151
|
van Vloten JP, Klafuric EM, Karimi K, McFadden G, Petrik JJ, Wootton SK, Bridle BW. Quantifying Antibody Responses Induced by Antigen-Agnostic Immunotherapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:189-196. [PMID: 31388514 PMCID: PMC6677899 DOI: 10.1016/j.omtm.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/29/2019] [Indexed: 12/30/2022]
Abstract
As the development and clinical application of cancer immunotherapies continue to expand, so does the need for novel methods to dissect their mechanisms of action. Antibodies are important effector molecules in cancer therapies due to their potential to bind directly to surface-expressed antigens and facilitate Fc receptor-mediated uptake of antigens by antigen-presenting cells. Quantifying antibodies that are specific for defined antigens is straightforward. However, we describe herein a preclinical method to evaluate tumor-associated and virus-specific antibody responses to antigen-agnostic immunotherapies. This method uses autologous tumor cells as reservoirs of bulk tumor antigens, which can be bound by antibodies from the serum or plasma of tumor-bearing mice. These antibodies can then be detected and quantified using isotype-specific secondary antibodies conjugated to a fluorochrome. Alternatively, virus-infected cells can be used as a source of viral antigens. This method will enable researchers to assess antibody responses following immunotherapies without requiring pre-defined antigens. Alternatively, total virus-specific antibody responses could be studied as an alternative to more limited virus-neutralizing antibody assays. Therefore, this method can facilitate studying the role of humoral responses in the context of immunotherapies, including those that rely on the use of viral vectors.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant McFadden
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
152
|
Liu XQ, Xin HY, Lyu YN, Ma ZW, Peng XC, Xiang Y, Wang YY, Wu ZJ, Cheng JT, Ji JF, Zhong JX, Ren BX, Wang XW, Xin HW. Oncolytic herpes simplex virus tumor targeting and neutralization escape by engineering viral envelope glycoproteins. Drug Deliv 2019; 25:1950-1962. [PMID: 30799657 PMCID: PMC6282442 DOI: 10.1080/10717544.2018.1534895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have been approved for clinical usage and become more and more popular for tumor virotherapy. However, there are still many issues for the oHSVs used in clinics and clinical trials. The main issues are the limited anti-tumor effects, intratumor injection, and some side effects. To overcome such challenges, here we review the genetic engineering of the envelope glycoproteins for oHSVs to target tumors specifically, and at the same time we summarize the many neutralization antibodies against the envelope glycoproteins and align the neutralization epitopes with functional domains of the respective glycoproteins for future identification of new functions of the glycoproteins and future engineering of the epitopes to escape from host neutralization.
Collapse
Affiliation(s)
- Xiao-Qin Liu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Yi Xin
- e Star Array Pte Ltd , JTC Medtech Hub , Singapore , Singapore
| | - Yan-Ning Lyu
- f Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control , Beijing , China
| | - Zhao-Wu Ma
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Xiao-Chun Peng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,g Faculty of Medicine, Department of Pathophysiology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying Xiang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying-Ying Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Zi-Jun Wu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Jun-Ting Cheng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Jia-Fu Ji
- h Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery , Peking University Cancer Hospital and Institute , Haidian , Beijing , China
| | - Ji-Xin Zhong
- i Cardiovascular Research Institute , Case Western Reserve University , Cleveland , OH , USA
| | - Bo-Xu Ren
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Xian-Wang Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,j Faculty of Medicine, Department of Laboratory Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Wu Xin
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| |
Collapse
|
153
|
Drayman N, Patel P, Vistain L, Tay S. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. eLife 2019; 8:e46339. [PMID: 31090537 PMCID: PMC6570482 DOI: 10.7554/elife.46339] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022] Open
Abstract
Viral infection is usually studied at the population level by averaging over millions of cells. However, infection at the single-cell level is highly heterogeneous, with most infected cells giving rise to no or few viral progeny while some cells produce thousands. Analysis of Herpes Simplex virus 1 (HSV-1) infection by population-averaged measurements has taught us a lot about the course of viral infection, but has also produced contradictory results, such as the concurrent activation and inhibition of type I interferon signaling during infection. Here, we combine live-cell imaging and single-cell RNA sequencing to characterize viral and host transcriptional heterogeneity during HSV-1 infection of primary human cells. We find extreme variability in the level of viral gene expression among individually infected cells and show that these cells cluster into transcriptionally distinct sub-populations. We find that anti-viral signaling is initiated in a rare group of abortively infected cells, while highly infected cells undergo cellular reprogramming to an embryonic-like transcriptional state. This reprogramming involves the recruitment of β-catenin to the host nucleus and viral replication compartments, and is required for late viral gene expression and progeny production. These findings uncover the transcriptional differences in cells with variable infection outcomes and shed new light on the manipulation of host pathways by HSV-1.
Collapse
Affiliation(s)
- Nir Drayman
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Parthiv Patel
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Luke Vistain
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Savaş Tay
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| |
Collapse
|
154
|
Kennedy BE, Murphy JP, Clements DR, Konda P, Holay N, Kim Y, Pathak GP, Giacomantonio MA, Hiani YE, Gujar S. Inhibition of Pyruvate Dehydrogenase Kinase Enhances the Antitumor Efficacy of Oncolytic Reovirus. Cancer Res 2019; 79:3824-3836. [PMID: 31088833 DOI: 10.1158/0008-5472.can-18-2414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/27/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
Oncolytic viruses (OV) such as reovirus preferentially infect and kill cancer cells. Thus, the mechanisms that dictate the susceptibility of cancer cells to OV-induced cytotoxicity hold the key to their success in clinics. Here, we investigated whether cancer cell metabolism defines its susceptibility to OV and if OV-induced metabolic perturbations can be therapeutically targeted. Using mass spectrometry-based metabolomics and extracellular flux analysis on a panel of cancer cell lines with varying degrees of susceptibility to reovirus, we found that OV-induced changes in central energy metabolism, pyruvate metabolism, and oxidative stress correlate with their susceptibility to reovirus. In particular, reovirus infection accentuated Warburg-like metabolic perturbations in cell lines relatively resistant to oncolysis. These metabolic changes were facilitated by oxidative stress-induced inhibitory phosphorylation of pyruvate dehydrogenase (PDH) that impaired the routing of pyruvate into the tricarboxylic acid cycle and established a metabolic state unsupportive of OV replication. From the therapeutic perspective, reactivation of PDH in cancer cells that were weakly sensitive for reovirus, either through PDH kinase (PDK) inhibitors dichloroacetate and AZD7545 or short hairpin RNA-specific depletion of PDK1, enhanced the efficacy of reovirus-induced oncolysis in vitro and in vivo. These findings identify targeted metabolic reprogramming as a possible combination strategy to enhance the antitumor effects of OV in clinics. SIGNIFICANCE: This study proposes targeted metabolic reprogramming as a valid combinatorial strategy to enhance the translational efficacy of oncolytic virus-based cancer therapies.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/15/3824/F1.large.jpg.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Derek R Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Prathyusha Konda
- Department Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Namit Holay
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gopal P Pathak
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Yassine El Hiani
- Department Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Department Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
155
|
Francini N, Cochrane D, Illingworth S, Purdie L, Mantovani G, Fisher K, Seymour LW, Spain SG, Alexander C. Polyvalent Diazonium Polymers Provide Efficient Protection of Oncolytic Adenovirus Enadenotucirev from Neutralizing Antibodies while Maintaining Biological Activity In Vitro and In Vivo. Bioconjug Chem 2019; 30:1244-1257. [PMID: 30874432 DOI: 10.1021/acs.bioconjchem.9b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncolytic viruses offer many advantages for cancer therapy when administered directly to confined solid tumors. However, the systemic delivery of these viruses is problematic because of the host immune response, undesired interactions with blood components, and inherent targeting to the liver. Efficacy of systemically administered viruses has been improved by masking viral surface proteins with polymeric materials resulting in modulation of viral pharmacokinetic profile and accumulation in tumors in vivo. Here we describe a new class of polyvalent reactive polymer based on poly( N-(2-hydroxypropyl)methacrylamide) (polyHPMA) with diazonium reactive groups and their application in the modification of the chimeric group B oncolytic virus enadenotucirev (EnAd). A series of six copolymers with different chain lengths and density of reactive groups was synthesized and used to coat EnAd. Polymer coating was found to be extremely efficient with concentrations as low as 1 mg/mL resulting in complete (>99%) ablation of neutralizing antibody binding. Coating efficiency was found to be dependent on both chain length and reactive group density. Coated viruses were found to have reduced transfection activity both in vitro and in vivo, with greater protection against neutralizing antibodies resulting in lower transgene production. However, in the presence of neutralizing antibodies, some in vivo transgene expression was maintained for coated virus compared to the uncoated control. The decrease in transgene expression was found not to be solely due to lower cellular uptake but due to reduced unpackaging of the virus within the cells and reduced replication, indicating that the polymer coating does not cause permanent inactivation of the virus. These data suggest that virus activity may be modulated by the appropriate design of coating polymers while retaining protection against neutralizing antibodies.
Collapse
Affiliation(s)
- Nora Francini
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Daniel Cochrane
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Sam Illingworth
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Laura Purdie
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Giuseppe Mantovani
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Kerry Fisher
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Leonard W Seymour
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Sebastian G Spain
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| | - Cameron Alexander
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
156
|
Meng G, Fei Z, Fang M, Li B, Chen A, Xu C, Xia M, Yu D, Wei J. Fludarabine as an Adjuvant Improves Newcastle Disease Virus-Mediated Antitumor Immunity in Hepatocellular Carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:22-34. [PMID: 31011625 PMCID: PMC6461577 DOI: 10.1016/j.omto.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
In addition to direct oncolysis, oncolytic viruses (OVs) also induce antitumor immunity, also called viro-immunotherapy. Limited viral replication and immune-negative feedback are the major hurdles to effective viro-immunotherapy. In this study, we found that use of an adjuvant of fludarabine, a chemotherapeutic drug for chronic myeloid leukemia, increased the replication of Newcastle disease virus (NDV) by targeting signal transducer and activator of transcription 1 (STAT1), which led to enhanced oncolysis of hepatocellular carcinoma (HCC) cells. Moreover, fludarabine accelerated ubiquitin-proteasomal degradation by enhancing ubiquitylation rather than proteasomal activity. This resulted in accelerated degradation of phosphorylated STAT3 and indoleamine 2, 3-dioxygenase 1 (IDO1), whose expression was induced by NDV infection. In addition, fludarabine significantly increased the NDV-induced infiltration of NK cells and decreased the number of NDV-induced myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. The aforementioned effects of fludarabine significantly improved NDV-mediated antitumor immunity and prolonged survival in mouse model of HCC. Our findings indicate the utility of fludarabine as an adjuvant for oncolytic anticancer viro-immunotherapy.
Collapse
Affiliation(s)
- Gang Meng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ziwei Fei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Mingyue Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Binghua Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Anxian Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chun Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, China
| | - Mao Xia
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Decai Yu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
157
|
Cervera-Carrascon V, Havunen R, Hemminki A. Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system. Expert Opin Biol Ther 2019; 19:443-455. [PMID: 30905206 DOI: 10.1080/14712598.2019.1595582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Oncolytic adenoviruses are among the most studied oncolytic viruses because of their tumor selectivity, safety, and transgene-delivery capability. With a growing number of different immunotherapies against cancer, the extraordinary immunogenicity of the adenovirus has emerged as a differentiating strength. Enabling T-cell related therapies with oncolytic adenoviruses appears a promising approach due to its inherent ability to elicit responses from the adaptive immune compartment. AREAS COVERED These viruses have successfully enhanced both adoptive T-cell therapies and immune-checkpoint therapies. Oncolytic viruses induce several effects at the tumor and on the systemic level that help to circumvent current limitations of T-cells and related therapies, such as T-cell trafficking, tumor immune suppressivity and antigen spreading EXPERT OPINION Taking into account the multitude of possibilities of treating cancer with immunotherapies, learning to optimize the combinations and administration strategies of these drugs, could lead to durable responses in patients with currently incurable cancers.
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland
| | - Riikka Havunen
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland
| | - Akseli Hemminki
- a Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine , University of Helsinki , Helsinki , Finland.,b TILT Biotherapeutics Ltd , Helsinki , Finland.,c Hospital Comprehensive Cancer Center , Helsinki University , Helsinki , Finland
| |
Collapse
|
158
|
van Vloten JP, Santry LA, McAusland TM, Karimi K, McFadden G, Petrik JJ, Wootton SK, Bridle BW. Quantifying Antigen-Specific T Cell Responses When Using Antigen-Agnostic Immunotherapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:154-166. [PMID: 30788384 PMCID: PMC6369252 DOI: 10.1016/j.omtm.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
Immunotherapies are at the forefront of the fight against cancers, and researchers continue to develop and test novel immunotherapeutic modalities. Ideal cancer immunotherapies induce a patient’s immune system to kill their own cancer and develop long-lasting immunity. Research has demonstrated a critical requirement for CD8+ and CD4+ T cells in achieving durable responses. In the path to the clinic, researchers require robust tools to effectively evaluate the capacity for immunotherapies to generate adaptive anti-tumor responses. To study functional tumor-specific T cells, researchers have relied on targeting tumor-associated antigens (TAAs) or the inclusion of surrogate transgenes in pre-clinical models, which facilitate detection of T cells by using the targeted antigen(s) in peptide re-stimulation or tetramer-staining assays. Unfortunately, many pre-clinical models lack a defined TAA, and epitope mapping of TAAs is costly. Surrogate transgenes can alter tumor engraftment and influence the immunogenicity of tumors, making them less relevant to clinical tumors. Further, some researchers prefer to develop therapies that do not rely on pre-defined TAAs. Here, we describe a method to exploit major histocompatibility complex expression on murine cancer cell lines in a co-culture assay to detect T cells responding to bulk, undefined, tumor antigens. This is a tool to support the preclinical evaluation of novel, antigen-agnostic immunotherapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant McFadden
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
159
|
Casanova I, Unzueta U, Arroyo-Solera I, Céspedes MV, Villaverde A, Mangues R, Vazquez E. Protein-driven nanomedicines in oncotherapy. Curr Opin Pharmacol 2019; 47:1-7. [PMID: 30685732 DOI: 10.1016/j.coph.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Proteins are organic macromolecules essential in life but exploited, mainly in recombinant versions, as drugs or vaccine components, among other uses in industry or biomedicine. In oncology, individual proteins or supramolecular complexes have been tailored as small molecular weight drug carriers for passive or active tumor cell-targeted delivery, through the de novo design of appropriate drug stabilizing vehicles, or by generating constructs with different extents of mimesis of natural cell-targeted entities, such as viruses. In most of these approaches, a convenient nanoscale size is achieved through the oligomeric organization of the protein component in the drug conjugate. Among the different taken strategies, highly cytotoxic proteins such as microbial or plant toxins have been conveniently engineered to self-assemble as self-delivered virus-like, nanometric structures, chemically homogeneous that target metastatic cancer stem cells for the destruction of metastasis in absence of any partner vehicle.
Collapse
Affiliation(s)
- Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Irene Arroyo-Solera
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Maria Virtudes Céspedes
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain.
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
160
|
Humeau J, Lévesque S, Kroemer G, Pol JG. Gold Standard Assessment of Immunogenic Cell Death in Oncological Mouse Models. Methods Mol Biol 2019; 1884:297-315. [PMID: 30465212 DOI: 10.1007/978-1-4939-8885-3_21] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The efficacy of cancer therapies strongly relies on their ability to reinstate cancer immunosurveillance. Numerous biomedical approaches with immunotherapeutic activity have been developed to reeducate the host immune system to detect and clear tumor cells. Cytotoxicants have been primarily designed to slow down malignant cell proliferation and to induce programmed cell death. Some cytotoxic stimuli are able to activate a particular type of apoptosis, which is referred to as immunogenic cell death (ICD), that de facto convert cancer cells into their own vaccine. This effect ultimately facilitates the establishment of an antitumor immune response that potentially annihilates spared malignant cells, as well as an immune memory that prevents cancer recurrence. Based on the characteristic hallmarks of ICD, protocols have been developed to validate ICD induction in vitro, ex vivo, and in vivo. These methods may contribute to identify novel ICD inducers and to design multimodal regimens with superior therapeutic efficacy. Moreover, their translation into clinical research could have prognostic or predictive value. This chapter will introduce the "gold standard" protocol for the in vivo assessment of ICD in mice. The procedure relies on vaccination with treated cancer cells, followed by rechallenge with living entities of the same type, in syngeneic immunocompetent animals.
Collapse
Affiliation(s)
- Juliette Humeau
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.
- Université Pierre et Marie Curie/Paris VI, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.
- Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
161
|
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
162
|
Systemically Administered Reovirus-Induced Downregulation of Hypoxia Inducible Factor-1α in Subcutaneous Tumors. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:162-172. [PMID: 30788427 PMCID: PMC6369106 DOI: 10.1016/j.omto.2018.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
Reovirus, which possesses a 10-segmented double-stranded RNA genome, mediates superior antitumor effects via not only virus replication in a tumor cell-specific manner but also other mechanisms distinct from virus replication. Several groups, including ours, reported the reovirus-mediated downregulation of hypoxia inducible factor-1α (HIF-1α) following infection in cultured tumor cells; however, it remained to be clarified whether reovirus downregulates the expression of HIF-1α and its target genes in tumor-bearing hosts. We found that reovirus induced significant downregulation of protein levels of HIF-1α and its target genes in the subcutaneous tumors at 120 h post-systemic administration. Expression of reovirus capsid protein σ3 was found in the pimonidazole-positive hypoxic area in the tumor. Significant levels of tumor cell apoptosis were not found in the tumors of reovirus-treated mice at this time point, suggesting that reovirus-mediated tumor cell killing did not largely contribute to the downregulation of HIF-1α protein levels in the tumors. UV-inactivated reovirus did not induce downregulation of HIF-1α expression in the tumors, indicating that virus replication was indispensable for downregulation of HIF-1α expression in the subcutaneous tumors. This study provides important information for the development of reovirus-mediated virotherapy against various types of tumors.
Collapse
|
163
|
Pol JG, Atherton MJ, Bridle BW, Stephenson KB, Le Boeuf F, Hummel JL, Martin CG, Pomoransky J, Breitbach CJ, Diallo JS, Stojdl DF, Bell JC, Wan Y, Lichty BD. Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother 2018; 7:117-128. [PMID: 30538968 PMCID: PMC6263248 DOI: 10.2147/ov.s154494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncolytic activity of the MG1 strain of the Maraba vesiculovirus has proven efficacy in numerous preclinical cancer models, and relied not only on a direct cytotoxicity but also on the induction of both innate and adaptive antitumor immunity. To further expand tumor-specific T-cell effector and long-lasting memory compartments, we introduced the MG1 virus in a prime-boost cancer vaccine strategy. To this aim, a replication-incompetent adenoviral [Ad] vector together with the oncolytic MG1 have each been armed with a transgene expressing a same tumor antigen. Immune priming with the Ad vaccine subsequently boosted with the MG1 vaccine mounted tumor-specific responses of remarkable magnitude, which significantly prolonged survival in various murine cancer models. Based on these promising results, we validated the safety profile of the Ad:MG1 oncolytic vaccination strategy in nonhuman primates and initiated clinical investigations in cancer patients. Two clinical trials are currently under way (NCT02285816; NCT02879760). The present review will recapitulate the discoveries that led to the development of MG1 oncolytic vaccines from bench to bedside.
Collapse
Affiliation(s)
- Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U1138, Paris, France
- Team 11 labelled Ligue Nationale contre le Cancer, Cordeliers Research Center, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités/Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Matthew J Atherton
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Fabrice Le Boeuf
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jeff L Hummel
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
- Clinical Trial Division, CANSWERS, Georgetown, ON, Canada
| | | | | | | | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - David F Stojdl
- Turnstone Biologics, Ottawa, ON, Canada,
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - John C Bell
- Turnstone Biologics, Ottawa, ON, Canada,
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
- Turnstone Biologics, Ottawa, ON, Canada,
| |
Collapse
|
164
|
Xu B, Ma R, Russell L, Yoo JY, Han J, Cui H, Yi P, Zhang J, Nakashima H, Dai H, Chiocca EA, Kaur B, Caligiuri MA, Yu J. An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nat Biotechnol 2018; 37:nbt.4302. [PMID: 30475349 PMCID: PMC6535376 DOI: 10.1038/nbt.4302] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
The efficacy of oncolytic herpes simplex virus (oHSV) is limited by rapid viral clearance by innate immune effector cells and poor intratumoral viral spread. We combine two approaches to overcome these barriers: inhibition of natural killer (NK) cells and enhancement of intratumoral viral spread. We engineered an oHSV to express CDH1, encoding E-cadherin, an adherent molecule and a ligand for KLRG1, an inhibitory receptor expressed on NK cells. In vitro, infection with this engineered virus, named OV-CDH1, induced high surface E-cadherin expression on infected glioblastoma (GBM) cells, which typically lack endogenous E-cadherin. Ectopically expressed E-cadherin enhanced the spread of OV-CDH1 by facilitating cell-to-cell infection and viral entry and reduced viral clearance by selectively protecting OV-CDH1-infected cells from KLRG1+ NK cell killing. In vivo, OV-CDH1 treatment substantially prolonged the survival in GBM-bearing mouse models, primarily because of improved viral spread rather than inhibition of NK cell activity. Thus, virus-induced overexpression of E-cadherin may be a generalizable strategy for improving cancer virotherapy.
Collapse
Affiliation(s)
- Bo Xu
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- Third Affiliated Hospital, Army Medical University, Chongqing 400042, China
| | - Rui Ma
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Luke Russell
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Ji Young Yoo
- Department of Neurosurgery, The Vivian L. Smith University of Texas, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianfeng Han
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Hanwei Cui
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- Third Affiliated Hospital, Army Medical University, Chongqing 400042, China
| | - Ping Yi
- Third Affiliated Hospital, Army Medical University, Chongqing 400042, China
| | - Jianying Zhang
- Department of Information Sciences, Division of Biostatistics, City of Hope National Medical Center, Duarte, CA 91010
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvey Cushing Neuro-oncology Laboratories, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hongsheng Dai
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvey Cushing Neuro-oncology Laboratories, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Balveen Kaur
- Department of Neurosurgery, The Vivian L. Smith University of Texas, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael A Caligiuri
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California 91010, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Jianhua Yu
- Department of Internal Medicine, Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California 91010, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
165
|
Kemp V, van den Wollenberg DJM, Camps MGM, van Hall T, Kinderman P, Pronk-van Montfoort N, Hoeben RC. Arming oncolytic reovirus with GM-CSF gene to enhance immunity. Cancer Gene Ther 2018; 26:268-281. [PMID: 30467340 DOI: 10.1038/s41417-018-0063-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023]
Abstract
Oncolytic reovirus administration has been well tolerated by cancer patients in clinical trials. However, its anti-cancer efficacy as a monotherapy remains to be augmented. We and others have previously demonstrated the feasibility of producing replication-competent reoviruses expressing a heterologous transgene. Here, we describe the production of recombinant reoviruses expressing murine (mm) or human (hs) GM-CSF (rS1-mmGMCSF and rS1-hsGMCSF, respectively). The viruses could be propagated up to 10 passages while deletion mutants occurred only occasionally. In infected cell cultures, the secretion of GM-CSF protein (up to 481 ng/106 cells per day) was demonstrated by ELISA. The secreted mmGM-CSF protein was functional in cell culture, as demonstrated by the capacity to stimulate the survival and proliferation of the GM-CSF-dependent dendritic cell (DC) line D1, and by its ability to generate DCs from murine bone marrow cells. Importantly, in a murine model of pancreatic cancer we found a systemic increase in DC and T-cell activation upon intratumoral administration of rS1-mmGMCSF. These data demonstrate that reoviruses expressing functional GM-CSF can be generated and have the potential to enhance anti-tumor immune responses. The GM-CSF reoviruses represent a promising new agent for use in oncolytic virotherapy strategies.
Collapse
Affiliation(s)
- Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands. .,Department of Pathobiology, Utrecht University, 3584 CL, Utrecht, The Netherlands.
| | | | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Priscilla Kinderman
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | | | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
166
|
Zhang W, Wang F, Hu X, Liang J, Liu B, Guan Q, Liu S. Inhibition of colorectal cancer liver metastasis in BALB/c mice following intratumoral injection of oncolytic herpes simplex virus type 2 for the induction of specific antitumor immunity. Oncol Lett 2018; 17:815-822. [PMID: 30655834 PMCID: PMC6313052 DOI: 10.3892/ol.2018.9720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Liver metastasis represents the most prominent metastasis of colorectal cancer (CRC) and is the leading cause of CRC mortality, making the early prevention of this event very important. While current CRC therapies include surgery, radiotherapy and chemotherapy, no effective treatment option for CRC liver metastasis (CRLM) exists. Furthermore, the effects of currently available metastatic CRC drugs are frequently limited by their toxicity and side effects. Oncolytic herpes simplex virus type 2 (oHSV2) selectively infects tumor cells and also induces an antitumor immune response. The present study investigated the cytopathic effects of oHSV2 on CT-26 cells in vitro and tested its inhibitory effect on CRLM. In vitro experimental data demonstrated that oHSV2 effectively inhibited the growth of CT-26 cells. In vivo study data demonstrated that treatment with oHSV2 alone slowed the growth of subcutaneous xenograft tumors without inducing weight loss and also inhibited CRLM by increasing the numbers of cluster of differentiation (CD)4+ T, CD8+ T and natural killer cells. In summary, oHSV2 shows potential as a safe and effective therapeutic agent for inhibiting the metastasis of CT-26 CRC cells to the liver.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Feifei Wang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Inner Mongolia University For Nationalities, Tongliao, Inner Mongolia 028000, P.R. China
| | - Xiao Hu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jing Liang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Binlei Liu
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Hubei Provincial Cooperative, Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, Hubei 30068, P.R. China
| | - Qi Guan
- Department of Hematology and Oncology, The Second Clinical Medical School of Inner Mongolia University for Nationalities, Yakeshi, Inner Mongolia 022150, P.R. China
| | - Shangmei Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
167
|
Uusi-Kerttula H, Parker AL. Precision virotherapies: Coming soon. Oncotarget 2018; 9:35605-35606. [PMID: 30479689 PMCID: PMC6235024 DOI: 10.18632/oncotarget.26280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hanni Uusi-Kerttula
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
168
|
Ghonime MG, Cassady KA. Combination Therapy Using Ruxolitinib and Oncolytic HSV Renders Resistant MPNSTs Susceptible to Virotherapy. Cancer Immunol Res 2018; 6:1499-1510. [PMID: 30352799 DOI: 10.1158/2326-6066.cir-18-0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/27/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas resistant to most cancer treatments. Surgical resection remains the primary treatment, but this is often incomplete, ultimately resulting in high mortality and morbidity rates. There has been a resurgence of interest in oncolytic virotherapy because of encouraging preclinical and clinical trial results. Oncolytic herpes simplex virus (oHSV) selectively replicates in cancer cells, lysing the cell and inducing antitumor immunity. We previously showed that basal interferon (IFN) signaling increases interferon-stimulated gene (ISG) expression, restricting viral replication in almost 50% of MPNSTs. The FDA-approved drug ruxolitinib (RUX) temporarily resets this constitutively active STAT signaling and renders the tumor cells susceptible to oHSV infection in cell culture. In the studies described here, we translated our in vitro results into a syngeneic MPNST tumor model. Consistent with our previous results, murine MPNSTs exhibit a similar IFN- and ISG-mediated oHSV-resistance mechanism, and virotherapy alone provides no antitumor benefit in vivo However, pretreatment of mice with ruxolitinib reduced ISG expression, making the tumors susceptible to oHSV infection. Ruxolitinib pretreatment improved viral replication and altered the oHSV-induced immune-mediated response. Our results showed that this combination therapy increased CD8+ T-cell activation in the tumor microenvironment and that this population was indispensable for the antitumor benefit that follows from the combination of RUX and oHSV. These data suggest that JAK inhibition prior to oncolytic virus treatment augments both oHSV replication and the immunotherapeutic efficacy of oncolytic herpes virotherapy.
Collapse
Affiliation(s)
- Mohammed G Ghonime
- The Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, The Ohio State University, Columbus, Ohio
| | - Kevin A Cassady
- The Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, The Ohio State University, Columbus, Ohio. .,Nationwide Children's Hospital, Department of Pediatrics, Division of Pediatric Infectious Diseases, The Ohio State University, Columbus, Ohio.,The Ohio State University, Columbus, Ohio
| |
Collapse
|
169
|
Smith M, García-Martínez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncoimmunology 2018; 7:e1526250. [PMID: 30524908 DOI: 10.1080/2162402x.2018.1526250] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor (TLR) agonists demonstrate therapeutic promise as immunological adjuvants for anticancer immunotherapy. To date, three TLR agonists have been approved by US regulatory agencies for use in cancer patients. Additionally, the potential of hitherto experimental TLR ligands to mediate clinically useful immunostimulatory effects has been extensively investigated over the past few years. Here, we summarize recent preclinical and clinical advances in the development of TLR agonists for cancer therapy.
Collapse
Affiliation(s)
- Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Michael R Pitter
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- INSERM, U1015, Villejuif, France.,Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/ Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,INSERM, U1138, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/ Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
170
|
Fu X, Tao L, Zhang X. Genetically coating oncolytic herpes simplex virus with CD47 allows efficient systemic delivery and prolongs virus persistence at tumor site. Oncotarget 2018; 9:34543-34553. [PMID: 30349648 PMCID: PMC6195384 DOI: 10.18632/oncotarget.26167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022] Open
Abstract
Current oncolytic virotherapy is primarily administered by intratumoral injection. However, systemic delivery is desirable for treating patients, particularly for those who have developed metastatic diseases. Several components are impeding the systemic delivery efficiency of oncolytic viruses. Chief among them is the rapid clearance of viral particles by the host’s mononuclear phagocyte system (MPS). We explored the possibility of genetically engrafting CD47, a “don’t eat me” signal molecule, to the membrane envelop of an oncolytic herpes simplex virus (HSV) to enable it to escape from the MPS for systemic delivery. Our results show that this modification indeed allows the virus to be more efficiently delivered to local tumors by the systemic route. Moreover, this modification also prolongs the virus persistence in local tumors after it arrives there. Consequently, systemic delivery of the modified virus produced a measurable antitumor effect against a murine tumor model that is otherwise resistant to the parental virus delivered by the same route. Our data thus suggest that engrafting enveloped oncolytic viruses such as those derived from HSV with CD47 molecule represents a conceivable strategy to enhance the efficiency of systemic delivery.
Collapse
Affiliation(s)
- Xinping Fu
- Department of Biology and Biochemistry and Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Lihua Tao
- Department of Biology and Biochemistry and Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Xiaoliu Zhang
- Department of Biology and Biochemistry and Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| |
Collapse
|
171
|
Pol JG, Acuna SA, Yadollahi B, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV, Lopez R, LaFrance S, Evelegh C, Denisova G, Parsons R, Millar J, Stoll G, Martin CG, Pomoransky J, Breitbach CJ, Bramson JL, Bell JC, Wan Y, Stojdl DF, Lichty BD, McCart JA. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology 2018; 8:e1512329. [PMID: 30546947 PMCID: PMC6287790 DOI: 10.1080/2162402x.2018.1512329] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple immunotherapeutics have been approved for cancer patients, however advanced solid tumors are frequently refractory to treatment. We evaluated the safety and immunogenicity of a vaccination approach with multimodal oncolytic potential in non-human primates (NHP) (Macaca fascicularis). Primates received a replication-deficient adenoviral prime, boosted by the oncolytic Maraba MG1 rhabdovirus. Both vectors expressed the human MAGE-A3. No severe adverse events were observed. Boosting with MG1-MAGEA3 induced an expansion of hMAGE-A3-specific CD4+ and CD8+ T-cells with the latter peaking at remarkable levels and persisting for several months. T-cells reacting against epitopes fully conserved between simian and human MAGE-A3 were identified. Humoral immunity was demonstrated by the detection of circulating MAGE-A3 antibodies. These preclinical data establish the capacity for the Ad:MG1 vaccination to engage multiple effector immune cell populations without causing significant toxicity in outbred NHPs. Clinical investigations utilizing this program for the treatment of MAGE-A3-positive solid malignancies are underway (NCT02285816, NCT02879760).
Collapse
Affiliation(s)
- Jonathan G Pol
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sergio A Acuna
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Beta Yadollahi
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Nan Tang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Matthew J Atherton
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - David Hanwell
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | | | - Alyssa Goldstein
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Badru Moloo
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Roberto Lopez
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Sandra LaFrance
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Carole Evelegh
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Galina Denisova
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Robin Parsons
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jamie Millar
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Gautier Stoll
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités/Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Jonathan L Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - John C Bell
- Turnstone Biologics, Ottawa, ON, Canada.,Ottawa Health Research Institute, Ottawa, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - David F Stojdl
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Turnstone Biologics, Ottawa, ON, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Turnstone Biologics, Ottawa, ON, Canada
| | - J Andrea McCart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Canada
| |
Collapse
|
172
|
van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. THE JOURNAL OF IMMUNOLOGY 2018; 200:450-458. [PMID: 29311387 DOI: 10.4049/jimmunol.1701021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Samuel T Workenhe
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
173
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
174
|
Arab A, Behravan N, Razazn A, Barati N, Mosaffa F, Nicastro J, Slavcev R, Behravan J. The viral approach to breast cancer immunotherapy. J Cell Physiol 2018; 234:1257-1267. [PMID: 30146692 DOI: 10.1002/jcp.27150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/05/2018] [Indexed: 01/03/2023]
Abstract
Despite years of intensive research, breast cancer remains the leading cause of death in women worldwide. New technologies including oncolytic virus therapies, virus, and phage display are among the most powerful and advanced methods that have emerged in recent years with potential applications in cancer prevention and treatment. Oncolytic virus therapy is an interesting strategy for cancer treatment. Presently, a number of viruses from different virus families are under laboratory and clinical investigation as oncolytic therapeutics. Oncolytic viruses (OVs) have been shown to be able to induce and initiate a systemic antitumor immune response. The possibility of application of a multimodal therapy using a combination of the OV therapy with immune checkpoint inhibitors and cancer antigen vaccination holds a great promise in the future of cancer immunotherapy. Display of immunologic peptides on bacterial viruses (bacteriophages) is also increasingly being considered as a new and strong cancer vaccine delivery strategy. In phage display immunotherapy, a peptide or protein antigen is presented by genetic fusions to the phage coat proteins, and the phage construct formulation acts as a protective or preventive vaccine against cancer. In our laboratory, we have recently tested a few peptides (E75, AE37, and GP2) derived from HER2/neu proto-oncogene as vaccine delivery modalities for the treatment of TUBO breast cancer xenograft tumors of BALB/c mice. Here, in this paper, we discuss the latest advancements in the applications of OVs and bacterial viruses display systems as new and advanced modalities in cancer immune therapeutics.
Collapse
Affiliation(s)
- Atefeh Arab
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Atefeh Razazn
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jessica Nicastro
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada.,Mediphage Bioceuticals, Inc., MaRS Centre, Toronto, ON, Canada
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Mediphage Bioceuticals, Inc., MaRS Centre, Toronto, ON, Canada
| |
Collapse
|
175
|
Tan Y, Lin Y, Li K, Xiao X, Liang J, Cai J, Guo L, Li C, Zhu W, Xing F, Mai J, Gu J, Tan X, Yin W, Lu B, Qiu P, Su X, Gao M, Hu J, He S, Lu L, Gong S, Yan G, Zhang H. Selective Antagonism of Bcl-xL Potentiates M1 Oncolysis by Enhancing Mitochondrial Apoptosis. Hum Gene Ther 2018; 29:950-961. [DOI: 10.1089/hum.2017.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yaqian Tan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Kai Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Guo
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuntao Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fan Xing
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jialuo Mai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Gu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Tan
- Intensive Care Unit, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingshi Gao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Songmin He
- Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York
| | - Ling Lu
- Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shoufang Gong
- Guangzhou Virotech Pharmaceutical Co., Ltd. Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
176
|
MacNeill AL, Weishaar KM, Séguin B, Powers BE. Safety of an Oncolytic Myxoma Virus in Dogs with Soft Tissue Sarcoma. Viruses 2018; 10:v10080398. [PMID: 30060548 PMCID: PMC6115854 DOI: 10.3390/v10080398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Many oncolytic viruses that are efficacious in murine cancer models are ineffective in humans. The outcomes of oncolytic virus treatment in dogs with spontaneous tumors may better predict human cancer response and improve treatment options for dogs with cancer. The objectives of this study were to evaluate the safety of treatment with myxoma virus lacking the serp2 gene (MYXVΔserp2) and determine its immunogenicity in dogs. To achieve these objectives, dogs with spontaneous soft tissue sarcomas were treated with MYXVΔserp2 intratumorally (n = 5) or post-operatively (n = 5). In dogs treated intratumorally, clinical scores were recorded and tumor biopsies and swabs (from the mouth and virus injection site) were analyzed for viral DNA at multiple time-points. In all dogs, blood, urine, and feces were frequently collected to evaluate organ function, virus distribution, and immune response. No detrimental effects of MYXVΔserp2 treatment were observed in any canine cancer patients. No clinically significant changes in complete blood profiles, serum chemistry analyses, or urinalyses were measured. Viral DNA was isolated from one tumor swab, but viral dissemination was not observed. Anti-MYXV antibodies were occasionally detected. These findings provide needed safety information to advance clinical trials using MYXVΔserp2 to treat patients with cancer.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Kristen M Weishaar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernard Séguin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Barbara E Powers
- Veterinary Diagnostic Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
177
|
Abstract
Melanoma represents the most aggressive and the deadliest form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. The therapeutic strategy can include single agents or combined therapies, depending on the patient’s health, stage, and location of the tumor. The efficiency of these treatments can be decreased due to the development of diverse resistance mechanisms. New therapeutic targets have emerged from studies of the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of the malignant transformation. In this review, we aim to survey therapies approved and under evaluation for melanoma treatment and relevant research on the molecular mechanisms underlying melanomagenesis.
Collapse
Affiliation(s)
- Beatriz Domingues
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital S João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
178
|
Rieth J, Subramanian S. Mechanisms of Intrinsic Tumor Resistance to Immunotherapy. Int J Mol Sci 2018; 19:ijms19051340. [PMID: 29724044 PMCID: PMC5983580 DOI: 10.3390/ijms19051340] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 02/06/2023] Open
Abstract
An increased understanding of the interactions between the immune system and tumors has opened the door to immunotherapy for cancer patients. Despite some success with checkpoint inhibitors including ipilimumab, pembrolizumab, and nivolumab, most cancer patients remain unresponsive to such immunotherapy, likely due to intrinsic tumor resistance. The mechanisms most likely involve reducing the quantity and/or quality of antitumor lymphocytes, which ultimately are driven by any number of developments: tumor mutations and adaptations, reduced neoantigen generation or expression, indoleamine 2,3-dioxygenase (IDO) overexpression, loss of phosphatase and tensin homologue (PTEN) expression, and overexpression of the Wnt⁻β-catenin pathway. Current work in immunotherapy continues to identify various tumor resistance mechanisms; future work is needed to develop adjuvant treatments that target those mechanisms, in order to improve the efficacy of immunotherapy and to expand its scope.
Collapse
Affiliation(s)
- John Rieth
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
179
|
Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer. Front Immunol 2018; 9:866. [PMID: 29755464 PMCID: PMC5932159 DOI: 10.3389/fimmu.2018.00866] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.
Collapse
Affiliation(s)
- Giulia Marelli
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Anwen Howells
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
180
|
Leber MF, Baertsch MA, Anker SC, Henkel L, Singh HM, Bossow S, Engeland CE, Barkley R, Hoyler B, Albert J, Springfeld C, Jäger D, von Kalle C, Ungerechts G. Enhanced Control of Oncolytic Measles Virus Using MicroRNA Target Sites. MOLECULAR THERAPY-ONCOLYTICS 2018; 9:30-40. [PMID: 29988512 PMCID: PMC6026446 DOI: 10.1016/j.omto.2018.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
Measles viruses derived from the live-attenuated Edmonton-B vaccine lineage are currently investigated as novel anti-cancer therapeutics. In this context, tumor specificity and oncolytic potency are key determinants of the therapeutic index. Here, we describe a systematic and comprehensive analysis of a recently developed post-entry targeting strategy based on the incorporation of microRNA target sites (miRTS) into the measles virus genome. We have established viruses with target sites for different microRNA species in the 3′ untranslated regions of either the N, F, H, or L genes and generated viruses harboring microRNA target sites in multiple genes. We report critical importance of target-site positioning with proximal genomic positions effecting maximum vector control. No relevant additional effect of six versus three miRTS copies for the same microRNA species in terms of regulatory efficiency was observed. Moreover, we demonstrate that, depending on the microRNA species, viral mRNAs containing microRNA target sites are directly cleaved and/or translationally repressed in presence of cognate microRNAs. In conclusion, we report highly efficient control of measles virus replication with various miRTS positions for development of safe and efficient cancer virotherapy and provide insights into the mechanisms underlying microRNA-mediated vector control.
Collapse
Affiliation(s)
- Mathias Felix Leber
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Marc-Andrea Baertsch
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sophie Caroline Anker
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Luisa Henkel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Hans Martin Singh
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Sascha Bossow
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Christine E. Engeland
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Russell Barkley
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Birgit Hoyler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Jessica Albert
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Corresponding author: Guy Ungerechts, MD, PhD, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| |
Collapse
|
181
|
Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy. Oncotarget 2018; 7:74171-74188. [PMID: 27708236 PMCID: PMC5342044 DOI: 10.18632/oncotarget.12367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Vaccinia virus (VACV) oncolytic therapy has been successful in a number of tumor models. In this study our goal was to generate a double recombinant vaccinia virus (VV-GMCSF-Lact) with enhanced antitumor activity that expresses exogenous proteins: the antitumor protein lactaptin and human granulocyte-macrophage colony-stimulating factor (GM-CSF). Lactaptin has previously been demonstrated to act as a tumor suppressor in mouse hepatoma as well as MDA-MB-231 human adenocarcinoma cells grafted into SCID mice. VV-GMCSF-Lact was engineered from Lister strain (L-IVP) vaccinia virus and has deletions of the viral thymidine kinase and vaccinia growth factor genes. Cell culture experiments revealed that engineered VV-GMCSF-Lact induced the death of cultured cancer cells more efficiently than recombinant VACV coding only GM-CSF (VV-GMCSF-dGF). Normal human MCF-10A cells were resistant to both recombinants up to 10 PFU/cell. The selectivity index for breast cancer cells measured in pair cultures MCF-7/MCF-10A was 200 for recombinant VV-GMCSF-Lact coding lactaptin and 100 for VV-GMCSF-dGF. Using flow cytometry we demonstrated that both recombinants induced apoptosis in treated cells but that the rate in the cells with active caspase −3 and −7 was higher after treatment with VV-GMCSF-Lact than with VV-GMCSF-dGF. Tumor growth inhibition and survival outcomes after VV-GMCSF-Lact treatment were estimated using immunodeficient and immunocompetent mice models. We observed that VV-GMCSF-Lact efficiently delays the growth of sensitive and chemoresistant tumors. These results demonstrate that recombinant VACVs coding an apoptosis-inducing protein have good therapeutic potential against chemoresistant tumors. Our data will also stimulate further investigation of coding lactaptin double recombinant VACV in clinical settings.
Collapse
|
182
|
Sprague L, Lee JM, Hutzen BJ, Wang PY, Chen CY, Conner J, Braidwood L, Cassady KA, Cripe TP. High Mobility Group Box 1 Influences HSV1716 Spread and Acts as an Adjuvant to Chemotherapy. Viruses 2018; 10:v10030132. [PMID: 29543735 PMCID: PMC5869525 DOI: 10.3390/v10030132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a multifunctional protein that plays various roles in the processes of inflammation, cancer, and other diseases. Many reports document abundant HMGB1 release following infection with oncolytic viruses (OVs). Further, other groups including previous reports from our laboratory highlight the synergistic effects of OVs with chemotherapy drugs. Here, we show that virus-free supernatants have varying cytotoxic potential, and HMGB1 is actively secreted by two established fibroblast cell lines (NIH 3T3 and 3T6-Swiss albino) following HSV1716 infection in vitro. Further, pharmacologic inhibition or genetic knock-down of HMGB1 reveals a role for HMGB1 in viral restriction, the ability to modulate bystander cell proliferation, and drug sensitivity in 3T6 cells. These data further support the multifactorial role of HMGB1, and suggest it could be a target for modulating the efficacy of oncolytic virus therapies alone or in combination with other frontline cancer treatments.
Collapse
Affiliation(s)
- Leslee Sprague
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Joel M Lee
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Brian J Hutzen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Pin-Yi Wang
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Chun-Yu Chen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Joe Conner
- Virttu Biologics, BioCity Glasgow, Newhouse ML1 5UH, UK.
| | | | - Kevin A Cassady
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Infectious Diseases and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Timothy P Cripe
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| |
Collapse
|
183
|
Gujar S, Pol JG, Kroemer G. Heating it up: Oncolytic viruses make tumors 'hot' and suitable for checkpoint blockade immunotherapies. Oncoimmunology 2018; 7:e1442169. [PMID: 30221036 PMCID: PMC6136862 DOI: 10.1080/2162402x.2018.1442169] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Abstract
Immune checkpoint blockade is less efficient in patients bearing immunologically ‘cold’ tumors. Oncolytic viruses, which were originally discovered for their ability to preferentially kill malignant cells, can recondition the tumor microenvironment. Supporting this hypothesis, two new studies published in Science Translational Medicine show that adjuvant-like activities of oncolytic viruses make brain and breast tumors ‘hot’ and sensitize them for subsequent immune checkpoint blockade.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, NS, Canada.,Department of Biology, Dalhousie University, NS, Canada.,Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Paris, France.,Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Paris, France.,Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
184
|
The Oncolytic Virus VSV-GP Is Effective against Malignant Melanoma. Viruses 2018; 10:v10030108. [PMID: 29498639 PMCID: PMC5869501 DOI: 10.3390/v10030108] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 12/12/2022] Open
Abstract
Previously, we described VSV-GP, a modified version of the vesicular stomatitis virus, as a non-neurotoxic oncolytic virus that is effective for the treatment of malignant glioblastoma and ovarian cancer. Here, we evaluate the therapeutic efficacy of VSV-GP for malignant melanoma. All of the human, mouse, and canine melanoma cell lines that were tested, alongside most primary human melanoma cultures, were infected by VSV-GP and efficiently killed. Additionally, we found that VSV-GP prolonged the survival of mice in both a xenograft and a syngeneic mouse model. However, only a few mice survived with long-term tumor remission. When we analyzed the factors that might limit VSV-GP's efficacy, we found that vector-neutralizing antibodies did not play a role in this context, as even after eight subsequent immunizations and an observation time of 42 weeks, no vector-neutralizing antibodies were induced in VSV-GP immunized mice. In contrast, the type I IFN response might have contributed to the reduced efficacy of the therapy, as both of the cell lines that were used for the mouse models were able to mount a protective IFN response. Nevertheless, early treatment with VSV-GP also reduced the number and size of lung metastases in a syngeneic B16 mouse model. In summary, VSV-GP is a potent candidate for the treatment of malignant melanoma; however, factors limiting the efficacy of the virus need to be further explored.
Collapse
|
185
|
Coleman N, Ameratunga M, Lopez J. Development of Molecularly Targeted Agents and Immunotherapies in Glioblastoma: A Personalized Approach. Clin Med Insights Oncol 2018; 12:1179554918759079. [PMID: 29511362 PMCID: PMC5833160 DOI: 10.1177/1179554918759079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, precision cancer medicine has driven major advances in the management of advanced solid tumours with the identification and targeting of putative driver aberrations transforming the clinical outcomes across multiple cancer types. Despite pivotal advances in the characterization of genomic landscape of glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. Immunotherapy strategies similarly have had limited success. Multiple deficiencies still exist in our knowledge of this complex disease, and further research is urgently required to overcome these critical issues. This review traces the path undertaken by the different therapeutics assessed in glioblastoma and the impact of precision medicine in this disease. We highlight challenges for precision medicine in glioblastoma, focusing on the issues of tumour heterogeneity, pharmacokinetic-pharmacodynamic optimization and outline the modern hypothesis-testing strategies being undertaken to address these key challenges.
Collapse
Affiliation(s)
- Niamh Coleman
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| | | | - Juanita Lopez
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| |
Collapse
|
186
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
187
|
Speck T, Heidbuechel JPW, Veinalde R, Jaeger D, von Kalle C, Ball CR, Ungerechts G, Engeland CE. Targeted BiTE Expression by an Oncolytic Vector Augments Therapeutic Efficacy Against Solid Tumors. Clin Cancer Res 2018; 24:2128-2137. [PMID: 29437789 DOI: 10.1158/1078-0432.ccr-17-2651] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/02/2018] [Accepted: 01/31/2018] [Indexed: 02/04/2023]
Abstract
Purpose: Immunotherapy with bispecific T-cell engagers has achieved striking success against hematologic malignancies, but efficacy against solid tumors has been limited. We hypothesized that oncolytic measles viruses encoding bispecific T-cell engagers (MV-BiTEs) represent a safe and effective treatment against solid tumors through local BiTE expression, direct tumor cell lysis and in situ tumor vaccination.Experimental Design: To test this hypothesis, we generated MV-BiTEs from the Edmonston B vaccine strain to target two model antigens. Replicative and oncolytic potential were assessed by infection and cell viability assays, respectively. Functionality of virus-derived BiTEs was tested in vitro by complementary binding and cytotoxicity assays. In vivo efficacy of MV-BiTE was investigated using both syngeneic and xenograft mouse models of solid cancers.Results: We verified secretion of functional BiTE antibodies by MV-BiTE-infected cells. Further, we demonstrated therapeutic efficacy of MV-BiTE against established tumors in fully immunocompetent mice. MV-BiTE efficacy was associated with increased intratumoral T-cell infiltration and induction of protective antitumor immunity. In addition, we showed therapeutic efficacy of MV-BiTE in xenograft models of patient-derived primary colorectal carcinoma spheroids with transfer of peripheral blood mononuclear cells.Conclusions: MV-BiTE treatment was effective in two distinct models of solid tumors without signs of toxicity. This provides strong evidence for therapeutic benefits of tumor-targeted BiTE expression by oncolytic MV. Thus, this study represents proof of concept for an effective strategy to treat solid tumors with BiTEs. Clin Cancer Res; 24(9); 2128-37. ©2018 AACR.
Collapse
Affiliation(s)
- Tobias Speck
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johannes P W Heidbuechel
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Rūta Veinalde
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Guy Ungerechts
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Christine E Engeland
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
188
|
Hanauer JDS, Rengstl B, Kleinlützum D, Reul J, Pfeiffer A, Friedel T, Schneider IC, Newrzela S, Hansmann ML, Buchholz CJ, Muik A. CD30-targeted oncolytic viruses as novel therapeutic approach against classical Hodgkin lymphoma. Oncotarget 2018; 9:12971-12981. [PMID: 29560124 PMCID: PMC5849188 DOI: 10.18632/oncotarget.24191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a hematopoietic malignancy with a characteristic cellular composition. The tumor mass is made up of infiltrated lymphocytes and other cells of hematologic origin but only very few neoplastic cells that are mainly identified by the diagnostic marker CD30. While most patients with early stage cHL can be cured by standard therapy, treatment options for relapsed or refractory cHL are still not sufficient, although immunotherapy-based approaches for the treatment of cHL patients have gained ground in the last decade. Here, we suggest a novel therapeutic concept based on oncolytic viruses selectively destroying the CD30+-positive cHL tumor cells. Relying on a recently described CD30-specific scFv we have generated CD30-targeted measles virus (MV-CD30) and vesicular stomatitis virus (VSV-CD30). For VSV-CD30 the VSV glycoprotein G reading frame was replaced by those of the CD30-targeted MV glycoproteins. Both viruses were found to be highly selective for CD30-positive cells as demonstrated by infection of co-cultures of target and non-target cells as well as through blocking infection by soluble CD30. Notably, VSV-CD30 yielded much higher titers than MV-CD30 and resulted in a more rapid and efficient killing of cultivated cHL-derived cell lines. Mouse tumor models revealed that intratumorally, as well as systemically injected VSV-CD30, infected cHL xenografts and significantly slowed down tumor growth resulting in a substantially prolonged survival of tumor-bearing mice. Taken together, the data support further preclinical testing of VSV-CD30 as novel therapeutic agent for the treatment of cHL and other CD30+-positive malignancies.
Collapse
Affiliation(s)
- Julia D S Hanauer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Benjamin Rengstl
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany.,Current address: BioNTech Cell and Gene Therapies GmbH, 55131 Mainz, Germany
| | - Dina Kleinlützum
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Johanna Reul
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Anett Pfeiffer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Thorsten Friedel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Irene C Schneider
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Sebastian Newrzela
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany.,Current address: BioNTech Cell and Gene Therapies GmbH, 55131 Mainz, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Alexander Muik
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.,Current address: BioNTech RNA Pharmaceuticals GmbH, 55131 Mainz, Germany
| |
Collapse
|
189
|
Chen H, Ma Y, Lan H, Zhao Y, Zhi D, Cui S, Du J, Zhang Z, Zhen Y, Zhang S. Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. J Mater Chem B 2018; 6:7530-7542. [DOI: 10.1039/c8tb01683f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stimuli-responsive delivery systems show great promise in meeting the requirements of several delivery stages to achieve satisfactory gene transfection.
Collapse
Affiliation(s)
- Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| | - Yu Ma
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Haoming Lan
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Yinan Zhao
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Defu Zhi
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Yuhong Zhen
- College of Pharmacy
- Dalian Medical University
- Dalian
- P. R. China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| |
Collapse
|
190
|
Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends Immunol 2017; 39:209-221. [PMID: 29275092 DOI: 10.1016/j.it.2017.11.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs) represent a new class of cancer immunotherapeutics. Administration of OVs to cancer-bearing hosts induces two distinct immunities: antiviral and antitumor. While antitumor immunity is beneficial, antiviral immune responses are often considered detrimental for the efficacy of OV-based therapy. The existing dogma postulates that anti-OV immune responses restrict viral replication and spread, and thus reduce direct OV-mediated killing of cancer cells. Accordingly, a myriad of therapeutic strategies aimed at mitigating anti-OV immune responses is presently being tested. Here, we advocate that OV-induced antiviral immune responses hold intrinsic anticancer benefits and are essential for establishing clinically desired antitumor immunity. Thus, to achieve the optimal efficacy of OV-based cancer immunotherapies, strategic management of anti-OV immune responses is of critical importance.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Department of Biology, Dalhousie University, NS, Canada; Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada; These authors contributed equally to this work
| | - Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; These authors contributed equally to this work
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, NS, Canada; Share senior co-authorship.
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Share senior co-authorship.
| |
Collapse
|
191
|
Abstract
Pleural malignancies remain a serious therapeutic challenge, and are frequently refractory to standard treatment; however, they have the advantage of occurring in an enclosed cavity readily accessible for examination, biopsy, and serial sampling. Novel therapeutics can be administered via intracavitary delivery to maximize efficacy by targeting the site of involvement and potentially mitigating the adverse effects of systemic therapies. The easy accessibility of the pleural space lends itself well to repeated sampling and analysis to determine efficacy and toxicity of a given treatment paradigm. These factors support the rationale for delivery of novel therapeutics directly into the pleural space.
Collapse
Affiliation(s)
- Vivek Murthy
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Keshav Mangalick
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Daniel H Sterman
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA.
| |
Collapse
|
192
|
Ansel A, Rosenzweig JP, Zisman PD, Gesundheit B. Monitoring the Efficacy of Oncolytic Viruses via Gene Expression. Front Oncol 2017; 7:264. [PMID: 29164063 PMCID: PMC5681714 DOI: 10.3389/fonc.2017.00264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
With the recent success of oncolytic viruses in clinical trials, efforts toward improved monitoring of the viruses and their mechanism have intensified. Four main gene expression strategies have been employed to date including: analyzing overall gene expression in tumor cells, looking at gene expression of a few specific genes in the tumor cells, focusing on gene expression of specific transgenes introduced into the virus, and following gene expression of certain viral genes. Each strategy presents certain advantages and disadvantages over the others. Various methods to organize the dysregulated genes into clusters have provided a window into the mechanism of action for these viruses. Methodologically, the combined approach of looking at both overall gene expression, the tumor cells and gene expression of viral genes, enables researchers to assess correlation between the introduction of the virus and the changes in the tumor. This would seem to be the most productive approach for future studies, providing much information on mechanism and timing.
Collapse
|
193
|
Role of autophagy in oncolytic herpes simplex virus type 1-induced cell death in squamous cell carcinoma cells. Cancer Gene Ther 2017; 24:393-400. [PMID: 28984290 DOI: 10.1038/cgt.2017.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the most widely studied viruses for oncolytic virotherapy. In squamous cell carcinoma (SCC) cells, the role of autophagy induced by neurovirulence gene-deficient HSV-1s in programmed cell death has not yet been elucidated. The oncolytic HSV-1 strain RH2, which lacks the γ34.5 gene and induces the fusion of human SCC cells, was used. RH2 replicated and induced cell death in SCC cells. RH2 infection was accompanied by the aggregation of microtubule-associated protein 1 light chain 3 (LC3) in the cytoplasm, the conversion of LC3-I to LC3-II and the formation of double-membrane vacuoles containing cell contents. No significant changes were observed in the expression of Bcl-2 or Bax, while a slight decrease was observed in that of Beclin 1. The autophagy inhibitors, 3-methyladenine (3-MA) and bafilomycin A1, did not affect viral replication, but significantly inhibited the cytotoxicity of RH2. The caspase-3 inhibitor z-DEVD-fmk and caspase-1 inhibitor z-YVAD-fmk also reduced the cytotoxicity of RH2. These results demonstrated that γ34.5 gene-deficient HSV-1 RH2 induced autophagic cell death in SCC cells as well as pyroptosis and apoptosis.
Collapse
|
194
|
Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am 2017; 31:753-770. [DOI: 10.1016/j.hoc.2017.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
195
|
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32611
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
196
|
Hajda J, Lehmann M, Krebs O, Kieser M, Geletneky K, Jäger D, Dahm M, Huber B, Schöning T, Sedlaczek O, Stenzinger A, Halama N, Daniel V, Leuchs B, Angelova A, Rommelaere J, Engeland CE, Springfeld C, Ungerechts G. A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol. BMC Cancer 2017; 17:576. [PMID: 28851316 PMCID: PMC5574242 DOI: 10.1186/s12885-017-3604-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. METHODS ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. DISCUSSION This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. TRIAL REGISTRATION ClinicalTrials.gov-ID: NCT02653313 , Registration date: Dec. 4th, 2015.
Collapse
Affiliation(s)
- Jacek Hajda
- Coordination Centre for Clinical Trials, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
| | - Monika Lehmann
- Coordination Centre for Clinical Trials, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Ottheinz Krebs
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Karsten Geletneky
- Department of Neurosurgery, Klinikum Darmstadt, Grafenstraße 9, 64283, Darmstadt, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Michael Dahm
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Bernard Huber
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Tilman Schöning
- Central Pharmacy, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Albrecht Stenzinger
- Department of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Niels Halama
- Tissue Imaging & Analysis Center (TIGA), University Heidelberg - BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Transplantation Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Barbara Leuchs
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Assia Angelova
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Jean Rommelaere
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Christine E Engeland
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
197
|
Tanaka R, Goshima F, Esaki S, Sato Y, Murata T, Nishiyama Y, Watanabe D, Kimura H. The efficacy of combination therapy with oncolytic herpes simplex virus HF10 and dacarbazine in a mouse melanoma model. Am J Cancer Res 2017; 7:1693-1703. [PMID: 28861325 PMCID: PMC5574941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023] Open
Abstract
Advanced melanoma has long been treated with chemotherapy using cytotoxic agents like dacarbazine (DTIC), but overall survival rates with these drugs have been generally low. Recently, immunoregulatory monoclonal antibodies and molecularly targeted therapy with a BRAF inhibitor and/or a MEK inhibitor, have been used to treat malignant melanoma and have improved the survival rate of patients with advanced melanoma. However, high prices of these drugs are problematic. In this study, we evaluated the oncolytic efficacy of HF10, an attenuated, replication-competent HSV, with DTIC in immunocompetent mice model of malignant melanoma. For in vitro studies, cytotoxicity assays were conducted in clone M3 mouse melanoma cells. For the in vivo studies, subcutaneous melanoma models were prepared in DBA/2 mice with clone M3 cells, and then HF10 was intratumorally inoculated with/without intraperitoneal DTIC injection. The efficacy of the therapies was evaluated by survival, growth of subcutaneous tumor, and histopathological and immunological analyses. Both HF10 infection and DTIC treatment showed cytotoxic effects in melanoma cells, but combination treatment with HF10 and DTIC showed a rapid and strong cytotoxic effect compared with monotherapy. In the subcutaneous melanoma model, intratumoral HF10 inoculation significantly inhibited tumor growth. HF10 also inhibited the growth of non-inoculated contralateral tumors when it was injected into the ipsilateral tumors of mice. In histologic and immunohistochemical analysis, tumor lysis and inflammatory cell infiltration were observed after intratumoral HF10 inoculation. When mice were treated with HF10 and DTIC, the combination therapy induced a robust systemic anti-tumor immune response and prolonged survival. IFN-γ secretion from splenocytes of the HF10-DTIC combination therapy group showed more IFN-γ secretion than did the other groups. These data showed the efficacy of HF10 and DTIC combination therapy in a mouse melanoma model.
Collapse
Affiliation(s)
- Rui Tanaka
- Department of Virology, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Dermatology, Aichi Medical University School of MedicineNagakute, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Shinichi Esaki
- Department of Virology, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical SchoolNagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Yukihiro Nishiyama
- Department of Virology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Daisuke Watanabe
- Department of Dermatology, Aichi Medical University School of MedicineNagakute, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
198
|
O’Cathail SM, Pokrovska TD, Maughan TS, Fisher KD, Seymour LW, Hawkins MA. Combining Oncolytic Adenovirus with Radiation-A Paradigm for the Future of Radiosensitization. Front Oncol 2017; 7:153. [PMID: 28791251 PMCID: PMC5523729 DOI: 10.3389/fonc.2017.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/28/2017] [Indexed: 01/03/2023] Open
Abstract
Oncolytic viruses and radiotherapy represent two diverse areas of cancer therapy, utilizing quite different treatment modalities and with non-overlapping cytotoxicity profiles. It is, therefore, an intriguing possibility to consider that oncolytic ("cancer-killing") viruses may act as cancer-selective radiosensitizers, enhancing the therapeutic consequences of radiation treatment on tumors while exerting minimal effects on normal tissue. There is a solid mechanistic basis for this potential synergy, with many viruses having developed strategies to inhibit cellular DNA repair pathways in order to protect themselves, during genome replication, from unwanted interference by cell processes that are normally triggered by DNA damage. Exploiting these abilities to inhibit cellular DNA repair following damage by therapeutic irradiation may well augment the anticancer potency of the approach. In this review, we focus on oncolytic adenovirus, the most widely developed and best understood oncolytic virus, and explore its various mechanisms for modulating cellular DNA repair pathways. The most obvious effects of the various adenovirus serotypes are to interfere with activity of the MRE11-Rad50-Nbs1 complex, temporally one of the first sensors of double-stranded DNA damage, and inhibition of DNA ligase IV, a central repair enzyme for healing double-stranded breaks by non-homologous end joining (NHEJ). There have been several preclinical and clinical studies of this approach and we assess the current state of progress. In addition, oncolytic viruses provide the option to promote a localized proinflammatory response, both by mediating immunogenic death of cancer cells by oncosis and also by encoding and expressing proinflammatory biologics within the tumor microenvironment. Both of these approaches provide exciting potential to augment the known immunological consequences of radiotherapy, aiming to develop systems capable of creating a systemic anticancer immune response following localized tumor treatment.
Collapse
Affiliation(s)
- Sean M. O’Cathail
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Timothy S. Maughan
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kerry D. Fisher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Maria A. Hawkins
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
199
|
The state of gene therapy research in Africa, its significance and implications for the future. Gene Ther 2017; 24:581-589. [PMID: 28692018 PMCID: PMC7094717 DOI: 10.1038/gt.2017.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Gene therapy has made impressive recent progress and has potential for treating a wide range of diseases, many of which are important to Africa. However, as a result of lack of direct public funding and skilled personnel, direct research on gene therapy in Africa is currently limited and resources to support the endeavor are modest. A strength of the technology is that it is based on principles of rational design, and the tools of gene therapy are now highly versatile. For example gene silencing and gene editing may be used to disable viral genes for therapeutic purposes. Gene therapy may thus lead to cure from infections with HIV-1, hepatitis B virus and Ebola virus, which are of significant public health importance in Africa. Although enthusiasm for gene therapy is justified, significant challenges to implementing the technology remain. These include ensuring efficient delivery of therapeutic nucleic acids to target cells, limiting unintended effects, cost and complexity of treatment regimens. In addition, implementation of effective legislation that will govern gene therapy research will be a challenge. Nevertheless, it is an exciting prospect that gene therapy should soon reach the mainstream of medical management. Participation of African researchers in the exciting developments is currently limited, but their involvement is important to address health problems, develop capacity and enhance economic progress of the continent.
Collapse
|
200
|
Correale P, Botta C, Ciliberto D, Pastina P, Ingargiola R, Zappavigna S, Tassone P, Pirtoli L, Caraglia M, Tagliaferri P. Immunotherapy of colorectal cancer: new perspectives after a long path. Immunotherapy 2017; 8:1281-1292. [PMID: 27993089 DOI: 10.2217/imt-2016-0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although significant therapeutic improvement has been achieved in the last 10 years, the survival of metastatic colorectal cancer patients remains in a range of 28 to 30 months. Presently, systemic treatment includes combination chemotherapy with oxaliplatin and/or irinotecan together with a backbone of 5-fluorouracil/levofolinate, alone or in combination with monoclonal antibodies to VEGFA (bevacizumab) or EGF receptor (cetuximab and panitumumab). The recent rise of immune checkpoint inhibitors in the therapeutic scenario has renewed scientific interest in the investigation of immunotherapy in metastatic colorectal cancer patients. According to our experience and view, here, we review the immunological strategies investigated for the treatment of this disease, including the use of tumor target-specific cancer vaccines, chemo-immunotherapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Cirino Botta
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Domenico Ciliberto
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Pierpaolo Pastina
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Rossana Ingargiola
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics & General Pathology, Second Naples University, Naples, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Luigi Pirtoli
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics & General Pathology, Second Naples University, Naples, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| |
Collapse
|