CNTs incorporated into a commercially used epoxy resin (CNT composite) had a higher antifouling effect at the biofilm maturation stage compared to pristine epoxy resin. Along with a delay in biofilm development, a decrease in biofilm wet weight, thickness, and biovolume was also achieved with the CNT composite compared to epoxy resin and glass (control surfaces). Additionally, biofilms developed on the CNT composite were smoother and presented a lower porosity and a strictly packed structure when compared with those formed on the control surfaces. The novel biofilm parameters obtained from 3D OCT imaging are extremely important when evaluating the biofilm architecture and behavior under different scenarios beyond marine applications.
Collapse
Affiliation(s)
- Maria J. Romeu
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ed. D. de Jong
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - João Morais
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel F. R. Pereira
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-225081668
| |
Collapse
|
160
|
Coenye T, Bové M, Bjarnsholt T. Biofilm antimicrobial susceptibility through an experimental evolutionary lens. NPJ Biofilms Microbiomes 2022; 8:82. [PMID: 36257971 PMCID: PMC9579162 DOI: 10.1038/s41522-022-00346-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
Experimental evolution experiments in which bacterial populations are repeatedly exposed to an antimicrobial treatment, and examination of the genotype and phenotype of the resulting evolved bacteria, can help shed light on mechanisms behind reduced susceptibility. In this review we present an overview of why it is important to include biofilms in experimental evolution, which approaches are available to study experimental evolution in biofilms and what experimental evolution has taught us about tolerance and resistance in biofilms. Finally, we present an emerging consensus view on biofilm antimicrobial susceptibility supported by data obtained during experimental evolution studies.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
161
|
Zafar R, Bang TH, Lee YK, Begum MS, Rabani I, Hong S, Hur J. Change in adsorption behavior of aquatic humic substances on microplastic through biotic and abiotic aging processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157010. [PMID: 35772558 DOI: 10.1016/j.scitotenv.2022.157010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Interactions between microplastics (MPs) and humic substances (HS) are inevitable in MP-contaminated aquatic environment because of the ubiquitous presence of HS. In this study, we explored the effects of abiotic and biotic aging processes on the adsorption behavior of aquatic HS on MPs. Aging experiments were conducted using polyethylene (PE) as a representative MP, in which UV irradiation and microbial incubation were applied for 15 to 18 days to mimic the natural abiotic and biotic aging processes. Surface modifications after the aging treatments were evidenced by the appearance of CO, CO, O-C=O, and -OH groups; the formation of grooves on UV-aged PE; and the formation of biofilms on the surface of bio-aged PE. The specific surface areas of both treated PE MPs increased with aging. Higher HS adsorption on PE surface was observed after the aging treatments, with a highest kinetic rate for UV-aged PE than that for bio-aged PE. The adsorption isotherm models revealed that the aging processes enhanced the HS adsorption tendency, as evidenced by the highest adsorption capacity for UV-aged PE (~187 μg C/m2), followed by bio-aged PE (~157 μg C/m2) and pristine PE (~87.5 μg C/m2) for a comparable extended aging period (15-18 days). The difference was more pronounced at a lower pH. The enhanced HS adsorption was mainly attributed to the formation of hydrogen bonds, whereas HS adsorption on pristine PE was dominated by hydrophobic interactions and weak van der Waals interactions. Among the two identified fluorescent components (terrestrial humic-like C1 and protein-like C2), C1 exhibited a higher affinity for adsorption onto PE irrespective of aging. Our findings provide insights into the substantial changes that occur in the interactions between MPs and aquatic organic matter with aging processes, which may alter the fate and environmental impacts of MPs in many aquatic systems.
Collapse
Affiliation(s)
- Rabia Zafar
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Truong Hai Bang
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yun Kyung Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Most Shirina Begum
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Iqra Rabani
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
162
|
Carević T, Kostić M, Nikolić B, Stojković D, Soković M, Ivanov M. Hesperetin-Between the Ability to Diminish Mono- and Polymicrobial Biofilms and Toxicity. Molecules 2022; 27:molecules27206806. [PMID: 36296398 PMCID: PMC9611592 DOI: 10.3390/molecules27206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Hesperetin is the aglycone of citrus flavonoid hesperidin. Due to the limited information regarding hesperetin antimicrobial potential and emerging need for novel antimicrobials, we have studied its antimicrobial activity (microdilution assay), antibiofilm activity with different assays in two models (mono- and polymicrobial biofilm), and toxicity (MTT and brine shrimp lethality assays). Hesperetin inhibited growth of all Candida isolates (minimal inhibitory concentration, MIC, 0.165 mg/mL), while it’s inhibitory potential towards Staphylococcus aureus was lower (MIC 4 mg/mL). Hesperetin (0.165 mg/mL) reduced ability of Candida to form biofilms and moderately reduced exopolysaccharide levels in biofilm matrix. Effect on the eradication of 24 h old C. albicans biofilms was promising at 1.320 mg/mL. Inhibition of staphylococcal biofilm formation required higher concentrations of hesperetin (<50% inhibition with MIC 4 mg/mL). Establishment of polymicrobial C. albicans-S. aureus biofilm was significantly inhibited with the lowest examined hesperetin concentration (1 mg/mL) in crystal violet and CFU assays. Hesperetin toxicity was examined towards MRC-5 fibroblasts (IC50 0.340 mg/mL) and in brine shrimp lethality assay (LC50 > 1 mg/mL). Hesperetin is efficient in combating growth and biofilm formation of Candida species. However, its antibacterial application should be further examined due to the cytotoxic effects provoked in the antibacterial concentrations.
Collapse
Affiliation(s)
- Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Biljana Nikolić
- Department of Microbiology, Faculty of Biology, University of Belgrade, Student Square 16, 11000 Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
163
|
El-Telbany M, Mohamed AA, Yahya G, Abdelghafar A, Abdel-Halim MS, Saber S, Alfaleh MA, Mohamed AH, Abdelrahman F, Fathey HA, Ali GH, Abdel-Haleem M. Combination of Meropenem and Zinc Oxide Nanoparticles; Antimicrobial Synergism, Exaggerated Antibiofilm Activity, and Efficient Therapeutic Strategy against Bacterial Keratitis. Antibiotics (Basel) 2022; 11:1374. [PMID: 36290032 PMCID: PMC9598448 DOI: 10.3390/antibiotics11101374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic gram-negative human pathogen that causes a wide range of infections, including nosocomial infections. Aside from the intrinsic and acquired antimicrobial resistance against many classes of antibiotics, P. aeruginosa can produce an extracellular polymeric matrix called "biofilm" that protects bacteria from antibiotics and harmful factors. Biofilm enables P. aeruginosa to develop chronic infections. This study assessed the inhibitory action of ZnO-nanoparticles against biofilms formed by multidrug-resistant P. aeruginosa strains. A collection of 24 clinical strains of P. aeruginosa were tested for their antimicrobial resistance against different antibiotics using the disk diffusion method. The antibiofilm activity of ZnO-NPs was assessed using the microtiter plate biofilm assay. The application of ZnO-NPs dramatically modulated the resistance profile and biofilm activity of P. aeruginosa. The combination of ZnO-NPs and meropenem showed synergistic antipseudomonal activity with lower MICs. The scanning electron microscope (SEM) micrographs revealed complete inhibition of biofilms treated with the meropenem-ZnO-NPs combination. Reduced expression of biofilm regulating genes lasR, pslA, and fliC was detected, reflecting the enhanced antibiofilm effect of ZnO-NPs. In vivo application of this antimicrobial mixture completely cured P. aeruginosa-induced keratitis in rats. Our findings represent a dual enhancement of antibacterial and antibiofilm activity via the use of meropenem-ZnO-NPs combination against carbapenem-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Mohamed El-Telbany
- Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Alzhraa Ali Mohamed
- Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Saad Abdel-Halim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Asmaa H. Mohamed
- Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Hoda A. Fathey
- Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Gehad H. Ali
- Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Abdel-Haleem
- Microbiology and Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
164
|
The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 2022; 20:608-620. [PMID: 35922483 PMCID: PMC9841534 DOI: 10.1038/s41579-022-00767-0] [Citation(s) in RCA: 378] [Impact Index Per Article: 189.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.
Collapse
|
165
|
Zuo P, Metz J, Yu P, Alvarez PJJ. Biofilm-responsive encapsulated-phage coating for autonomous biofouling mitigation in water storage systems. WATER RESEARCH 2022; 224:119070. [PMID: 36096027 DOI: 10.1016/j.watres.2022.119070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biofilms in water storage systems may harbor pathogens that threaten public health. Chemical disinfectants are marginally effective in eradicating biofilms due to limited penetration, and often generate harmful disinfection byproducts. To enhance biofouling mitigation in household water storage tanks, we encapsulated bacteriophages (phages) in chitosan crosslinked with tri-polyphosphate and 3-glycidoxypropyltrimethoxysilane. Phages served as self-propagating green biocides that exclusively infect bacteria. This pH-responsive encapsulation (244 ± 11 nm) enabled autonomous release of phages in response to acidic pH associated with biofilms (corroborated by confocal microscopy with pH-indicator dye SNARF-4F), but otherwise remained stable in pH-neutral tap water for one month. Encapsulated phages instantly bind to plasma-treated plastic and fiberglass surfaces, providing a facile coating method that protects surfaces highly vulnerable to biofouling. Biofilm formation assays were conducted in tap water amended with 200 mg/L glucose to accelerate growth and attachment of Pseudomonas aeruginosa, an opportunistic pathogen commonly associated with biofilms in drinking water distribution and storage systems. Biofilms formation on plastic surfaces coated with encapsulated phages decreased to only 6.7 ± 0.2% (on a biomass basis) relative to the uncoated controls. Likewise, biofilm surface area coverage (4.8 ± 0.2 log CFU/mm2) and live/dead fluorescence ratio (1.80) were also lower than the controls (6.6 ± 0.2 log CFU/mm2 and live/dead ratio of 11.05). Overall, this study offers proof-of-concept of a chemical-free, easily implementable approach to control problematic biofilm-dwelling bacteria and highlights benefits of this bottom-up biofouling control approach that obviates the challenge of poor biofilm penetration by biocides.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Jordin Metz
- Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA.
| |
Collapse
|
166
|
Suwartini T, Santoso J, Widyarman AS, Ratnasari D. Efficacy of Bioceramic and Calcium Hydroxide-Based Root Canal Sealers against Pathogenic Endodontic Biofilms: An In vitro Study. Contemp Clin Dent 2022; 13:322-330. [PMID: 36687000 PMCID: PMC9855266 DOI: 10.4103/ccd.ccd_198_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Complete eradication of root canal pathogens cannot be predictably achieved by chemomechanical preparation and root canal disinfection. Therefore, an obturation material that has superior antimicrobial activity and sealing ability is required to inactivate residual microbes and prevent them from reentering the root canal system. Recently developed bioceramic root canal sealers are hydraulic cement which form calcium hydroxide during the hydration process. Like calcium hydroxide sealers, they exert an antimicrobial effect by releasing hydroxyl ions and increasing the pH. Objective The objective of this study was to evaluate and compare the antimicrobial activity of a calcium hydroxide-based sealer and two bioceramic sealers against Porphyromonas gingivalis, Enterococcus faecalis, and Candida albicans biofilms. Materials and Methods The sealers were dissolved in sterile saline to obtain supernatants. Biofilm formation assays, colony counting, and real-time polymerase chain reaction (PCR) were performed to evaluate the antimicrobial activity of each supernatant. The data were analyzed using one-way analysis of variance. Results All sealers exerted effects against all three microbial biofilms. The biofilm formation assays showed that the bioceramic sealers were more effective against P. gingivalis and E. faecalis biofilms. In contrast, colony counting and real-time PCR showed that the calcium hydroxide sealer was significantly more effective than the bioceramic sealers. All tests showed that the calcium hydroxide sealer was more effective against C. albicans, with the colony count and real-time PCR results showing statistically significant differences. Conclusion The calcium hydroxide-based sealer was more effective than the bioceramic sealers in eradicating pathogenic root canal biofilms.
Collapse
Affiliation(s)
- Tien Suwartini
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Jessica Santoso
- Conservative Dentistry Postgraduate Program, Department of Conservative Dentistry, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Armelia Sari Widyarman
- Department of Microbiology, Division of Oral Biology, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Dina Ratnasari
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| |
Collapse
|
167
|
Sousa IS, Mello TP, Pereira EP, Granato MQ, Alviano CS, Santos ALS, Kneipp LF. Biofilm Formation by Chromoblastomycosis Fungi Fonsecaea pedrosoi and Phialophora verrucosa: Involvement with Antifungal Resistance. J Fungi (Basel) 2022; 8:jof8090963. [PMID: 36135688 PMCID: PMC9504689 DOI: 10.3390/jof8090963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with chromoblastomycosis (CBM) suffer chronic tissue lesions that are hard to treat. Considering that biofilm is the main growth lifestyle of several pathogens and it is involved with both virulence and resistance to antimicrobial drugs, we have investigated the ability of CBM fungi to produce this complex, organized and multicellular structure. Fonsecaea pedrosoi and Phialophora verrucosa conidial cells were able to adhere on a polystyrene abiotic substrate, differentiate into hyphae and produce a robust viable biomass containing extracellular matrix. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed the tridimensional architecture of the mature biofilms, revealing a dense network of interconnected hyphae, inner channels and amorphous extracellular polymeric material. Interestingly, the co-culture of each fungus with THP-1 macrophage cells, used as a biotic substrate, induced the formation of a mycelial trap covering and damaging the macrophages. In addition, the biofilm-forming cells of F. pedrosoi and P. verrucosa were more resistant to the conventional antifungal drugs than the planktonic-growing conidial cells. The efflux pump activities of P. verrucosa and F. pedrosoi biofilms were significantly higher than those measured in conidia. Taken together, the data pointed out the biofilm formation by CBM fungi and brought up a discussion of the relevance of studies about their antifungal resistance mechanisms.
Collapse
Affiliation(s)
- Ingrid S. Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Elaine P. Pereira
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Celuta S. Alviano
- Laboratório de Estrutura de Microrganismos, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Correspondence:
| |
Collapse
|
168
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|
169
|
Nennig M, Clément A, Longueval E, Bernardi T, Ragimbeau C, Tresse O. Metaphenotypes associated with recurrent genomic lineages of Campylobacter jejuni responsible for human infections in Luxembourg. Front Microbiol 2022; 13:901192. [PMID: 36160185 PMCID: PMC9490421 DOI: 10.3389/fmicb.2022.901192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Although considered fragile, this microaerophilic bacterium is able to survive in various challenging environments, which subsequently constitutes multiple sources of transmission for human infection. To test the assumption of acquiring specific features for adaptation and survival, we established a workflow of phenotypic tests related to the survival and the persistence of recurrent and sporadic strains. A representative collection of 83 strains isolated over 13 years from human, mammal, poultry, and environmental sources in Luxembourg, representing different spreading patterns (endemic, epidemic, and sporadic), was screened for survival to oxidative stresses, for acclimating to aerobic conditions (AC), and for persistence on abiotic surfaces. Using the cgMLST Oxford typing scheme for WGS data, the collection was classified into genomic lineages corresponding to host-generalist strains (lineages A and D, CC ST-21), host-specific strains (lineage B, CC ST-257 and lineage C, CC ST-464) and sporadic strains. We established that when a strain survives concentrations beyond 0.25 mM superoxide stress, it is six times more likely to survive hyperoxide stress and that a highly adherent strain is 14 times more likely to develop a biofilm. Surprisingly, more than half of the strains could acclimate to AC but this capacity does not explain the difference between recurrent genomic lineages and sporadic strains and the survival to oxidative stresses, while recurrent strains have a significantly higher adhesion/biofilm formation capacity than sporadic ones. From this work, the genomic lineages with more stable genomes could be characterized by a specific combination of phenotypes, called metaphenotypes. From the functional genomic analyses, the presence of a potentially functional T6SS in the strains of lineage D might explain the propensity of these strains to be strong biofilm producers. Our findings support the hypothesis that phenotypical abilities contribute to the spatio-temporal adaptation and survival of stable genomic lineages. It suggests a selection of better-adapted and persistent strains in challenging stress environments, which could explain the prevalence of these lineages in human infections.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
- UMR-1280 PhAN, INRAE, Nantes, France
| | - Arnaud Clément
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Emmanuelle Longueval
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Thierry Bernardi
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | | |
Collapse
|
170
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
171
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
172
|
Csapai A, Toc DA, Popa F, Tosa N, Pascalau V, Costache C, Botan A, Popa CO. 3D Printed Microfluidic Bioreactors Used for the Preferential Growth of Bacterial Biofilms through Dielectrophoresis. MICROMACHINES 2022; 13:1377. [PMID: 36144000 PMCID: PMC9504626 DOI: 10.3390/mi13091377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
A realistic modelling of the way biofilms form and evolve in time requests a dynamic approach. In this study, the proposed route uses continuous-flow bioreactors under controlled flow rates and temperature in the culture medium containing bacteria or fungi. 3D printed, Polylactic acid (PLA), flow-based bioreactors with integrated copper electrodes were used to investigate the effect of dielectrophoresis on the formation and growth of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, and Klebsiella pneumoniae ATCC 13883 biofilms. Bacterial suspensions of 1McF turbidity have been prepared and circulated through the bioreactors. At the same time, a 30 V potential difference was applied on the system. The effect of the non-uniform electric field induced upon the bacterial cells was determined using quantitative methods, such as an adjusted microtiter plate technique, as well as spectral domain optical coherence tomography (SD-OCT) images. The morphology and the surface quality of the biofilms were investigated using Scanning Electron Microscopy (SEM) images. The results show that the different bacterial cells present a positive dielectrophoretic behaviour, with the preferential formation of biofilms in the high field gradient region.
Collapse
Affiliation(s)
- Alexandra Csapai
- Materials Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Ave., 400641 Cluj-Napoca, Romania
| | - Dan A. Toc
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400000 Cluj-Napoca, Romania
| | - Florin Popa
- Materials Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Ave., 400641 Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, Molecular and Biomolecular Physics Department, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Violeta Pascalau
- Materials Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Ave., 400641 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400000 Cluj-Napoca, Romania
| | - Alexandru Botan
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400000 Cluj-Napoca, Romania
| | - Catalin O. Popa
- Materials Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Ave., 400641 Cluj-Napoca, Romania
| |
Collapse
|
173
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
174
|
Bedell E, Harmon O, Fankhauser K, Shivers Z, Thomas E. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: Design, characterization and field validation. WATER RESEARCH 2022; 220:118644. [PMID: 35667167 DOI: 10.1016/j.watres.2022.118644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
We designed and validated a sensitive, continuous, in-situ, remotely reporting tryptophan-like fluorescence sensor and coupled it with a machine learning model to predict high-risk fecal contamination in water (>10 colony forming units (CFU)/100mL E. coli). We characterized the sensor's response to multiple fluorescence interferents with benchtop analysis. The sensor's minimum detection limit (MDL) of tryptophan dissolved in deionized water was 0.05 ppb (p <0.01) and its MDL of the correlation to E. coli present in wastewater effluent was 10 CFU/100 mL (p <0.01). Fluorescence response declined exponentially with increased water temperature and a correction factor was calculated. Inner filter effects, which cause signal attenuation at high concentrations, were shown to have negligible impact in an operational context. Biofouling was demonstrated to increase the fluorescence signal by approximately 82% in a certain context, while mineral scaling reduced the sensitivity of the sensor by approximately 5% after 24 hours with a scaling solution containing 8 times the mineral concentration of the Colorado River. A machine learning model was developed, with TLF measurements as the primary feature, to output fecal contamination risk levels established by the World Health Organization. A training and validation data set for the model was built by installing four sensors on Boulder Creek, Colorado for 88 days and enumerating 298 grab samples for E. coli with membrane filtration. The machine learning model incorporated a proxy feature for fouling (time since last cleaning) which improved model performance. A binary classification model was able to predict high risk fecal contamination with 83% accuracy (95% CI: 78% - 87%), sensitivity of 80%, and specificity of 86%. A model distinguishing between all World Health Organization established risk categories performed with an overall accuracy of 64%. Integrating TLF measurements into an ML model allows for anomaly detection and noise reduction, permitting contamination prediction despite biofilm or mineral scaling formation on the sensor's lenses. Real-time detection of high risk fecal contamination could contribute to a major step forward in terms of microbial water quality monitoring for human health.
Collapse
Affiliation(s)
- Emily Bedell
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA
| | - Olivia Harmon
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America
| | - Katie Fankhauser
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA
| | | | - Evan Thomas
- Mortenson Center in Global Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, 80303, Colorado, United States of America; SweetSense Inc., Boulder, Colorado, USA.
| |
Collapse
|
175
|
Activity of Exebacase (CF-301) against Biofilms Formed by Staphylococcus epidermidis Strains Isolated from Prosthetic Joint Infections. Antimicrob Agents Chemother 2022; 66:e0058822. [PMID: 35861539 PMCID: PMC9380561 DOI: 10.1128/aac.00588-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis
is one of the main pathogens responsible for bone and joint infections, especially those involving prosthetic materials, due to its ability to form biofilms. In these cases, biofilm formation, combined with increased antimicrobial resistance, often results in therapeutic failures.
Collapse
|
176
|
Yang Q, Olaifa K, Andrew FP, Ajibade PA, Ajunwa OM, Marsili E. Assessment of physiological and electrochemical effects of a repurposed zinc dithiocarbamate complex on Acinetobacter baumannii biofilms. Sci Rep 2022; 12:11701. [PMID: 35810245 PMCID: PMC9271062 DOI: 10.1038/s41598-022-16047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
Acinetobacter baumannii is an infectious agent of global proportion and concern, partly due to its proficiency in development of antibiotic resistance phenotypes and biofilm formation. Dithiocarbamates (DTC) have been identified as possible alternatives to the current antimicrobials. We report here the evaluation of several DTC-metal complexes against A. baumannii planktonic cells and biofilms. Among the DTC-metal complexes and DTCs tested, ZnL1 (N-methyl-1-phenyldithiocarbamato-S,S' Zn(II)), originally designed as an antitumor agent, is effective against biofilm forming A. baumannii. A MIC value of 12.5 µM, comparable to that of Gentamicin (5 µM) was measured for planktonic cells in tryptic soy broth. Spectroscopy, microscopy and biochemical analyses reveal cell membrane degradation and leakage after treatment with ZnL1. Bioelectrochemical analyses show that ZnL1 reduces biofilm formation and decreases extracellular respiration of pre-formed biofilms, as corroborated by microscopic analyses. Due to the affinity of Zn to cells and the metal chelating nature of L1 ligand, we hypothesize ZnL1 could alter metalloprotein functions in the membranes of A. baumannii cells, leading to altered redox balance. Results indicate that the DTC-Zn metal complex is an effective antimicrobial agent against early A. baumannii biofilms under laboratory conditions.
Collapse
Affiliation(s)
- Qing Yang
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan
| | - Kayode Olaifa
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan
| | - Fartisincha P Andrew
- Department of Science Laboratory Technology, Modibbo Adama University, Yola, Nigeria
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Obinna M Ajunwa
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan.,Department of Microbiology, Modibbo Adama University, Yola, Nigeria
| | - Enrico Marsili
- Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 01000, Kazakhstan.
| |
Collapse
|
177
|
Ma L, Feng J, Zhang J, Lu X. Campylobacter biofilms. Microbiol Res 2022; 264:127149. [DOI: 10.1016/j.micres.2022.127149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
178
|
Moshynets OV, Baranovskyi TP, Cameron S, Iungin OS, Pokholenko I, Jerdan R, Kamyshnyi A, Krikunov AA, Potochilova VV, Rudnieva KL, Spiers AJ. Azithromycin possesses biofilm–inhibitory activity and potentiates non-bactericidal colistin methanesulfonate (CMS) and polymyxin B against Klebsiella pneumonia. PLoS One 2022; 17:e0270983. [PMID: 35776759 PMCID: PMC9249213 DOI: 10.1371/journal.pone.0270983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Novel antibiotic combinations may act synergistically to inhibit the growth of multidrug-resistant bacterial pathogens but predicting which combination will be successful is difficult, and standard antimicrobial susceptibility testing may not identify important physiological differences between planktonic free-swimming and biofilm-protected surface-attached sessile cells. Using a nominally macrolide-resistant model Klebsiella pneumoniae strain (ATCC 10031) we demonstrate the effectiveness of several macrolides in inhibiting biofilm growth in multi-well plates, and the ability of azithromycin (AZM) to improve the effectiveness of the antibacterial last-agent-of-choice for K. pneumoniae infections, colistin methanesulfonate (CMS), against biofilms. This synergistic action was also seen in biofilm tests of several K. pneumoniae hospital isolates and could also be identified in polymyxin B disc-diffusion assays on azithromycin plates. Our work highlights the complexity of antimicrobial-resistance in bacterial pathogens and the need to test antibiotics with biofilm models where potential synergies might provide new therapeutic opportunities not seen in liquid culture or colony-based assays.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- * E-mail: (OVM); (AJS)
| | - Taras P. Baranovskyi
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Kyiv Regional Clinical Hospital, Kyiv, Ukraine
| | - Scott Cameron
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Olga S. Iungin
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Ianina Pokholenko
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | | | | | | | | | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
- * E-mail: (OVM); (AJS)
| |
Collapse
|
179
|
Tuck B, Salgar-Chaparro SJ, Watkin E, Somers A, Forsyth M, Machuca LL. Extracellular DNA: A Critical Aspect of Marine Biofilms. Microorganisms 2022; 10:microorganisms10071285. [PMID: 35889003 PMCID: PMC9320517 DOI: 10.3390/microorganisms10071285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multispecies biofilms represent a pervasive threat to marine-based industry, resulting in USD billions in annual losses through biofouling and microbiologically influenced corrosion (MIC). Biocides, the primary line of defence against marine biofilms, now face efficacy and toxicity challenges as chemical tolerance by microorganisms increases. A lack of fundamental understanding of species and EPS composition in marine biofilms remains a bottleneck for the development of effective, target-specific biocides with lower environmental impact. In the present study, marine biofilms are developed on steel with three bacterial isolates to evaluate the composition of the EPSs (extracellular polymeric substances) and population dynamics. Confocal laser scanning microscopy, scanning electron microscopy, and fluorimetry revealed that extracellular DNA (eDNA) was a critical structural component of the biofilms. Parallel population analysis indicated that all three strains were active members of the biofilm community. However, eDNA composition did not correlate with strain abundance or activity. The results of the EPS composition analysis and population analysis reveal that biofilms in marine conditions can be stable, well-defined communities, with enabling populations that shape the EPSs. Under marine conditions, eDNA is a critical EPS component of the biofilm and represents a promising target for the enhancement of biocide specificity against these populations.
Collapse
Affiliation(s)
- Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Silvia J. Salgar-Chaparro
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia;
| | - Anthony Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Laura L. Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
- Correspondence:
| |
Collapse
|
180
|
Pereira J, de Nooy S, Sleutels T, Ter Heijne A. Opportunities for visual techniques to determine characteristics and limitations of electro-active biofilms. Biotechnol Adv 2022; 60:108011. [PMID: 35753624 DOI: 10.1016/j.biotechadv.2022.108011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Optimization of bio-electrochemical systems (BESs) relies on a better understanding of electro-active biofilms (EABfs). These microbial communities are studied with a range of techniques, including electrochemical, visual and chemical techniques. Even though each of these techniques provides very valuable and wide-ranging information about EABfs, such as performance, morphology and biofilm composition, they are often destructive. Therefore, the information obtained from EABfs development and characterization studies are limited to a single characterization of EABfs and often limited to one time point that determines the end of the experiment. Despite being scarcer and not as commonly reported as destructive techniques, non-destructive visual techniques can be used to supplement EABfs characterization by adding in-situ information of EABfs functioning and its development throughout time. This opens the door to EABfs monitoring studies that can complement the information obtained with destructive techniques. In this review, we provide an overview of visual techniques and discuss the opportunities for combination with the established electrochemical techniques to study EABfs. By providing an overview of suitable visual techniques and discussing practical examples of combination of visual with electrochemical methods, this review aims at serving as a source of inspiration for future studies in the field of BESs.
Collapse
Affiliation(s)
- João Pereira
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Sam de Nooy
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
181
|
Electrochemical Control of Biofilm Formation and Approaches to Biofilm Removal. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review deals with microbial adhesion to metal-based surfaces and the subsequent biofilm formation, showing that both processes are a serious problem in the food industry, where pathogenic microorganisms released from the biofilm structure may pollute food and related material during their production. Biofilm exhibits an increased resistance toward sanitizers and disinfectants, which complicates the removal or inactivation of microorganisms in these products. In the existing traditional techniques and modern approaches for clean-in-place, electrochemical biofilm control offers promising technology, where surface properties or the reactions taking place on the surface are controlled to delay or prevent cell attachment or to remove microbial cells from the surface. In this overview, biofilm characterization, the classification of bacteria-forming biofilms, the influence of environmental conditions for bacterial attachment to material surfaces, and the evaluation of the role of biofilm morphology are described in detail. Health aspects, biofilm control methods in the food industry, and conventional approaches to biofilm removal are included as well, in order to consider the possibilities and limitations of various electrochemical approaches to biofilm control with respect to potential applications in the food industry.
Collapse
|
182
|
Häuser L, Erben J, Pillot G, Kerzenmacher S, Dreher W, Küstermann E. In vivo characterization of electroactive biofilms inside porous electrodes with MR Imaging. RSC Adv 2022; 12:17784-17793. [PMID: 35765339 PMCID: PMC9199086 DOI: 10.1039/d2ra01162j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Identifying the limiting processes of electroactive biofilms is key to improve the performance of bioelectrochemical systems (BES). For modelling and developing BES, spatial information of transport phenomena and biofilm distribution are required and can be determined by Magnetic Resonance Imaging (MRI) in vivo, in situ and in operando even inside opaque porous electrodes. A custom bioelectrochemical cell was designed that allows MRI measurements with a spatial resolution of 50 μm inside a 500 μm thick porous carbon electrode. The MRI data showed that only a fraction of the electrode pore space is colonized by the Shewanella oneidensis MR-1 biofilm. The maximum biofilm density was observed inside the porous electrode close to the electrode-medium interface. Inside the biofilm, mass transport by diffusion is lowered down to 45% compared to the bulk growth medium. The presented data and the methods can be used for detailed models of bioelectrochemical systems and for the design of improved electrode structures. The use of magnetic resonance imaging can contribute to a better understanding of limiting processes occurring in electroactive biofilms especially inside opaque porous electrodes.![]()
Collapse
Affiliation(s)
- Luca Häuser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | | | - Guillaume Pillot
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Wolfgang Dreher
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| | - Ekkehard Küstermann
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| |
Collapse
|
183
|
Brown JL, Short B, Ware A, Sherry L, Kean R, Ramage G. Cell Viability Assays for Candida auris. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2517:129-153. [PMID: 35674950 DOI: 10.1007/978-1-0716-2417-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell viability assays are useful for assessing the efficacy of antifungal therapeutics and disinfection strategies in vitro. In recent years these assays have been fundamental for the testing of conventional and novel therapies against the nosocomial fungal pathogen Candida auris. Here we provide detailed descriptions of methods for assessing cellular viability of Candida auris in vitro, such as metabolic assays (XTT and resazurin), colony-forming unit counting, live/dead quantitative PCR, and fluorescent staining for microscopic analyses.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK. .,Glasgow Biofilm Research Network, Glasgow, UK.
| | - Bryn Short
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK.,Glasgow Biofilm Research Network, Glasgow, UK
| | - Alicia Ware
- Glasgow Biofilm Research Network, Glasgow, UK.,Department of Biological and Biomedical, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Leighann Sherry
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK.,Glasgow Biofilm Research Network, Glasgow, UK
| | - Ryan Kean
- Glasgow Biofilm Research Network, Glasgow, UK.,Department of Biological and Biomedical, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Gordon Ramage
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK. .,Glasgow Biofilm Research Network, Glasgow, UK.
| |
Collapse
|
184
|
Rodríguez-López P, Rodríguez-Herrera JJ, López Cabo M. Architectural Features and Resistance to Food-Grade Disinfectants in Listeria monocytogenes- Pseudomonas spp. Dual-Species Biofilms. Front Microbiol 2022; 13:917964. [PMID: 35756028 PMCID: PMC9218357 DOI: 10.3389/fmicb.2022.917964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is considered a foodborne pathogen of serious concern capable of forming multispecies biofilms with other bacterial species, such as Pseudomonas spp., adhered onto stainless steel (SS) surfaces. In an attempt to link the biofilms' morphology and resistance to biocides, dual-species biofilms of L. monocytogenes, in co-culture with either Pseudomonas aeruginosa, Pseudomonas fluorescens, or Pseudomonas putida, were assayed to ascertain their morphological characteristics and resistance toward benzalkonium chloride (BAC) and neutral electrolyzed water (NEW). Epifluorescence microscopy analysis revealed that each dual-species biofilm was distributed differently over the SS surface and that these differences were attributable to the presence of Pseudomonas spp. Confocal laser scanning microscopy (CLSM) assays demonstrated that despite these differences in distribution, all biofilms had similar maximum thicknesses. Along with this, colocalization analyses showed a strong trend of L. monocytogenes to share location within the biofilm with all Pseudomonas assayed whilst the latter distributed throughout the surface independently of the presence of L. monocytogenes, a fact that was especially evident in those biofilms in which cell clusters were present. Finally, a modified Gompertz equation was used to fit biofilms' BAC and NEW dose-response data. Outcomes demonstrated that L. monocytogenes was less susceptible to BAC when co-cultured with P. aeruginosa or P. fluorescens, whereas susceptibility to NEW was reduced in all three dual-species biofilms, which can be attributable to both the mechanism of action of the biocide and the architectural features of each biofilm. Therefore, the results herein provided can be used to optimize already existing and develop novel target-specific sanitation treatments based on the mechanism of action of the biocide and the biofilms' species composition and structure.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain
| | | | | |
Collapse
|
185
|
Longo M, Rioual S, Talbot P, Faÿ F, Hellio C, Lescop B. A high sensitive microwave sensor to monitor bacterial and biofilm growth. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
186
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
187
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
188
|
Satokata AAC, de Souza JH, Silva LLO, Santiago MB, Ramos SB, Assis LRD, Theodoro RDS, Oliveira LRE, Regasini LO, Martins CHG. Chalcones with potential antibacterial and antibiofilm activities against periodontopathogenic bacteria. Anaerobe 2022; 76:102588. [PMID: 35618163 DOI: 10.1016/j.anaerobe.2022.102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Periodontitis is a pathology resulting from complex interaction of microorganisms in the dental biofilm with the host's immune system. Increased use of antibiotics associated with their inappropriate use has increased resistance levels in anaerobic bacteria. Therefore, identifying new antimicrobial compounds, such as chalcones, is urgent. This study evaluates the antibacterial activity and the antibiofilm activity of 15 chalcones against the periodontopathogenic bacteria Prevotella nigrescens (ATCC 33563), P. oralis (ATCC 33269), Peptostreptococcus anaerobius (ATCC 27337), Actinomyces viscosus (ATCC 43146), Porphyromonas asaccharolytica (ATCC 25260), and Fusobacterium nucleatum (ATCC 25586). METHODS The compounds were evaluated by minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) tests. RESULTS Compounds 1-6 showed good antibacterial and antibiofilm activities against most of the evaluated bacteria: MIC was lower than or equal to 6.25 μg/mL, biofilm biomass was reduced by 95%, and the compounds at concentrations between 0.78 and 100 μg/mL totally inhibited cell viability. Among the tested chalcones, 3 stood out: it was effective against all the bacteria, as revealed by the MIC and MBIC results. CONCLUSIONS Our results have consolidated a base for the development of new studies on the effects of the tested chalcones as agents to combat and to prevent periodontitis.
Collapse
Affiliation(s)
- Alessandra Akemi Cury Satokata
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Jonathan Henrique de Souza
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luana Luiza Oliveira Silva
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Leticia Ribeiro de Assis
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Reinaldo Dos Santos Theodoro
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Lígia Rodrigues E Oliveira
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Luis Octavio Regasini
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
189
|
Tang PC, Eriksson O, Sjögren J, Fatsis-Kavalopoulos N, Kreuger J, Andersson DI. A Microfluidic Chip for Studies of the Dynamics of Antibiotic Resistance Selection in Bacterial Biofilms. Front Cell Infect Microbiol 2022; 12:896149. [PMID: 35619647 PMCID: PMC9128571 DOI: 10.3389/fcimb.2022.896149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Biofilms are arguably the most important mode of growth of bacteria, but how antibiotic resistance emerges and is selected in biofilms remains poorly understood. Several models to study evolution of antibiotic resistance have been developed, however, their usability varies depending on the nature of the biological question. Here, we developed and validated a microfluidic chip (Brimor) for studying the dynamics of enrichment of antibiotic-resistant bacteria in biofilms using real-time monitoring with confocal microscopy. In situ extracellular cellulose staining and physical disruption of the biomass confirmed Escherichia coli growth as biofilms in the chip. We showed that seven generations of growth occur in 16 h when biofilms were established in the growth chambers of Brimor, and that bacterial death and growth rates could be estimated under these conditions using a plasmid with a conditional replication origin. Additionally, competition experiments between antibiotic-susceptible and -resistant bacteria at sub-inhibitory concentrations demonstrated that the antibiotic ciprofloxacin selected for antibiotic resistance in bacterial biofilms at concentrations 17-fold below the minimal inhibitory concentration of susceptible planktonic bacteria. Overall, the microfluidic chip is easy to use and a relevant model for studying the dynamics of selection of antibiotic resistance in bacterial biofilms and we anticipate that the Brimor chip will facilitate basic research in this area.
Collapse
Affiliation(s)
- Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- U-Print, Uppsala University 3D-Printing Facility, Uppsala University, Uppsala, Sweden
| | | | | | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan I. Andersson, ; Johan Kreuger,
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan I. Andersson, ; Johan Kreuger,
| |
Collapse
|
190
|
Insights into the Virulence of Campylobacter jejuni Associated with Two-Component Signal Transduction Systems and Single Regulators. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is one of the major aetiologies of diarrhoea. Understanding the processes and virulence factors contributing to C. jejuni fitness is a cornerstone for developing mitigation strategies. Two-component signal transduction systems, known as two-component systems (TCSs), along with single regulators with no obvious cognate histidine kinase, help pathogens in interacting with their environments, but the available literature on C. jejuni is limited. A typical TCS possesses histidine kinase and response regulator proteins. The objective of this review was to provide insights into the virulence of C. jejuni associated with TCSs and single regulators. Despite limited research, TCSs are important contributors to the pathogenicity of C. jejuni by influencing motility (FlgSR), colonisation (DccRS), nutrient acquisition (PhosSR and BumSR), and stress response (RacRS). Of the single regulators, CbrR and CosR are involved in bile resistance and oxidative stress response, respectively. Cross-talks among TCSs complicate the full elucidation of their molecular mechanisms. Although progress has been made in characterising C. jejuni TCSs, shortfalls such as triggering signals, inability to induce mutations in some genes, or developing suitable in vivo models are still being encountered. Further research is expected to shed light on the unexplored sides of the C. jejuni TCSs, which may allow new drug discoveries and better control strategies.
Collapse
|
191
|
Burnett J, Wu ST, Voorn M, Jordan C, Manuel CS, Singh M, Oliver HF. Enhanced training, employee-led deep cleans, and complete sanitation execution are effective Listeria monocytogenes controls in retail produce environments. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
192
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
193
|
Caniglia G, Sportelli MC, Heinzmann A, Picca RA, Valentini A, Barth H, Mizaikoff B, Cioffi N, Kranz C. Silver-fluoropolymer (Ag-CFX) films: Kinetic study of silver release, and spectroscopic-microscopic insight into the inhibition of P. fluorescens biofilm formation. Anal Chim Acta 2022; 1212:339892. [DOI: 10.1016/j.aca.2022.339892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
|
194
|
Fessia A, Barra P, Barros G, Nesci A. Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 2022; 133:2148-2166. [PMID: 35476896 DOI: 10.1111/jam.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays, but they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Paula Barra
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
195
|
Tuncer G, Aktas Z, Basaran S, Cagatay A, Eraksoy H. Biofilm formation of panresistant Klebsiella pneumoniae. Future Microbiol 2022; 17:723-735. [PMID: 35443798 DOI: 10.2217/fmb-2021-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: The authors aimed to investigate the biofilm-forming features of panresistant Klebsiella pneumoniae (PRKp). Material & methods: The biofilm formations were shown under light microscope and laser scanning confocal microscopy. The optical densities of the wells were measured and classified according to biofilm-forming capacities. Results: The ratio of biofilm-forming K. pneumoniae was established to be 100%. All isolates were found to form high-level biofilms in classification compared with positive and negative controls. No significant difference was detected in the biofilm-forming capacities of K. pneumoniae strains isolated from different sample types. Conclusion: No previous study associated with PRKp isolates was identified in the literature search. There is a need for different approaches characterizing the biofilm-forming features of PRKp.
Collapse
Affiliation(s)
- Gulsah Tuncer
- Department of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34104, Turkey
| | - Zerrin Aktas
- Department of Microbiology & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34104, Turkey
| | - Seniha Basaran
- Department of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34104, Turkey
| | - Atahan Cagatay
- Department of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34104, Turkey
| | - Haluk Eraksoy
- Department of Infectious Diseases & Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, 34104, Turkey
| |
Collapse
|
196
|
Urinary Stent Development and Evaluation Models: In Vitro, Ex Vivo and In Vivo-A European Network of Multidisciplinary Research to Improve Urinary Stents (ENIUS) Initiative. Polymers (Basel) 2022; 14:polym14091641. [PMID: 35566810 PMCID: PMC9102855 DOI: 10.3390/polym14091641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background: When trying to modify urinary stents, certain pre-clinical steps have to be followed before clinical evaluation in humans. Usually, the process starts as an in silico assessment. The urinary tract is a highly complex, dynamic and variable environment, which makes a computer simulation closely reflecting physiological conditions extremely challenging. Therefore, the pre-clinical evaluation needs to go through further steps of in vitro, ex vivo and in vivo assessments. Methods and materials: Within the European Network of Multidisciplinary Research to Improve Urinary Stents (ENIUS), the authors summarized and evaluated stent assessment models in silico, in vitro, ex vivo and in vivo. The topic and relevant sub-topics were researched in a systematic literature search in Embase, Scope, Web of Science and PubMed. Clinicaltrials.gov was consulted for ongoing trials. Articles were selected systematically according to guidelines with non-relevant, non-complete, and non-English or Spanish language articles excluded. Results: In the first part of this paper, we critically evaluate in vitro stent assessment models used over the last five decades, outlining briefly their strengths and weaknesses. In the second part, we provide a step-by-step guide on what to consider when setting up an ex vivo model for stent evaluation on the example of a biodegradable stent. Lastly, the third part lists and discusses the pros and cons of available animal models for urinary stent evaluation, this being the final step before human trials. Conclusions: We hope that this overview can provide a practical guide and a critical discussion of the experimental pre-clinical evaluation steps needed, which will help interested readers in choosing the right methodology from the start of a stent evaluation process once an in silico assessment has been completed. Only a transparent multidisciplinary approach using the correct methodology will lead to a successful clinical implementation of any new or modified stent.
Collapse
|
197
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
198
|
Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SKMR, Stájer A, Baráth Z, Szabó D, Urbán E, Gajdács M. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens 2022; 11:pathogens11040471. [PMID: 35456146 PMCID: PMC9031815 DOI: 10.3390/pathogens11040471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.
Collapse
Affiliation(s)
- Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
- Correspondence:
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria;
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624 Pécs, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| |
Collapse
|
199
|
Vo JL, Ortiz GCM, Totsika M, Lo AW, Hancock SJ, Whitten AE, Hor L, Peters KM, Ageorges V, Caccia N, Desvaux M, Schembri MA, Paxman JJ, Heras B. Variation of Antigen 43 self-association modulates bacterial compacting within aggregates and biofilms. NPJ Biofilms Microbiomes 2022; 8:20. [PMID: 35396507 PMCID: PMC8993888 DOI: 10.1038/s41522-022-00284-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure–function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Gabriela C Martínez Ortiz
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, QLD, 4006, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Valentin Ageorges
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Nelly Caccia
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jason J Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
200
|
Alonso VPP, Ferreira RCDC, Cotta MA, Kabuki DY. Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|