151
|
Atanasova-Penichon V, Barreau C, Richard-Forget F. Antioxidant Secondary Metabolites in Cereals: Potential Involvement in Resistance to Fusarium and Mycotoxin Accumulation. Front Microbiol 2016; 7:566. [PMID: 27148243 PMCID: PMC4840282 DOI: 10.3389/fmicb.2016.00566] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 11/26/2022] Open
Abstract
Gibberella and Fusarium Ear Rot and Fusarium Head Blight are major diseases affecting European cereals. These diseases are mainly caused by fungi of the Fusarium genus, primarily Fusarium graminearum and Fusarium verticillioides. These Fusarium species pose a serious threat to food safety because of their ability to produce a wide range of mycotoxins, including type B trichothecenes and fumonisins. Many factors such as environmental, agronomic or genetic ones may contribute to high levels of accumulation of mycotoxins in the grain and there is an urgent need to implement efficient and sustainable management strategies to reduce mycotoxin contamination. Actually, fungicides are not fully efficient to control the mycotoxin risk. In addition, because of harmful effects on human health and environment, their use should be seriously restricted in the near future. To durably solve the problem of mycotoxin accumulation, the breeding of tolerant genotypes is one of the most promising strategies for cereals. A deeper understanding of the molecular mechanisms of plant resistance to both Fusarium and mycotoxin contamination will shed light on plant-pathogen interactions and provide relevant information for improving breeding programs. Resistance to Fusarium depends on the plant ability in preventing initial infection and containing the development of the toxigenic fungi while resistance to mycotoxin contamination is also related to the capacity of plant tissues in reducing mycotoxin accumulation. This capacity can result from two mechanisms: metabolic transformation of the toxin into less toxic compounds and inhibition of toxin biosynthesis. This last mechanism involves host metabolites able to interfere with mycotoxin biosynthesis. This review aims at gathering the latest scientific advances that support the contribution of grain antioxidant secondary metabolites to the mechanisms of plant resistance to Fusarium and mycotoxin accumulation.
Collapse
Affiliation(s)
| | - Christian Barreau
- MycSA, Institut National de la Recherche Agronomique Villenave d'Ornon, France
| | | |
Collapse
|
152
|
Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu JR. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ Microbiol 2016; 18:3689-3701. [PMID: 26940955 DOI: 10.1111/1462-2920.13279] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022]
Abstract
The biosynthesis of mycotoxin deoxynivalenol (DON) in Fusarium graminearum is regulated by two pathway-specific transcription factors Tri6 and Tri10 and affected by various host and environmental factors. In this study, we showed that cyclic adenosine monophosphate (cAMP) treatment induced DON production by stimulating TRI gene expression and DON-associated cellular differentiation in F. graminearum. Interestingly, exogenous cAMP had no effects on the tri6 mutant but partially recovered the defect of tri10 mutant in DON biosynthesis. Although the two cAMP phosphodiesterase genes PDE1 and PDE2 had overlapping functions in vegetative growth, conidiation, sexual reproduction and plant infection, deletion of PDE2 but not PDE1 activated intracellular PKA activities and increased DON production. Whereas the tri6 pde2 mutant failed to produce DON, the tri10 pde2 double mutant produced a significantly higher level of DON than the tri10 mutant. Cellular differentiation associated with DON production was stimulated by exogenous cAMP or deletion of PDE2 in both tri10 and tri6 mutants. These data indicate that TRI6 is essential for the regulation of DON biosynthesis by cAMP signalling but elevated PKA activities could partially bypass the requirement of TRI10 for TRI gene-expression and DON production, and Pde2 is the major cAMP phosphodiesterase to negatively regulate DON biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chengkang Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
153
|
|
154
|
Gerin D, De Miccolis Angelini RM, Pollastro S, Faretra F. RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in Aspergillus carbonarius. PLoS One 2016; 11:e0147089. [PMID: 26765536 PMCID: PMC4713082 DOI: 10.1371/journal.pone.0147089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/26/2015] [Indexed: 12/18/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin harmful for animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. Gene transcriptional profiling of 4 A. carbonarius strains was carried out by RNA-Seq analysis to study transcriptome changes associated with OTA production. By comparing OTA inducing (OTAI) vs. non-inducing (OTAN) cultural conditions, a total of 3,705 differentially expressed genes (DEGs) (fold change > |2| and FDR ≤ 0.05) were identified. Several genes involved in primary metabolic processes, with particular regard to carbohydrate and amino acid metabolisms, secondary metabolic processes, transport, response to stress and sporulation were up-regulated by OTAI conditions at all the analysed sampling times (4, 6 and 8 DAI) or starting from 6 DAI. Highly up-regulated DEGs encoding enzymes involved in biosynthesis of secondary metabolites, oxidoreductases, transporters and transcription factors were examined for their potential involvement in OTA biosynthesis and related metabolic pathways. Differential expression of genes encoding polyketide synthases (pks), non-ribosomal peptide synthetases (nrps) and chloroperoxidase (cpo) was validated by RT-qPCR. Among clusters of co-regulated genes involved in SM biosynthesis, one putative OTA-gene cluster, including both pks and nrps genes, was detected in the A. carbonarius genome.
Collapse
Affiliation(s)
- Donato Gerin
- Department of Soil, Plant and Food Sciences, Section of Plant Pathology, University of Bari Aldo Moro, Bari, Italy
| | - Rita M. De Miccolis Angelini
- Department of Soil, Plant and Food Sciences, Section of Plant Pathology, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, Section of Plant Pathology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, Section of Plant Pathology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
155
|
Mycotoxin Menace in Stored Agricultural Commodities and Their Management by Plant Volatiles: An Overview. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27312-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
156
|
Zhang L, Li B, Zhang Y, Jia X, Zhou M. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2016; 17:16-28. [PMID: 25808544 PMCID: PMC6638496 DOI: 10.1111/mpp.12258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fusarium graminearum, the causal agent of Fusarium head blight, is a common pathogen on small grain cereals worldwide and produces various trichothecenes [deoxynivalenol (DON) is predominant] during infection. A previous study has revealed that DON production is positively correlated with the occurrence of carbendazim (MBC) resistance. Here, we identified and characterized two putative genes encoding hexokinase in F. graminearum (FgHXK1 and FgHXK2), which is a rate-limiting enzyme in DON biosynthesis. The expression level of hexokinase genes and the production of pyruvate, which is the precursor of DON, were up-regulated in the MBC-resistant strain, indicating that hexokinase genes might be involved in increased DON production. Phylogenetic and comparative analyses indicated that FgHXK1 was the predominant hexokinase gene. Gene disruption showed that ΔFgHXK1 severely affected DON production, indicating that FgHXK1 played a role in the regulation of DON biosynthesis. Morphological characterization showed that ΔFgHXK1 led to inhibited vegetative growth and conidiation. Sensitivity tests to MBC and various stresses indicated that both ΔFgHXK1 and ΔFgHXK2 mutants showed no significant difference from parental strains. Pathogencity assays showed that ΔFgHXK1 mutants lost virulence on wheat head and corn stigma; however, they showed no change in sexual reproduction. The FgHXK1-overexpressing transformants were obtained subsequently. Their pyruvate and DON production was confirmed to be increased, indicating that FgHXK1 positively regulated DON biosynthesis. Although additional defects appeared in overexpression mutants, MBC sensitivity showed no change. All of the results indicated that the transcriptional level of FgHXK1 regulated DON biosynthesis, but showed no direct relationship with MBC resistance.
Collapse
Affiliation(s)
- Leigang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baicun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojing Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
157
|
Montibus M, Khosravi C, Zehraoui E, Verdal-Bonnin MN, Richard-Forget F, Barreau C. Is the Fgap1 mediated response to oxidative stress chemotype dependent in Fusarium graminearum? FEMS Microbiol Lett 2015; 363:fnv232. [PMID: 26656279 DOI: 10.1093/femsle/fnv232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
This study aims to compare the role of the transcription factor Fgap1 in oxidative stress response for two Fusarium graminearum strains belonging to the two chemotypes DON/ADON and NIV/FX. While the response to H2O2 was shown to be chemotype dependent, an opposite result was observed for diamide: whatever the chemotype, the global level of TCTB (i.e. trichothecene B) production was strongly increased by the treatment with diamide. Fgap1 was shown to be involved in this regulation for both chemotypes. Our data show that the response to diamide is mediated by Fgap1 whatever the chemotype of the F. graminearum strains. However, the NIV/FX chemotype has developed higher antioxidant capacities in response to oxidative stress. But when this capacity is overwhelmed by an increment in the H2O2 level, the NIV/FX strains also responds by an increase in toxin accumulation.
Collapse
Affiliation(s)
- Mathilde Montibus
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Claire Khosravi
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Enric Zehraoui
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | | | - Florence Richard-Forget
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Christian Barreau
- CNRS, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
158
|
Hou R, Jiang C, Zheng Q, Wang C, Xu JR. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2015; 16:987-99. [PMID: 25781642 PMCID: PMC6638501 DOI: 10.1111/mpp.12254] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.
Collapse
Affiliation(s)
- Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Qian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
159
|
Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses inFusarium graminearum. Environ Microbiol 2015; 17:4615-30. [DOI: 10.1111/1462-2920.12993] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Ye Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Na Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yanni Yin
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yun Chen
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021 Zhejiang China
| | - Zhonghua Ma
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
160
|
Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schöfbeck D, McCormick S, Broz K, Stückler R, Schuhmacher R, Krska R, Kistler HC, Berthiller F, Adam G. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol 2015; 17:2588-600. [PMID: 25403493 PMCID: PMC4950012 DOI: 10.1111/1462-2920.12718] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/28/2022]
Abstract
The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. In rice cultures, a new trichothecene mycotoxin (named NX-2) was characterized by liquid chromatography-tandem mass spectrometry. Nuclear magnetic resonance measurements identified NX-2 as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-ene. Compared with the well-known 3-acetyl-deoxynivalenol (3-ADON), it lacks the keto group at C-8 and hence is a type A trichothecene. Wheat ears inoculated with the isolated strains revealed a 10-fold higher contamination with its deacetylated form, named NX-3, (up to 540 mg kg(-1) ) compared with NX-2. The toxicities of the novel mycotoxins were evaluated utilizing two in vitro translation assays and the alga Chlamydomonas reinhardtii. NX-3 inhibits protein biosynthesis to almost the same extent as the prominent mycotoxin deoxynivalenol, while NX-2 is far less toxic, similar to 3-ADON. Genetic analysis revealed a different TRI1 allele in the N-isolates, which was verified to be responsible for the difference in hydroxylation at C-8.
Collapse
Affiliation(s)
- Elisabeth Varga
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060, Vienna, Austria
| | - Todd J Ward
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, 1815 N. University Street, Peoria, IL, 61604, USA
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Denise Schöfbeck
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Susan McCormick
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, 1815 N. University Street, Peoria, IL, 61604, USA
| | - Karen Broz
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| | - Romana Stückler
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Rainer Schuhmacher
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Rudolf Krska
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - H Corby Kistler
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
- Agriculture Research Service, United States Department of Agriculture, 1551 Lindig Avenue, St Paul, MN, 55108, USA
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430, Tulln, Austria
| |
Collapse
|
161
|
Gong L, Jiang Y, Chen F. Molecular strategies for detection and quantification of mycotoxin-producing Fusarium species: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1767-1776. [PMID: 25255897 DOI: 10.1002/jsfa.6935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Fusarium contamination is considered a major agricultural problem, which could not only significantly reduce yield and quality of agricultural products, but produce mycotoxins that are virulence factors responsible for many diseases of humans and farm animals. One strategy to identify toxigenic Fusarium species is the use of modern molecular methods, which include the analysis of DNA target regions for differentiation of the Fusarium species, particularly the mycotoxin-producing Fusarium species such as F. verticillioides and F. graminearum. Additionally, polymerase chain reaction assays are used to determine the genes involved in the biosynthesis of the toxins in order to facilitate a qualitative and quantitative detection of Fusarium-producing mycotoxins. Also, it is worth mentioning that some factors that modulate the biosynthesis of mycotoxins are not only determined by their biosynthetic gene clusters, but also by environmental conditions. Therefore, all of the aforementioned factors which may affect the molecular diagnosis of mycotoxins will be reviewed and discussed in this paper.
Collapse
Affiliation(s)
- Liang Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong Province, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong Province, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
162
|
Qin J, Wang G, Jiang C, Xu JR, Wang C. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci Rep 2015; 5:8504. [PMID: 25703795 PMCID: PMC4336942 DOI: 10.1038/srep08504] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022] Open
Abstract
Wheat scab caused by Fusarium graminearum is an important disease. In a previous study, the FGK3 glycogen synthase kinase gene orthologous to mammalian GSK3 was identified as an important virulence factor. Although GSK3 orthologs are well-conserved, none of them have been functionally characterized in fungal pathogens. In this study, we further characterized the roles of FGK3 gene. The Δfgk3 mutant had pleiotropic defects in growth rate, conidium morphology, germination, and perithecium formation. It was non-pathogenic in infection assays and blocked in DON production. Glycogen accumulation was increased in the Δfgk3 mutant, confirming the inhibitory role of Fgk3 on glycogen synthase. In FGK3-GFP transformants, GFP signals mainly localized to the cytoplasm in conidia but to the cytoplasm and nucleus in hyphae. Moreover, the expression level of FGK3 increased in response to cold, H2O2, and SDS stresses. In the Δfgk3 mutant, cold, heat, and salt stresses failed to induce the expression of the stress response-related genes FgGRE2, FgGPD1, FgCTT1, and FgMSN2. In the presence of 80 mM LiCl, a GSK3 kinase inhibitor, the wild type displayed similar defects to the Δfgk3 mutant. Overall, our results indicate that FGK3 is important for growth, conidiogenesis, DON production, pathogenicity, and stress responses in F. graminearum.
Collapse
Affiliation(s)
- Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
163
|
Nielsen KF, Frisvad JC, Logrieco A. "Analyses of black Aspergillus species of peanut and maize for ochratoxins and fumonisins," a comment on: J. Food Prot. 77(5):805-813 (2014). J Food Prot 2015; 78:6-8. [PMID: 25581171 DOI: 10.4315/0362-028x.78.1.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kristian Fog Nielsen
- Technical University of Denmark, Department of Systems Biology, Kgs. Lyngy, DK-2800, Denmark
| | | | | |
Collapse
|
164
|
Susca A, Proctor RH, Butchko RA, Haidukowski M, Stea G, Logrieco A, Moretti A. Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli. Fungal Genet Biol 2014; 73:39-52. [DOI: 10.1016/j.fgb.2014.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/04/2014] [Accepted: 09/24/2014] [Indexed: 01/13/2023]
|
165
|
Pasquali M, Migheli Q. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int J Food Microbiol 2014; 189:164-82. [DOI: 10.1016/j.ijfoodmicro.2014.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 01/19/2023]
|
166
|
Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 2014; 17:1245-60. [PMID: 25040476 DOI: 10.1111/1462-2920.12561] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-related transcription factor genes FgAP1, FgATF1 and FgSKN7. Although all of them played a role in tolerance to oxidative stress, deletion of FgAP1 or FgATF1 had no significant effect on DON production. In contrast, Fgskn7 mutants were reduced in DON production and defective in H2 O2 -induced TRI gene expression. The Fgap1 mutant had no detectable phenotype other than increased sensitivity to H2 O2 and Fgap1 Fgatf1 and Fgap1 Fgskn7 mutants lacked additional or more severe phenotypes than the single mutants. The Fgatf1, but not Fgskn7, mutant was significantly reduced in virulence and delayed in ascospore release. The Fgskn7 Fgatf1 double mutant had more severe defects in growth, conidiation and virulence than the Fgatf1 or Fgskn7 mutant. Instead of producing four-celled ascospores, it formed eight small, single-celled ascospores in each ascus. Therefore, FgSKN7 and FgATF1 must have overlapping functions in intracellular ROS signalling for growth, development and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | |
Collapse
|
167
|
Malbrán I, Mourelos CA, Girotti JR, Balatti PA, Lori GA. Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. PHYTOPATHOLOGY 2014; 104:357-364. [PMID: 24168045 DOI: 10.1094/phyto-06-13-0172-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
At least 20 epidemics of Fusarium head blight (FHB) of wheat have been registered in the last 50 years in Argentina, with variable intensity. Damage induced by the disease is further aggravated by the presence of mycotoxins in affected grains that may cause health problems to humans and animals. The trichothecene chemotype was analyzed for 112 isolates of Fusarium graminearum from Argentina by polymerase chain reaction and two field trials were conducted to study the aggressiveness of a subsample of 14 representative isolates and to analyze deoxynivalenol (DON) production in planta and in vitro. All isolates belonged to the 15-acetyl-DON chemotype. Significant differences were observed in both the symptom severity induced in wheat spikes and the in vivo DON production, and a close correlation was found between these two variables. However, in vitro toxigenic potential was not correlated with the capacity of F. graminearum isolates to produce DON under natural conditions. The progress of infection in the rachis of inoculated wheat spikes was analyzed and the pathogen presence verified in both symptomatic and symptomless spikes. Even isolates with a limited capacity to induce symptoms were able to colonize the vascular tissue and to produce considerable amounts of DON in planta.
Collapse
|
168
|
The gene PatG involved in the biosynthesis pathway of patulin, a food-borne mycotoxin, encodes a 6-methylsalicylic acid decarboxylase. Int J Food Microbiol 2014; 171:77-83. [DOI: 10.1016/j.ijfoodmicro.2013.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022]
|
169
|
Montibus M, Ducos C, Bonnin-Verdal MN, Bormann J, Ponts N, Richard-Forget F, Barreau C. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. PLoS One 2013; 8:e83377. [PMID: 24349499 PMCID: PMC3861502 DOI: 10.1371/journal.pone.0083377] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/01/2013] [Indexed: 11/22/2022] Open
Abstract
Redox sensing is of primary importance for fungi to cope with oxidant compounds found in their environment. Plant pathogens are particularly subject to the oxidative burst during the primary steps of infection. In the budding yeast Saccharomyces cerevisiae, it is the transcription factor Yap1 that mediates the response to oxidative stress via activation of genes coding for detoxification enzymes. In the cereal pathogen Fusarium graminearum, Fgap1 a homologue of Yap1 was identified and its role was investigated. During infection, this pathogen produces mycotoxins belonging to the trichothecenes family that accumulate in the grains. The global regulation of toxin biosynthesis is not completely understood. However, it is now clearly established that an oxidative stress activates the production of toxins by F. graminearum. The involvement of Fgap1 in this activation was investigated. A deleted mutant and a strain expressing a truncated constitutive form of Fgap1 were constructed. None of the mutants was affected in pathogenicity. The deleted mutant showed higher level of trichothecenes production associated with overexpression of Tri genes. Moreover activation of toxin accumulation in response to oxidative stress was no longer observed. Regarding the mutant with the truncated constitutive form of Fgap1, toxin production was strongly reduced. Expression of oxidative stress response genes was not activated in the deleted mutant and expression of the gene encoding the mitochondrial superoxide dismutase MnSOD1 was up-regulated in the mutant with the truncated constitutive form of Fgap1. Our results demonstrate that Fgap1 plays a key role in the link between oxidative stress response and F. graminearum secondary metabolism.
Collapse
Affiliation(s)
- Mathilde Montibus
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
- * E-mail:
| | - Christine Ducos
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | | | - Jorg Bormann
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Hamburg, Germany
| | - Nadia Ponts
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | - Florence Richard-Forget
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | - Christian Barreau
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
- Centre National de la Recherche Scientifique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| |
Collapse
|
170
|
Yli-Mattila T, Rämö S, Hietaniemi V, Hussien T, Carlobos-Lopez AL, Cumagun CJR. Molecular Quantification and Genetic Diversity of Toxigenic Fusarium Species in Northern Europe as Compared to Those in Southern Europe. Microorganisms 2013; 1:162-174. [PMID: 27694770 PMCID: PMC5029496 DOI: 10.3390/microorganisms1010162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/05/2013] [Accepted: 11/25/2013] [Indexed: 12/02/2022] Open
Abstract
Fusarium species produce important mycotoxins, such as deoxynivalenol (DON), nivalenol (NIV) and T-2/HT-2-toxins in cereals. The highest DON and T-2/HT-2 toxin levels in northern Europe have been found in oats. About 12%-24% of Finnish oat samples in 2012 contained >1.75 mg·kg-1 of DON, which belongs to type B trichothecenes. Fusarium graminearum is the most important DON producer in northern Europe and Asia and it has been displacing the closely related F. culmorum in northern Europe. The 3ADON chemotype of F. graminearum is dominant in most northern areas, while the 15ADON chemotype of F. graminearum is predominating in Central and southern Europe. We suggest that the northern population of F. graminearum may be more specialized to oats than the southern population. Only low levels of F. culmorum DNA were found in a few oat samples and no correlation was found between F. culmorum DNA and DON levels. DNA levels of F. graminearum were in all cases in agreement with DON levels in 2011 and 2012, when DON was measured by gas chromatography-mass spectrometry (GC-MS). When the RIDA®QUICK SCAN kit results (DON) were compared to DNA levels of F. graminearum, the variation was much higher. The homogenization of the oats flour by grinding oats with 1 mm sieve seems to be connected to this variation. There was a significant correlation between the combined T-2 and HT-2 and the combined DNA levels of F. langsethiae and F. sporotrichioides in Finland in 2010-2012.
Collapse
Affiliation(s)
- Tapani Yli-Mattila
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.
| | - Sari Rämö
- MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland.
| | | | - Taha Hussien
- Mycotoxins Lab, Department of Food Toxicology and Contaminant, National Research Center, Cairo 12311, Egypt.
| | - Ana Liza Carlobos-Lopez
- Crop Protection Cluster, College of Agriculture, University of the Philippines Los Baños, Laguna 4030, Philippines.
| | - Christian Joseph R Cumagun
- Crop Protection Cluster, College of Agriculture, University of the Philippines Los Baños, Laguna 4030, Philippines.
| |
Collapse
|
171
|
Proctor RH, Van Hove F, Susca A, Stea G, Busman M, van der Lee T, Waalwijk C, Moretti A, Ward TJ. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol 2013; 90:290-306. [PMID: 23937442 DOI: 10.1111/mmi.12362] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 01/15/2023]
Abstract
Fumonisins are a family of carcinogenic secondary metabolites produced by members of the Fusarium fujikuroi species complex (FFSC) and rare strains of Fusarium oxysporum. In Fusarium, fumonisin biosynthetic genes (FUM) are clustered, and the cluster is uniform in gene organization. Here, sequence analyses indicated that the cluster exists in five different genomic contexts, defining five cluster types. In FUM gene genealogies, evolutionary relationships between fusaria with different cluster types were largely incongruent with species relationships inferred from primary-metabolism (PM) gene genealogies, and FUM cluster types are not trans-specific. In addition, synonymous site divergence analyses indicated that three FUM cluster types predate diversification of FFSC. The data are not consistent with balancing selection or interspecific hybridization, but they are consistent with two competing hypotheses: (i) multiple horizontal transfers of the cluster from unknown donors to FFSC recipients and (ii) cluster duplication and loss (birth and death). Furthermore, low levels of FUM gene divergence in F. bulbicola, an FFSC species, and F. oxysporum provide evidence for horizontal transfer of the cluster from the former, or a closely related species, to the latter. Thus, uniform gene organization within the FUM cluster belies a complex evolutionary history that has not always paralleled the evolution of Fusarium.
Collapse
Affiliation(s)
- Robert H Proctor
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Menke J, Weber J, Broz K, Kistler HC. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. PLoS One 2013; 8:e63077. [PMID: 23667578 PMCID: PMC3646755 DOI: 10.1371/journal.pone.0063077] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs.
Collapse
Affiliation(s)
- Jon Menke
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jakob Weber
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
- Molekulare Phytopathologie, Universität Hamburg, Hamburg, Germany
| | - Karen Broz
- USDA ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - H. Corby Kistler
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
- USDA ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
173
|
Towards systems biology of mycotoxin regulation. Toxins (Basel) 2013; 5:675-82. [PMID: 23598563 PMCID: PMC3705286 DOI: 10.3390/toxins5040675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022] Open
Abstract
Systems biology is a scientific approach that integrates many scientific disciplines to develop a comprehensive understanding of biological phenomena, thus allowing the prediction and accurate simulation of complex biological behaviors. It may be presumptuous to write about toxin regulation at the level of systems biology, but the last decade of research is leading us closer than ever to this approach. Past research has delineated multiple levels of regulation in the pathways leading to the biosynthesis of secondary metabolites, including mycotoxins. At the top of this hierarchy, the global or master transcriptional regulators perceive various environmental cues such as climatic conditions, the availability of nutrients, and the developmental stages of the organism. Information accumulated from various inputs is integrated through a complex web of signalling networks to generate the eventual outcome. This review will focus on adapting techniques such as chemical and other genetic tools available in the model system Saccharomyces cerevisiae, to disentangle the various biological networks involved in the biosynthesis of mycotoxins in the Fusarium spp.
Collapse
|
174
|
Bradshaw RE, Slot JC, Moore GG, Chettri P, de Wit PJGM, Ehrlich KC, Ganley ARD, Olson MA, Rokas A, Carbone I, Cox MP. Fragmentation of an aflatoxin-like gene cluster in a forest pathogen. THE NEW PHYTOLOGIST 2013; 198:525-535. [PMID: 23448391 DOI: 10.1111/nph.12161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
Plant pathogens use a complex arsenal of weapons, such as toxic secondary metabolites, to invade and destroy their hosts. Knowledge of how secondary metabolite pathways evolved is central to understanding the evolution of host specificity. The secondary metabolite dothistromin is structurally similar to aflatoxins and is produced by the fungal pine pathogen Dothistroma septosporum. Our study focused on dothistromin genes, which are widely dispersed across one chromosome, to determine whether this unusual distributed arrangement evolved from an ancestral cluster. We combined comparative genomics and population genetics approaches to elucidate the origins of the dispersed arrangement of dothistromin genes over a broad evolutionary time-scale at the phylum, class and species levels. Orthologs of dothistromin genes were found in two major classes of fungi. Their organization is consistent with clustering of core pathway genes in a common ancestor, but with intermediate cluster fragmentation states in the Dothideomycetes fungi. Recombination hotspots in a D. septosporum population matched sites of gene acquisition and cluster fragmentation at higher evolutionary levels. The results suggest that fragmentation of a larger ancestral cluster gave rise to the arrangement seen in D. septosporum. We propose that cluster fragmentation may facilitate metabolic retooling and subsequent host adaptation of plant pathogens.
Collapse
Affiliation(s)
- Rosie E Bradshaw
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jason C Slot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Geromy G Moore
- Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA, 70124, USA
| | - Pranav Chettri
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Kenneth C Ehrlich
- Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA, 70124, USA
| | - Austen R D Ganley
- Institute of Natural Sciences, Massey University, Albany, New Zealand
| | - Malin A Olson
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ignazio Carbone
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7244, USA
| | - Murray P Cox
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
175
|
O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJ, Lysøe E, Rehner SA, Aoki T, Robert VA, Crous PW, Groenewald JZ, Kang S, Geiser DM. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 2013; 52:20-31. [DOI: 10.1016/j.fgb.2012.12.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 12/15/2022]
|
176
|
Boussalah N, Touzani R, Souna F, Himri I, Bouakka M, Hakkou A, Ghalem S, Kadiri SE. Antifungal activities of amino acid ester functional pyrazolyl compounds against Fusarium oxysporum f.sp. albedinis and Saccharomyces cerevisiae yeast. JOURNAL OF SAUDI CHEMICAL SOCIETY 2013. [DOI: 10.1016/j.jscs.2011.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
177
|
Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, Zhang D, Tang WH. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. THE PLANT CELL 2012; 24:5159-76. [PMID: 23266949 PMCID: PMC3556981 DOI: 10.1105/tpc.112.105957] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/24/2012] [Accepted: 12/07/2012] [Indexed: 05/18/2023]
Abstract
The ascomycete Fusarium graminearum is a destructive fungal pathogen of wheat (Triticum aestivum). To better understand how this pathogen proliferates within the host plant, we tracked pathogen growth inside wheat coleoptiles and then examined pathogen gene expression inside wheat coleoptiles at 16, 40, and 64 h after inoculation (HAI) using laser capture microdissection and microarray analysis. We identified 344 genes that were preferentially expressed during invasive growth in planta. Gene expression profiles for 134 putative plant cell wall-degrading enzyme genes suggest that there was limited cell wall degradation at 16 HAI and extensive degradation at 64 HAI. Expression profiles for genes encoding reactive oxygen species (ROS)-related enzymes suggest that F. graminearum primarily scavenges extracellular ROS before a later burst of extracellular ROS is produced by F. graminearum enzymes. Expression patterns of genes involved in primary metabolic pathways suggest that F. graminearum relies on the glyoxylate cycle at an early stage of plant infection. A secondary metabolite biosynthesis gene cluster was specifically induced at 64 HAI and was required for virulence. Our results indicate that F. graminearum initiates infection of coleoptiles using covert penetration strategies and switches to overt cellular destruction of tissues at an advanced stage of infection.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Lei-Jie Jia
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Yan Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Gang Jiang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of Chinese Academy of Sciences, Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Address correspondence to
| |
Collapse
|
178
|
Uhlig S, Busman M, Shane DS, Rønning H, Rise F, Proctor R. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10293-10301. [PMID: 22991966 DOI: 10.1021/jf302967b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fumonisins are polyketide mycotoxins produced by the maize pathogen Fusarium verticillioides and are associated with multiple human and animal diseases. A fumonisin biosynthetic pathway has been proposed, but structures of early pathway intermediates have not been demonstrated. The F. verticillioides FUM6 gene is required for an early pathway step. Here, metabolites produced by strains of the fungus with an inactivated FUM6 gene were purified and shown by mass spectrometry and NMR spectroscopy to have fumonisin-like structures but without substitutions at C-14 and C-15. The major metabolite was 2-amino-12,16-dimethylicosane-3,10-diol. Lesser amounts of 3-keto and triol analogues of the metabolite were also identified. In precursor feeding experiments, 2-amino-12,16-dimethylicosane-3,10-diol was transformed to fumonisins by a F. verticillioides strain with an inactive fumonisin polyketide synthase gene. The results support the hypothesis that the FUM6-encoded enzyme catalyzes fumonisin C-14 and C-15 hydroxylation and provide direct spectroscopic and biochemical evidence for structures of early intermediates in fumonisin biosynthesis.
Collapse
|
179
|
FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol 2012; 49:653-62. [PMID: 22713714 DOI: 10.1016/j.fgb.2012.06.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/03/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022]
Abstract
The velvet complex containing VeA, VelB and LaeA has been showed to play critical roles in the regulation of secondary metabolism and diverse cellular processes in Aspergillus spp. In this study, we identified FgVelB, a homolog of Aspergillus nidulans VelB, from Fusarium graminearum using the BLASTP program. Disruption of FgVELB gene led to several phenotypic defects, including suppression of aerial hyphae formation, reduced hyphal hydrophobicity and highly increased conidiation. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents, which may be related to a high level of glycerol accumulation in the mutant. Additionally, the mutant exhibited increased sensitivity to the phenylpyrrole fungicide fludioxonil. Ultrastructural and histochemical analyses revealed that conidia of FgVELB deletion mutant contained numerous lipid droplets. Pathogenicity assays showed FgVELB deletion mutant was impaired in virulence on flowering wheat head, which is consistent with the observation that FgVelB is involved in the regulation of deoxynivalenol biosynthesis in F. graminearum. All of the defects were restored by genetic complementation of the mutant with wild-type FgVELB gene. Yeast two hybrid assays showed that FgVelB does not interact with FgVeA. Taken together, results of this study indicated that FgVelB plays a critical role in the regulation of various cellular processes in F. graminearum.
Collapse
|
180
|
Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C. The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2012; 13:363-74. [PMID: 22013911 PMCID: PMC6638759 DOI: 10.1111/j.1364-3703.2011.00755.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Trichothecenes are a group of toxic secondary metabolites produced mainly by Fusarium graminearum (teleomorph: Gibberella zeae) during the infection of crop plants, including wheat, maize, barley, oats, rye and rice. Some fungal genes involved in trichothecene biosynthesis have been shown to encode regulatory proteins. However, the global regulation of toxin biosynthesis is still enigmatic. In addition to the production of secondary metabolites belonging to the trichothecene family, F. graminearum produces the red pigment aurofusarin. The gene regulation underlying the production of aurofusarin is not well understood. The velvet gene (veA) is conserved in various genera of filamentous fungi. Recently, the veA gene from Aspergillus nidulans has been shown to be the key component of the velvet complex regulating development and secondary metabolism. Using blast analyses, we identified the velvet gene from F. graminearum, FgVe1. Disruption of FgVe1 causes several phenotypic effects. However, the complementation of this mutant with the FgVe1 gene restores the wild-type phenotypes. The in vitro phenotypes include hyperbranching of the mycelium, suppression of aerial hyphae formation, reduced hydrophobicity of the mycelium and highly reduced sporulation. Our data also show that FgVe1 modulates the production of the aurofusarin pigment and is essential for the expression of Tri genes and the production of trichothecenes. Pathogenicity studies performed on flowering wheat plants indicate that FgVe1 is a positive regulator of virulence in F. graminearum.
Collapse
Affiliation(s)
- Jawad Merhej
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourleaux, BP81, F-33883 Villenave d'Ornon, France
| | | | | | | | | | | |
Collapse
|
181
|
AOKI T, WARD TJ, KISTLER HC, O'DONNELL K. Systematics, Phylogeny and Trichothecene Mycotoxin Potential of Fusarium Head Blight Cereal Pathogens. ACTA ACUST UNITED AC 2012. [DOI: 10.2520/myco.62.91] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
182
|
A. K. Pahirulzaman K, Williams K, Lazarus CM. A Toolkit for Heterologous Expression of Metabolic Pathways in Aspergillus oryzae. Methods Enzymol 2012; 517:241-60. [DOI: 10.1016/b978-0-12-404634-4.00012-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
183
|
Van Poucke K, Monbaliu S, Munaut F, Heungens K, De Saeger S, Van Hove F. Genetic diversity and mycotoxin production of Fusarium lactis species complex isolates from sweet pepper. Int J Food Microbiol 2011; 153:28-37. [PMID: 22098923 DOI: 10.1016/j.ijfoodmicro.2011.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/08/2011] [Accepted: 10/22/2011] [Indexed: 11/27/2022]
Abstract
An internal fruit rot disease of sweet peppers was first detected in Belgium in 2003. Research conducted mostly in Canada indicates that this disease is primarily caused by Fusarium lactis Pirotta. Ninety-eight Fusarium isolates obtained from diseased sweet peppers from Belgium, as well as from other countries (Canada, the Netherlands and the United Kingdom) were identified by sequencing the translation elongation factor 1α (EF). Of these 98 isolates, 13 were identified as F. oxysporum Schltdl., nine as F. proliferatum (Matsush.) Nirenberg and two belonged to clade 3 of the F. solani species complex. Of the 74 remaining isolates, the EF sequence showed 97% to 98% similarity to F. lactis. Of these isolates, the β-tubulin (TUB), calmodulin (CAM) and the second largest subunit of RNA polymerase II (RPB2) genes were also sequenced. Analysis of the combined sequences revealed that the 74 isolates share nine combined sequences that correspond to nine multilocus sequence types (STs), while the F. lactis neotype strain and one other strain, both isolated from figs, form a separate ST. Together, these 10 STs represent a monophyletic F. lactis species complex (FLASC). An unusually high level of genetic diversity was observed between (groups of) these STs. Two of them (ST5 and ST6) fulfilled the criteria for species recognition based on genealogical exclusivity and together represent a new monophyletic species lineage (FLASC-1). The seven other STs, together with the F. lactis neotype ST, form a paraphyletic species lineage in the African clade of the Gibberella fujikuroi species complex (GFSC). From each of the 10 STs, the mycotoxin production was assessed using a multi-mycotoxin liquid chromatography mass spectrometry method. Out of the 27 analyzed mycotoxins, beauvericin and fumonisins were detected in sweet pepper tissue and in maize kernels. The 10 STs clearly differed in the amount of mycotoxin produced, but there was only limited congruence between the production profile and the phylogenetic analysis. Furthermore, the morphological characterization (based on mycelial growth rate and the length of macroconidia) showed distinct differences between the 10 STs, but again there was limited congruence with the phylogenetic results. In conclusion, the data presented in this study demonstrate that 75% of the isolates obtained from sweet pepper with internal fruit rot belong to a F. lactis species complex (FLASC), including a new FLASC-1 monophyletic species, and that the members of this complex display great genetic and phenotypic diversity.
Collapse
Affiliation(s)
- Kris Van Poucke
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Burg. Van Gansberghelaan 96 box 2, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
184
|
Scherm B, Orrù M, Balmas V, Spanu F, Azara E, Delogu G, Hammond TM, Keller NP, Migheli Q. Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings. MOLECULAR PLANT PATHOLOGY 2011; 12:759-71. [PMID: 21726376 PMCID: PMC6640217 DOI: 10.1111/j.1364-3703.2011.00709.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An RNA silencing construct was used to alter mycotoxin production in the plant pathogenic fungus Fusarium culmorum, the incitant of crown and foot rot on wheat. The transformation of a wild-type strain and its nitrate reductase-deficient mutant with inverted repeat transgenes (IRTs) containing sequences corresponding to the trichothecene regulatory gene TRI6 was achieved using hygromycin B resistance as a selectable marker. Southern analysis revealed a variety of integration patterns of the TRI6 IRT. One transformant underwent homologous recombination with deletion of the endogenous TRI6 gene, whereas, in another transformant, the TRI6 IRT was not integrated into the genome. The TRI6 IRT did not alter the physiological characteristics, such as spore production, pigmentation or growth rate, on solid media. In most transformants, a high TRI6 amplification signal was detected by quantitative reverse transcription-polymerase chain reaction, corresponding to a TRI6-hybridizing smear of degraded fragments by Northern analysis, whereas TRI5 expression decreased compared with the respective nontransformed strain. Four transformants showed increased TRI5 expression, which was correlated with a dramatic (up to 28-fold) augmentation of deoxynivalenol production. Pathogenicity assays on durum wheat seedlings confirmed that impairment of deoxynivalenol production in the TRI6 IRT transformants correlated with a loss of virulence, with decreased disease indices ranging from 40% to 80% in nine silenced strains, whereas the overproducing transformants displayed higher virulence compared with the wild-type.
Collapse
Affiliation(s)
- Barbara Scherm
- Dipartimento di Protezione delle Piante-Unità di ricerca Istituto Nazionale Biostrutture e Biosistemi, Università degli Studi di Sassari, Via E. De Nicola 9, I-07100 Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Assessing the mycotoxigenic threat of necrotrophic pathogens of wheat. Mycotoxin Res 2011; 27:231-7. [DOI: 10.1007/s12550-011-0108-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/27/2022]
|
186
|
Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutiérrez S. Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 2011; 77:4867-77. [PMID: 21642405 PMCID: PMC3147405 DOI: 10.1128/aem.00595-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/21/2011] [Indexed: 11/20/2022] Open
Abstract
Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function.
Collapse
Affiliation(s)
- R. E. Cardoza
- Area of Microbiology, University School of Agricultural Engineers, University of León, Campus de Ponferrada, Avda. Astorga s/n, 24400 Ponferrada, Spain
| | - M. G. Malmierca
- Area of Microbiology, University School of Agricultural Engineers, University of León, Campus de Ponferrada, Avda. Astorga s/n, 24400 Ponferrada, Spain
| | - M. R. Hermosa
- Spanish-Portuguese Centre of Agricultural Research (CIALE), Departament of Microbiology and Genetics, University of Salamanca, Edificio Departamental Lab 208, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - N. J. Alexander
- Bacterial Foodborne Pathogen and Mycology Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604-3902
| | - S. P. McCormick
- Bacterial Foodborne Pathogen and Mycology Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604-3902
| | - R. H. Proctor
- Bacterial Foodborne Pathogen and Mycology Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604-3902
| | - A. M. Tijerino
- Spanish-Portuguese Centre of Agricultural Research (CIALE), Departament of Microbiology and Genetics, University of Salamanca, Edificio Departamental Lab 208, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - A. Rumbero
- Departament of Organic Chemistry, Faculty of Science, Autonomous University of Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - E. Monte
- Spanish-Portuguese Centre of Agricultural Research (CIALE), Departament of Microbiology and Genetics, University of Salamanca, Edificio Departamental Lab 208, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - S. Gutiérrez
- Area of Microbiology, University School of Agricultural Engineers, University of León, Campus de Ponferrada, Avda. Astorga s/n, 24400 Ponferrada, Spain
| |
Collapse
|
187
|
McCormick SP, Stanley AM, Stover NA, Alexander NJ. Trichothecenes: from simple to complex mycotoxins. Toxins (Basel) 2011; 3:802-14. [PMID: 22069741 PMCID: PMC3202860 DOI: 10.3390/toxins3070802] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/10/2011] [Accepted: 06/29/2011] [Indexed: 01/07/2023] Open
Abstract
As the world's population grows, access to a safe food supply will continue to be a global priority. In recent years, the world has experienced an increase in mycotoxin contamination of grains due to climatic and agronomic changes that encourage fungal growth during cultivation. A number of the molds that are plant pathogens produce trichothecene mycotoxins, which are known to cause serious human and animal toxicoses. This review covers the types of trichothecenes, their complexity, and proposed biosynthetic pathways of trichothecenes.
Collapse
Affiliation(s)
- Susan P. McCormick
- Bacterial Foodborne Pathogens and Mycology, National Center for Agricultural Utilization Research, U.S. Department of Agriculture-Agriculture Research Service, Peoria, IL 61604, USA;
- Author to whom correspondence should be addressed; ; Tel.:+1-309-681-6381; Fax:+1-309-681-6627
| | - April M. Stanley
- Biology Department, Bradley University, Peoria, IL 61625, USA; (A.M.S.); (N.A.S.)
| | - Nicholas A. Stover
- Biology Department, Bradley University, Peoria, IL 61625, USA; (A.M.S.); (N.A.S.)
| | - Nancy J. Alexander
- Bacterial Foodborne Pathogens and Mycology, National Center for Agricultural Utilization Research, U.S. Department of Agriculture-Agriculture Research Service, Peoria, IL 61604, USA;
| |
Collapse
|
188
|
Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights. Appl Microbiol Biotechnol 2011; 91:519-28. [PMID: 21691790 DOI: 10.1007/s00253-011-3397-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 01/14/2023]
Abstract
Trichothecenes are toxic secondary metabolites produced by filamentous fungi mainly belonging to the Fusarium genus. Production of these mycotoxins occurs during infection of crops and is a threat to human and animal health. Although the pathway for biosynthesis of trichothecenes is well established, the regulation of the Tri genes implicated in the pathway remains poorly understood. Most of the Tri genes are gathered in a cluster which contains two transcriptional regulators controlling the expression of the other Tri genes. The regulation of secondary metabolites biosynthesis in most fungal genera has been recently shown to be controlled by various regulatory systems in response to external environment. The control of the "Tri cluster" by non-cluster regulators in Fusarium was not clearly demonstrated until recently. This review covers the recent advances concerning the regulation of trichothecene biosynthesis in Fusarium and highlights the potential implication of various general regulatory circuits. Further studies on the role of these regulatory systems in the control of trichothecene biosynthesis might be useful in designing new strategies to reduce mycotoxin accumulation.
Collapse
|
189
|
Sestili S, Polverari A, Luongo L, Ferrarini A, Scotton M, Hussain J, Delledonne M, Ficcadenti N, Belisario A. Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC Genomics 2011; 12:122. [PMID: 21338485 PMCID: PMC3048547 DOI: 10.1186/1471-2164-12-122] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/21/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations. RESULTS Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains. CONCLUSION Our data suggest that resistance against FOM in melon involves only limited transcriptional changes, and that wilting symptoms could derive, at least partially, from an active plant response.We discuss the pathogen-derived transcripts expressed in planta during the infection process and potentially related to virulence functions, as well as transcripts that are differentially expressed between the two FOM races grown in vitro. These transcripts provide candidate sequences that can be further tested for their ability to distinguish between races.Sequence data from this article have been deposited in GenBank, Accession Numbers: HO867279-HO867981.
Collapse
Affiliation(s)
- Sara Sestili
- Agricultural Research Council (CRA), Research Unit for Vegetable Crop in Central Areas, Via Salaria 1, 63030 Monsampolo del Tronto (AP), Italy
| | - Annalisa Polverari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Laura Luongo
- Agricultural Research Council (CRA), Plant Pathology Research Center, Via C.G. Bertero 22, 00156 Roma, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michele Scotton
- Department of Environmental Agronomy and Crop Production, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jamshaid Hussain
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nadia Ficcadenti
- Agricultural Research Council (CRA), Research Unit for Vegetable Crop in Central Areas, Via Salaria 1, 63030 Monsampolo del Tronto (AP), Italy
| | - Alessandra Belisario
- Agricultural Research Council (CRA), Plant Pathology Research Center, Via C.G. Bertero 22, 00156 Roma, Italy
| |
Collapse
|
190
|
Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 2011; 48:485-95. [PMID: 21216300 DOI: 10.1016/j.fgb.2011.01.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 11/30/2022]
Abstract
Certain Fusarium species cause head blight of wheat and other small grains worldwide and produce trichothecene mycotoxins. These mycotoxins can induce toxicoses in animals and humans and can contribute to the ability of some fusaria to cause plant disease. Production of the trichothecene 3-acetyldeoxynivalenol (3-ADON) versus 15-acetyldeoxynivalenol (15-ADON) is an important phenotypic difference within and among some Fusarium species. However, until now, the genetic basis for this difference in chemotype has not been identified. Here, we identified consistent DNA sequence differences in the coding region of the trichothecene biosynthetic gene TRI8 in 3-ADON and 15-ADON strains. Functional analyses of the TRI8 enzyme (Tri8) in F. graminearum, the predominant cause of wheat head blight in North America and Europe, revealed that Tri8 from 3-ADON strains catalyzes deacetylation of the trichothecene biosynthetic intermediate 3,15-diacetyldeoxynivalenol at carbon 15 to yield 3-ADON, whereas Tri8 from 15-ADON strains catalyzes deacetylation of 3,15-diacetyldeoxynivalenol at carbon 3 to yield 15-ADON. Fusarium strains that produce the trichothecene nivalenol have a Tri8 that functions like that in 15-ADON strains. TRI3, which encodes a trichothecene carbon 15 acetyltransferase, was found to be functional in all three chemotypes. Together, our data indicate that differential activity of Tri8 determines the 3-ADON and 15-ADON chemotypes in Fusarium.
Collapse
Affiliation(s)
- Nancy J Alexander
- Bacterial Foodborne Pathogen and Mycology Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|
191
|
Schmidt-Heydt M, Parra R, Geisen R, Magan N. Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species. J R Soc Interface 2011; 8:117-26. [PMID: 20462881 PMCID: PMC3024818 DOI: 10.1098/rsif.2010.0131] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/22/2010] [Indexed: 11/12/2022] Open
Abstract
The effect of changes in temperature/water activity (a(w)) on growth, deoxynivalenol (DON) production and trichothecene gene cluster expression (18 genes) for strains of Fusarium culmorum and Fusarium graminearum was studied. The expression data for six key transcription genes (TRI4, TRI5, TRI6, TRI10, TRI12 and TRI13) were analysed using multiple regression analyses to model the relationship between these various factors for the first time. Changes in a(w) and temperature significantly (p = 0.05) affected growth and DON. Microarray data on expression of these genes were significantly related to DON production for both strains. Multi-regression analysis was done and polynomial models found to best fit the relationship between actual/predicted DON production relative to the expression of these TRI genes and environmental factors. This allowed prediction of the amounts of DON produced in two-dimensional contour maps to relate expression of these genes to either a(w) or temperature. These results suggest complex interactions between gene expression (TRI genes), environmental factors and mycotoxin production. This is a powerful tool for understanding the role of these genes in relation to environmental factors and enables more effective targeted control strategies to be developed.
Collapse
Affiliation(s)
- M. Schmidt-Heydt
- Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, UK
- Max-Rubner Institute, Karlsruhe, Germany
| | - R. Parra
- Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, UK
- Max-Rubner Institute, Karlsruhe, Germany
| | - R. Geisen
- Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, UK
- Max-Rubner Institute, Karlsruhe, Germany
| | - N. Magan
- Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, UK
- Max-Rubner Institute, Karlsruhe, Germany
| |
Collapse
|
192
|
Wang Y, Liu W, Hou Z, Wang C, Zhou X, Jonkers W, Ding S, Kistler HC, Xu JR. A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:118-128. [PMID: 20795857 DOI: 10.1094/mpmi-06-10-0129] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fusarium head blight or scab caused by Fusarium graminearum is an important disease of wheat and barley. The pathogen not only causes severe yield losses but also contaminates infested grains with mycotoxins. In a previous study, we identified several pathogenicity mutants by random insertional mutagenesis. One of these mutants was disrupted in the ZIF1 gene, which encodes a b-ZIP transcription factor unique to filamentous ascomycetes. The Δzif1 mutant generated by gene replacement was significantly reduced in deoxynivalenol (DON) production and virulence on flowering wheat heads. It was defective in spreading from inoculated florets to the rachis and other spikelets. Deletion of the ZIF1 ortholog MoZIF1 in the rice blast fungus also caused reductions in virulence and in invasive growth. In addition, the Δzif1 mutant is defective in sexual reproduction. Although it had normal male fertility, when selfed or mated as the female in outcrosess, the Δzif1 mutant produced small, pigmented perithecia that were sterile (lack of asci and ascospores), suggesting a female-specific role for ZIF1 during fertilization or ascus development. Similar female-specific defects in sexual reproduction were observed in the ΔMozif1 mutant. When mated as the female, the ΔMozif1 perithecia failed to develop long necks and asci or ascospores. The ZIF1 gene is well conserved in filamentous ascomycetes, particularly in the b-ZIP domain, which is essential for its function. Expression of ZIF1 in Magnaporthe oryzae complemented the defects of the ΔMozif1 mutant. These results indicate that this b-ZIP transcription factor is functionally conserved in these two fungal pathogens for plant infection and sexual reproduction.
Collapse
Affiliation(s)
- Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Van Bogaert INA, Groeneboer S, Saerens K, Soetaert W. The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 2010; 278:206-21. [DOI: 10.1111/j.1742-4658.2010.07949.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
194
|
The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 2010; 48:275-84. [PMID: 21126599 DOI: 10.1016/j.fgb.2010.11.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 11/20/2022]
Abstract
Fungi manage the adaptation to extra-cellular pH through the PacC transcription factor, a key component of the pH regulatory system. PacC regulates the production of various secondary metabolites in filamentous fungi. In the important cereal pathogen Fusarium graminearum, the production of trichothecene is induced only under acidic pH conditions. Here, we examined the role of the PacC homologue from F. graminearum, FgPac1, on the regulation of trichothecene production. An FgΔPac1 deletion mutant was constructed in F. graminearum which showed a reduced development under neutral and alkaline pH, increased sensitivity to H(2)O(2) and an earlier Tri gene induction and toxin accumulation at acidic pH. A strain expressing the FgPac1(c) constitutively active form of Pac1 exhibited a strongly repressed Tri gene expression and reduced toxin accumulation at acidic pH. These results demonstrate that Pac1 negatively regulates Tri gene expression and toxin production in F. graminearum.
Collapse
|
195
|
Susca A, Proctor RH, Mulè G, Stea G, Ritieni A, Logrieco A, Moretti A. Correlation of mycotoxin fumonisin B2 production and presence of the fumonisin biosynthetic gene fum8 in Aspergillus niger from grape. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9266-9272. [PMID: 20666454 DOI: 10.1021/jf101591x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aspergillus niger is a significant component of the fungal community on grapes. The mycotoxin fumonisin B2 (FB2) was recently detected in grape must and wine as well as in cultures of some A. niger strains isolated from grapes and raisins. This study examined 48 strains of Aspergillus section Nigri for the presence of the fumonisin biosynthetic gene fum8 in relation to FB2 production. The fum8 gene was detected in only 11 A. niger strains, 9 of which also produced FB2. Maximum parsimony analysis based on the calmodulin gene sequence indicated that the presence/absence of fum8 is not correlated with the phylogenetic relationship of the isolates. This is the first report correlating the presence of a fumonisin biosynthetic gene with fumonisin production in A. niger from an important food crop. The results suggest that the absence of FB2 production in grape isolates of A. niger can result from the absence of at least one gene essential for production.
Collapse
Affiliation(s)
- Antonia Susca
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|