151
|
Müller-Reichert T, Greenan G, O’Toole E, Srayko M. The elegans of spindle assembly. Cell Mol Life Sci 2010; 67:2195-213. [PMID: 20339898 PMCID: PMC2883083 DOI: 10.1007/s00018-010-0324-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 11/26/2022]
Abstract
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly.
Collapse
Affiliation(s)
| | - Garrett Greenan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPICBG), Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Eileen O’Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309 USA
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
152
|
Abstract
Aurora kinases are serine and threonine kinases that function as key regulators of the mitosis process. There are three distinct human aurora kinases known as Aurora A, Aurora B, and Aurora C. Aurora A and Aurora B are overexpressed in a number of human cancers including non-small cell lung cancer, glioblastomas, and upper gastrointestinal adenocarcinomas. Given their association with tumorigenesis, both Aurora A and Aurora B have been targeted for cancer therapy. Currently, a number of selective and nonselective aurora kinase inhibitors are being tested in preclinical and clinical settings as anti-tumor agents. We review the biology of human aurora kinases, followed by an overview of inhibitors undergoing current clinical investigations.
Collapse
|
153
|
Hinchliffe DJ, Meredith WR, Yeater KM, Kim HJ, Woodward AW, Chen ZJ, Triplett BA. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1347-66. [PMID: 20087569 DOI: 10.1007/s00122-010-1260-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 12/27/2009] [Indexed: 05/10/2023]
Abstract
Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.
Collapse
Affiliation(s)
- Doug J Hinchliffe
- USDA-ARS-SRRC, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
154
|
Appierto V, Tiberio P, Cavadini E, Casalini P, Cappelletti G, Formelli F. Antimitotic effect of the retinoid 4-oxo-fenretinide through inhibition of tubulin polymerization: a novel mechanism of retinoid growth-inhibitory activity. Mol Cancer Ther 2010; 8:3360-8. [PMID: 19996280 DOI: 10.1158/1535-7163.mct-09-0798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR), a metabolite of fenretinide (4-HPR) present in plasma of 4-HPR-treated patients, is very effective in inducing growth inhibition and apoptosis in several cancer cell lines. 4-Oxo-4-HPR and 4-HPR have different mechanisms of action because 4-oxo-4-HPR, unlike 4-HPR, causes marked cell accumulation in G2-M phase. Here, we investigated the molecular events involving 4-oxo-4-HPR-induced cell cycle perturbation in ovarian (A2780 and IGROV-1) and breast (T47D, estrogen receptor+ and BT-20, estrogen receptor-) cancer cells. 4-Oxo-4-HPR induced a delay of mitosis (with mitotic index increasing 5- to 6-fold in all cell lines) without progression beyond the anaphase, as shown by cyclin B1 expression. 4-Oxo-4-HPR induced multipolar spindle formation and phosphorylation of BUBR1, resulting in activation of the spindle checkpoint. Multipolar spindles were not due to impairment of pole-focusing process, loss of centrosome integrity, or modulation of the expression levels of molecules associated with spindle aberrations (Kif 1C, Kif 2A, Eg5, Tara, tankyrase-1, centractin, and TOGp). We show here that 4-oxo-4-HPR targets microtubules because, in treated cells, it interfered with the reassembly of cold-depolymerized spindle microtubules and decreased the polymerized tubulin fraction. In cell-free assays, 4-oxo-4-HPR inhibited tubulin polymerization (50% inhibition of microtubule assembly at 5.9 micromol/L), suggesting a direct molecular interaction with tubulin. In conclusion, by showing that 4-oxo-4-HPR causes mitotic arrest through antimicrotubule activities, we delineate a new molecular mechanism for a retinoid.
Collapse
Affiliation(s)
- Valentina Appierto
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | |
Collapse
|
155
|
Carmena M, Ruchaud S, Earnshaw WC. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 2010; 21:796-805. [PMID: 19836940 PMCID: PMC2806521 DOI: 10.1016/j.ceb.2009.09.008] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 02/06/2023]
Abstract
The conserved Aurora family of protein kinases have emerged as crucial regulators of mitosis and cytokinesis. Despite their high degree of homology, Aurora A and B have very distinctive localisations and functions: Aurora A associates with the spindle poles to regulate entry into mitosis, centrosome maturation and spindle assembly; Aurora B is a member of the Chromosomal Passenger Complex (CPC) that transfers from the inner centromere in early mitosis to the spindle midzone, equatorial cortex and midbody in late mitosis and cytokinesis. Aurora B functions include regulation of chromosome–microtubule interactions, cohesion, spindle stability and cytokinesis. This review will focus on how interacting proteins make this functional diversity possible by targeting the kinases to different subcellular locations and regulating their activity.
Collapse
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh, Scotland, UK.
| | | | | |
Collapse
|
156
|
Cross MK, Powers MA. Learning about cancer from frogs: analysis of mitotic spindles in Xenopus egg extracts. Dis Model Mech 2010; 2:541-7. [PMID: 19892884 DOI: 10.1242/dmm.002022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mitotic spindle is responsible for correctly segregating chromosomes during cellular division. Disruption of this process leads to genomic instability in the form of aneuploidy, which can contribute to the development of cancer. Therefore, identification and characterization of factors that are responsible for the assembly and regulation of the spindle are crucial. Not only are these factors often altered in cancer, but they also serve as potential therapeutic targets. Xenopus egg extract is a powerful tool for studying spindle assembly and other cell cycle-related events owing, in large part, to the ease with which protein function can be manipulated in the extract. Importantly, the spindle factors that have been characterized in egg extract are conserved in human spindle assembly. In this review, we explain how the extract is prepared and manipulated to study the function of individual factors in spindle assembly and the spindle checkpoint. Furthermore, we provide examples of several spindle factors that have been defined functionally using the extract system and discuss how these factors are altered in human cancer.
Collapse
Affiliation(s)
- Marie K Cross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
157
|
Soubry A, Staes K, Parthoens E, Noppen S, Stove C, Bogaert P, van Hengel J, van Roy F. The transcriptional repressor Kaiso localizes at the mitotic spindle and is a constituent of the pericentriolar material. PLoS One 2010; 5:e9203. [PMID: 20169156 PMCID: PMC2821401 DOI: 10.1371/journal.pone.0009203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
Kaiso is a BTB/POZ zinc finger protein known as a transcriptional repressor. It was originally identified through its in vitro association with the Armadillo protein p120ctn. Subcellular localization of Kaiso in cell lines and in normal and cancerous human tissues revealed that its expression is not restricted to the nucleus. In the present study we monitored Kaiso's subcellular localization during the cell cycle and found the following: (1) during interphase, Kaiso is located not only in the nucleus, but also on microtubular structures, including the centrosome; (2) at metaphase, it is present at the centrosomes and on the spindle microtubules; (3) during telophase, it accumulates at the midbody. We found that Kaiso is a genuine PCM component that belongs to a pericentrin molecular complex. We analyzed the functions of different domains of Kaiso by visualizing the subcellular distribution of GFP-tagged Kaiso fragments throughout the cell cycle. Our results indicate that two domains are responsible for targeting Kaiso to the centrosomes and microtubules. The first domain, designated SA1 for spindle-associated domain 1, is located in the center of the Kaiso protein and localizes at the spindle microtubules and centrosomes; the second domain, SA2, is an evolutionarily conserved domain situated just before the zinc finger domain and might be responsible for localizing Kaiso towards the centrosomal region. Constructs containing both SA domains and Kaiso's aminoterminal BTB/POZ domain triggered the formation of abnormal centrosomes. We also observed that overexpression of longer or full-length Kaiso constructs led to mitotic cell arrest and frequent cell death. Knockdown of Kaiso accelerated cell proliferation. Our data reveal a new target for Kaiso at the centrosomes and spindle microtubules during mitosis. They also strongly imply that Kaiso's function as a transcriptional regulator might be linked to the control of the cell cycle and to cell proliferation in cancer.
Collapse
Affiliation(s)
- Adelheid Soubry
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katrien Staes
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eef Parthoens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sam Noppen
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Stove
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Bogaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
158
|
Ma N, Tulu US, Ferenz NP, Fagerstrom C, Wilde A, Wadsworth P. Poleward transport of TPX2 in the mammalian mitotic spindle requires dynein, Eg5, and microtubule flux. Mol Biol Cell 2010; 21:979-88. [PMID: 20110350 PMCID: PMC2836978 DOI: 10.1091/mbc.e09-07-0601] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TPX2 is a spindle assembly factor that is required for MT assembly near chromosomes. Using photoactivation of fluorescence, we report that TPX2 is transported poleward in the half-spindle. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5, and to suppression of MT flux. TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle. TPX2 moves poleward in the half-spindle and is static in the interzone and near spindle poles. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5 and to suppression of microtubule flux with nocodazole or antibodies to Kif2a. Poleward transport requires the C terminus of TPX2, a domain that interacts with Eg5. Overexpression of TPX2 lacking this domain induced excessive microtubule formation near kinetochores, defects in spindle assembly and blocked mitotic progression. Our data support a model in which poleward transport of TPX2 down-regulates its microtubule nucleating activity near kinetochores and links microtubules generated at kinetochores to dynein for incorporation into the spindle.
Collapse
Affiliation(s)
- Nan Ma
- University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
159
|
Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system. Clin Transl Oncol 2009; 11:787-98. [DOI: 10.1007/s12094-009-0447-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
160
|
SAEKI T, OUCHI M, OUCHI T. Physiological and oncogenic Aurora-A pathway. Int J Biol Sci 2009; 5:758-62. [PMID: 20011137 PMCID: PMC2793309 DOI: 10.7150/ijbs.5.758] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/24/2009] [Indexed: 01/03/2023] Open
Abstract
Aurora family of protein kinases have emerged as crucial factors of, not only mitosis and cytokinesis, but also human carcinogenesis. Among these family members is Aurora-A that is frequently overexpressed in varieties of human cancer. Both in vitro and in vivo studies demonstrated that Aurora-A induces tumorigenesis through genome instability. These studies have further shown that cell signaling cross-talk between Aurora-A and other cellular proteins are essential for fully-transformed phenotypes. This review summarizes recent progress of Aurora-A-associated carcinogenesis.
Collapse
Affiliation(s)
- Toshiaki SAEKI
- 1. Department of Breast Oncology, Saitama Medical School, Saitama, JAPAN
| | - Mutsuko OUCHI
- 2. NUHS, Systems Biology Program, Pritzker School of Medicine, University of Chicago, Evanston, IL 60201, USA
| | - Toru OUCHI
- 2. NUHS, Systems Biology Program, Pritzker School of Medicine, University of Chicago, Evanston, IL 60201, USA
| |
Collapse
|
161
|
Tcherniuk S, van Lis R, Kozielski F, Skoufias DA. Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in tumor derived cell lines. Biochem Pharmacol 2009; 79:864-72. [PMID: 19896928 DOI: 10.1016/j.bcp.2009.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 01/13/2023]
Abstract
The kinesin Eg5 plays an essential role in bipolar spindle formation. A variety of structurally diverse inhibitors of the human kinesin Eg5, including monastrol and STLC, share the same binding pocket on Eg5, composed by helix alpha2/loop L5, and helix alpha3 of the Eg5 motor domain. Previous biochemical analysis in the inhibitor binding pocket of Eg5 identified key residues in the inhibitor binding pocket of Eg5 that in the presence of either monastrol or STLC exhibited ATPase activities similar to the untreated wild type Eg5. Here we evaluated the ability of full-length human Eg5 carrying point mutations in the drug binding pocket to confer resistance in HeLa and U2OS cells to either monastrol or STLC, as measured by the formation of bipolar spindles. Both transfected cells expressing wild type Eg5 and untransfected cells were equally sensitive to both inhibitors. Expression of Eg5 single point mutants R119A, D130A, L132A, I136A, L214A and E215A conferred significant resistance to monastrol. Certain mutations inducing monastrol resistance such as R119A, D130A and L214A also conferred significant resistance to STLC. For the first time at a cellular level, the propensity of selected Eg5 point mutants to confer drug resistance confirms the target specificity of monastrol and STLC for Eg5. These data also suggest a possible mechanism by which drug resistance may occur in tumors treated with agents targeting Eg5.
Collapse
Affiliation(s)
- Sergey Tcherniuk
- Institut de Biologie Structurale, (CEA-CNRS-UJF) J.P.Ebel, Laboratoire des Protéines du Cytosquelette 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | |
Collapse
|
162
|
Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 2009; 10:765-77. [PMID: 19851335 DOI: 10.1038/nrm2782] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
163
|
Vanneste D, Takagi M, Imamoto N, Vernos I. The Role of Hklp2 in the Stabilization and Maintenance of Spindle Bipolarity. Curr Biol 2009; 19:1712-7. [DOI: 10.1016/j.cub.2009.09.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 02/06/2023]
|
164
|
Tanenbaum ME, Macůrek L, Janssen A, Geers EF, Alvarez-Fernández M, Medema RH. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 2009; 19:1703-11. [PMID: 19818618 DOI: 10.1016/j.cub.2009.08.027] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/05/2009] [Accepted: 08/07/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND The formation of a bipolar spindle is an essential step during cell division. Bipolar spindle assembly is driven by the highly conserved microtubule motor Eg5 (kinesin-5), which can slide antiparallel microtubules apart to drive centrosome separation. However, it is currently unclear whether and how additional motors can contribute to centrosome separation and bipolar spindle formation. RESULTS We have developed a novel assay to identify motors involved in spindle bipolarity; via this assay, we identify Kif15/Hklp2 (kinesin-12, hereafter referred to as Kif15). Kif15 is not required for spindle bipolarity in cells with full Eg5 activity but becomes essential when Eg5 is partially inhibited. We show that the primary function of Kif15 is to promote spindle elongation and to ensure maintenance of spindle bipolarity. Nonetheless, ectopic expression of Kif15 can fully reconstitute bipolar spindle assembly in the absence of Eg5 activity, demonstrating that Kif15 can replace all essential functions of Eg5 in bipolar spindle assembly. Importantly, this activity of Kif15 depends on its interaction with the microtubule-associated protein TPX2, indicating that a Kif15-TPX2 complex promotes centrosome separation. CONCLUSIONS These findings show that, similar to Eg5, Kif15 can drive centrosome separation during bipolar spindle assembly. For this activity, Kif15 requires both its motor domain and its interaction with TPX2. Based on these data, we propose that a complex of Kif15 and TPX2 can crosslink and slide two antiparallel microtubules apart, thereby driving centrosome separation.
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department of Medical Oncology and Cancer Genomics Centre, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
165
|
An essential role of the aPKC-Aurora A-NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nat Cell Biol 2009; 11:1057-68. [PMID: 19668197 DOI: 10.1038/ncb1919] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/19/2009] [Indexed: 11/08/2022]
Abstract
Orchestrated remodelling of the cytoskeketon is prominent during neurite extension. In contrast with the extensive characterization of actin filament regulation, little is known about the dynamics of microtubules during neurite extension. Here we identify an atypical protein kinase C (aPKC)-Aurora A-NDEL1 pathway that is crucial for the regulation of microtubule organization during neurite extension. aPKC phosphorylates Aurora A at Thr 287 (T287), which augments interaction with TPX2 and facilitates activation of Aurora A at the neurite hillock, followed by phosphorylation of NDEL1 at S251 and recruitment. Suppression of aPKC, Aurora A or TPX2, or disruption of Ndel1, results in severe impairment of neurite extension. Analysis of microtubule dynamics with a microtubule plus-end marker revealed that suppression of the aPKC-Aurora A-NDEL1 pathway resulted in a significant decrease in the frequency of microtubule emanation from the microtubule organizing centre (MTOC), suggesting that Aurora A acts downstream of aPKC. These findings demonstrate a surprising role of aPKC-Aurora A-NDEL1 pathway in microtubule remodelling during neurite extension.
Collapse
|
166
|
Wignall SM, Villeneuve AM. Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol 2009; 11:839-44. [PMID: 19525937 PMCID: PMC2760407 DOI: 10.1038/ncb1891] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/23/2009] [Indexed: 12/31/2022]
Abstract
Although centrosomes serve to organize microtubules in most cell types, oocyte spindles form and mediate meiotic chromosome segregation in their absence. Here, we used high-resolution imaging of both bipolar and experimentally generated monopolar spindles in Caenorhabditis elegans to reveal a surprising organization of microtubules and chromosomes within acentrosomal structures. We found that homologous chromosome pairs (bivalents) are surrounded by microtubule bundles running along their sides, whereas microtubule density is extremely low at chromosome ends despite a high concentration of kinetochore proteins at those regions. Furthermore, we found that the chromokinesin KLP-19 (kinesin-like protein 19) is targeted to a ring around the centre of each bivalent and provides a polar ejection force that is required for congression. Together, these observations create a new picture of chromosome-microtubule association in acentrosomal spindles and reveal a mechanism by which metaphase alignment can be achieved using this organization. Specifically, we propose that ensheathment by lateral microtubule bundles places spatial constraints on the chromosomes, thereby promoting biorientation, and that localized motors mediate movement along these bundles, thereby promoting alignment.
Collapse
Affiliation(s)
- Sarah M Wignall
- Department of Developmental Biology, Stanford University School of Medicine, CA 94305, USA.
| | | |
Collapse
|
167
|
Moutinho-Pereira S, Debec A, Maiato H. Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in Drosophila somatic cells. Mol Biol Cell 2009; 20:2796-808. [PMID: 19369414 DOI: 10.1091/mbc.e09-01-0011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytoskeleton microtubules undergo a reversible metamorphosis as cells enter and exit mitosis to build a transient mitotic spindle required for chromosome segregation. Centrosomes play a dominant but dispensable role in microtubule (MT) organization throughout the animal cell cycle, supporting the existence of concurrent mechanisms that remain unclear. Here we investigated MT organization at the entry and exit from mitosis, after perturbation of centriole function in Drosophila S2 cells. We found that several MTs originate from acentriolar microtubule-organizing centers (aMTOCs) that contain gamma-tubulin and require Centrosomin (Cnn) for normal architecture and function. During spindle assembly, aMTOCs associated with peripheral MTs are recruited to acentriolar spindle poles by an Ncd/dynein-dependent clustering mechanism to form rudimentary aster-like structures. At anaphase onset, down-regulation of CDK1 triggers massive formation of cytoplasmic MTs de novo, many of which nucleated directly from aMTOCs. CDK1 down-regulation at anaphase coordinates the activity of Msps/XMAP215 and the kinesin-13 KLP10A to favor net MT growth and stability from aMTOCs. Finally, we show that microtubule nucleation from aMTOCs also occurs in cells containing centrosomes. Our data reveal a new form of cell cycle-regulated MTOCs that contribute for MT cytoskeleton remodeling during mitotic spindle assembly/disassembly in animal somatic cells, independently of centrioles.
Collapse
|
168
|
Groen AC, Maresca TJ, Gatlin JC, Salmon ED, Mitchison TJ. Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol Biol Cell 2009; 20:2766-73. [PMID: 19369413 DOI: 10.1091/mbc.e09-01-0043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, gamma-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either gamma-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.
Collapse
Affiliation(s)
- Aaron C Groen
- Systems Biology Department, Harvard Medical School, Boston, MA 02445, USA.
| | | | | | | | | |
Collapse
|
169
|
Moss DK, Wilde A, Lane JD. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase. J Cell Sci 2009; 122:644-55. [PMID: 19208764 DOI: 10.1242/jcs.037259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.
Collapse
Affiliation(s)
- David K Moss
- Cell Biology Laboratories, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
170
|
Shen E, Lei Y, Liu Q, Zheng Y, Song C, Marc J, Wang Y, Sun L, Liang Q. Identification and characterization of INMAP, a novel interphase nucleus and mitotic apparatus protein that is involved in spindle formation and cell cycle progression. Exp Cell Res 2009; 315:1100-16. [PMID: 19331820 DOI: 10.1016/j.yexcr.2009.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
Abstract
A novel protein that associates with interphase nucleus and mitotic apparatus (INMAP) was identified by screening HeLa cDNA expression library with an autoimmune serum followed by tandem mass spectrometry. Its complete cDNA sequence of 1.818 kb encodes 343 amino acids with predicted molecular mass of 38.2 kDa and numerous phosphorylation sites. The sequence is identical with nucleotides 1-1800 bp of an unnamed gene (GenBank accession no. 7022388) and highly homologous with the 3'-terminal sequence of POLR3B. A monoclonal antibody against INMAP reacted with similar proteins in S. cerevisiae, Mel and HeLa cells, suggesting that it is a conserved protein. Confocal microscopy using either GFP-INMAP fusion protein or labeling with the monoclonal antibody revealed that the protein localizes as distinct dots in the interphase nucleus, but during mitosis associates closely with the spindle. Double immunolabeling using specific antibodies showed that the INMAP co-localizes with alpha-tubulin, gamma-tubulin, and NuMA. INMAP also co-immunoprecipitated with these proteins in their native state. Stable overexpression of INMAP in HeLa cell lines leads to defects in the spindle, mitotic arrest, formation of polycentrosomal and multinuclear cells, inhibition of growth, and apoptosis. We propose that INMAP is a novel protein that plays essential role in spindle formation and cell-cycle progression.
Collapse
Affiliation(s)
- Enzhi Shen
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Guo Y. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103. [PMID: 19106179 PMCID: PMC2707882 DOI: 10.1093/aob/mcp023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
|
172
|
Guo L, Ho CMK, Kong Z, Lee YRJ, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103:387-402. [PMID: 19106179 PMCID: PMC2707338 DOI: 10.1093/aob/mcn248] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA
- For correspondence. E-mail:
| |
Collapse
|
173
|
Zhang G, Breuer M, Förster A, Egger-Adam D, Wodarz A. Mars, a Drosophila protein related to vertebrate HURP, is required for the attachment of centrosomes to the mitotic spindle during syncytial nuclear divisions. J Cell Sci 2009; 122:535-45. [PMID: 19174464 DOI: 10.1242/jcs.040352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The formation of the mitotic spindle is controlled by the microtubule organizing activity of the centrosomes and by the effects of chromatin-associated Ran-GTP on the activities of spindle assembly factors. In this study we show that Mars, a Drosophila protein with sequence similarity to vertebrate hepatoma upregulated protein (HURP), is required for the attachment of the centrosome to the mitotic spindle. More than 80% of embryos derived from mars mutant females do not develop properly due to severe mitotic defects during the rapid nuclear divisions in early embryogenesis. Centrosomes frequently detach from spindles and from the nuclear envelope and nucleate astral microtubules in ectopic positions. Consistent with its function in spindle organization, Mars localizes to nuclei in interphase and associates with the mitotic spindle, in particular with the spindle poles, during mitosis. We propose that Mars is an important linker between the spindle and the centrosomes that is required for proper spindle organization during the rapid mitotic cycles in early embryogenesis.
Collapse
Affiliation(s)
- Gang Zhang
- Abteilung Stammzellbiologie, DFG Research Center for Molecular Physiology of the Brain (CMPB), Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
174
|
Evrard JL, Pieuchot L, Vos JW, Vernos I, Schmit AC. Plant TPX2 and related proteins. PLANT SIGNALING & BEHAVIOR 2009; 4:69-72. [PMID: 19704713 PMCID: PMC2634078 DOI: 10.4161/psb.4.1.7409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 05/04/2023]
Abstract
At the onset of mitosis, microtubules form a bipolar spindle around the prophase nucleus. TPX2 is phosphorylated during mitosis and acts as a spindle assembly factor that nucleates microtubules in the close vicinity of chromosomes, independent of the centrosomes. Furthermore, it activates the kinase Aurora A and targets the Xenopus kinesin-like protein 2 to spindle poles. We have characterized the plant orthologue of TPX2 that possesses all identified functional domains of its animal counterpart. Moreover, we have demonstrated that it is exported before nuclear envelope breakdown and that its activity around the nuclear envelope is essential for prospindle assembly. Here, we compare the sequences of several characterized TPX2 domains, allowing us to define TPX2. We propose that true TPX2 orthologues share simultaneously all these conserved domains and that other proteins possessing only some of these functional blocks may be considered as TPX2-related proteins.
Collapse
Affiliation(s)
- Jean-Luc Evrard
- Institut de Biologie Moléculaire des Plantes; Laboratoire Propre du CNRS (UPR 2357) Conventionné avec l'Université Louis Pasteur (Strasbourg I); Strasbourg France
| | - Laurent Pieuchot
- Institut de Biologie Moléculaire des Plantes; Laboratoire Propre du CNRS (UPR 2357) Conventionné avec l'Université Louis Pasteur (Strasbourg I); Strasbourg France
| | - Jan W Vos
- Laboratory of Plant Cell Biology; Wageningen University; Wageningen The Netherlands
| | - Isabelle Vernos
- Centre de Regulació Genòmica; Cell and Developmental Biology Program; Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona Spain
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes; Laboratoire Propre du CNRS (UPR 2357) Conventionné avec l'Université Louis Pasteur (Strasbourg I); Strasbourg France
| |
Collapse
|
175
|
Abstract
Roles for actin and myosin in positioning mitotic spindles in the cell are well established. A recent study of myosin-X function in early Xenopus embryo mitosis now reports that this unconventional myosin is required for pole integrity and normal spindle length by localizing to poles and exerting pulling forces on actin filaments within the spindle.
Collapse
Affiliation(s)
- Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
176
|
Reber S, Over S, Kronja I, Gruss OJ. CaM kinase II initiates meiotic spindle depolymerization independently of APC/C activation. ACTA ACUST UNITED AC 2008; 183:1007-17. [PMID: 19064669 PMCID: PMC2600749 DOI: 10.1083/jcb.200807006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Altered spindle microtubule dynamics at anaphase onset are the basis for chromosome segregation. In Xenopus laevis egg extracts, increasing free calcium levels and subsequently rising calcium-calmodulin–dependent kinase II (CaMKII) activity promote a release from meiosis II arrest and reentry into anaphase. CaMKII induces the activation of the anaphase-promoting complex/cyclosome (APC/C), which destines securin and cyclin B for degradation to allow chromosome separation and mitotic exit. In this study, we investigated the calcium-dependent signal responsible for microtubule depolymerization at anaphase onset after release from meiotic arrest in Xenopus egg extracts. Using Ran–guanosine triphosphate–mediated microtubule assemblies and quantitative analysis of complete spindles, we demonstrate that CaMKII triggers anaphase microtubule depolymerization. A CaMKII-induced twofold increase in microtubule catastrophe rates can explain reduced microtubule stability. However, calcium or constitutively active CaMKII promotes microtubule destabilization even upon APC/C inhibition and in the presence of high cyclin-dependent kinase 1 activity. Therefore, our data demonstrate that CaMKII turns on parallel pathways to activate the APC/C and to induce microtubule depolymerization at meiotic anaphase onset.
Collapse
Affiliation(s)
- Simone Reber
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum und Zentrum für Molekulare Biologie Heidelberg Allianz (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
177
|
Rajangam AS, Kumar M, Aspeborg H, Guerriero G, Arvestad L, Pansri P, Brown CJL, Hober S, Blomqvist K, Divne C, Ezcurra I, Mellerowicz E, Sundberg B, Bulone V, Teeri TT. MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile. PLANT PHYSIOLOGY 2008; 148:1283-94. [PMID: 18805954 PMCID: PMC2577246 DOI: 10.1104/pp.108.121913] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 09/16/2008] [Indexed: 05/17/2023]
Abstract
We have identified a gene, denoted PttMAP20, which is strongly up-regulated during secondary cell wall synthesis and tightly coregulated with the secondary wall-associated CESA genes in hybrid aspen (Populus tremula x tremuloides). Immunolocalization studies with affinity-purified antibodies specific for PttMAP20 revealed that the protein is found in all cell types in developing xylem and that it is most abundant in cells forming secondary cell walls. This PttMAP20 protein sequence contains a highly conserved TPX2 domain first identified in a microtubule-associated protein (MAP) in Xenopus laevis. Overexpression of PttMAP20 in Arabidopsis (Arabidopsis thaliana) leads to helical twisting of epidermal cells, frequently associated with MAPs. In addition, a PttMAP20-yellow fluorescent protein fusion protein expressed in tobacco (Nicotiana tabacum) leaves localizes to microtubules in leaf epidermal pavement cells. Recombinant PttMAP20 expressed in Escherichia coli also binds specifically to in vitro-assembled, taxol-stabilized bovine microtubules. Finally, the herbicide 2,6-dichlorobenzonitrile, which inhibits cellulose synthesis in plants, was found to bind specifically to PttMAP20. Together with the known function of cortical microtubules in orienting cellulose microfibrils, these observations suggest that PttMAP20 has a role in cellulose biosynthesis.
Collapse
Affiliation(s)
- Alex S Rajangam
- Swedish Center of Biomimetic Fiber Engineering, KTH-Royal Institute of Technology, AlbaNova, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Takagi M, Bunai K, Yanagi KI, Imamoto N. Cloning of Xenopus orthologs of Ctf7/Eco1 acetyltransferase and initial characterization of XEco2. FEBS J 2008; 275:6109-22. [PMID: 19016859 DOI: 10.1111/j.1742-4658.2008.06736.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sister chromatid cohesion is important for the correct alignment and segregation of chromosomes during cell division. Although the cohesin complex has been shown to play a physical role in holding sister chromatids together, its loading onto chromatin is not sufficient for the establishment of sister chromatid cohesion. The activity of the cohesin complex must be turned on by Ctf7/Eco1 acetyltransferase at the replication forks as the result of a specific mechanism. To dissect this mechanism in the well established in vitro system based on the use of Xenopus egg extracts, we cloned two Xenopus orthologs of Ctf7/Eco1 acetyltransferase, XEco1 and XEco2. Both proteins share a domain structure with known members of Ctf7/Eco1 family proteins. Moreover, biochemical analysis showed that XEco2 exhibited acetyltransferase activity. We raised a specific antibody against XEco2 and used it to further characterize XEco2. In tissue culture cells, XEco2 gradually accumulated in nuclei through the S phase. In nuclei formed in egg extract, XEco2 was loaded into the chromatin at a constant level in a manner sensitive to geminin, an inhibitor of the pre-replication complex assembly, but insensitive to aphidicolin, an inhibitor of DNA polymerases. In both systems, no specific localization was observed during mitosis. In XEco2-depleted egg extracts, DNA replication occurred with normal kinetics and efficiency, and the condensation and sister chromatid cohesion of subsequently formed mitotic chromosomes was unaffected. These observations will serve as a platform for elucidating the molecular function of Ctf7/Eco1 acetyltransferase in the establishment of sister chromatid cohesion in future studies, in which XEco1 and XEco2 should be dissected in parallel.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute, Saitama, Japan
| | | | | | | |
Collapse
|
179
|
Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 2008; 3:e3338. [PMID: 18833336 PMCID: PMC2556383 DOI: 10.1371/journal.pone.0003338] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/12/2008] [Indexed: 01/17/2023] Open
Abstract
Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I peculiarity, we studied TPX2, a Ran target, in mouse oocytes. Strikingly, TPX2 activity is controlled at the protein level through its accumulation from meiosis I to II. By RNAi depletion and live imaging, we show that TPX2 is required for spindle assembly via two distinct functions. It controls microtubule assembly and spindle pole integrity via the phosphorylation of TACC3, a regulator of MTOCs activity. We show that meiotic spindle formation in vivo depends on the regulation of at least a target of Ran, TPX2, rather than on the regulation of the RanGTP gradient itself.
Collapse
|
180
|
Vos JW, Pieuchot L, Evrard JL, Janski N, Bergdoll M, de Ronde D, Perez LH, Sardon T, Vernos I, Schmit AC. The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. THE PLANT CELL 2008; 20:2783-97. [PMID: 18941054 PMCID: PMC2590745 DOI: 10.1105/tpc.107.056796] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 10/02/2008] [Accepted: 10/09/2008] [Indexed: 05/18/2023]
Abstract
The Targeting Protein for Xklp2 (TPX2) is a central regulator of spindle assembly in vertebrate cells. The absence or excess of TPX2 inhibits spindle formation. We have defined a TPX2 signature motif that is present once in vertebrate sequences but twice in plants. Plant TPX2 is predominantly nuclear during interphase and is actively exported before nuclear envelope breakdown to initiate prospindle assembly. It localizes to the spindle microtubules but not to the interdigitating polar microtubules during anaphase or to the phragmoplast as it is rapidly degraded during telophase. We characterized the Arabidopsis thaliana TPX2-targeting domains and show that the protein is able to rescue microtubule assembly in TPX2-depleted Xenopus laevis egg extracts. Injection of antibodies to TPX2 into living plant cells inhibits the onset of mitosis. These results demonstrate that plant TPX2 already functions before nuclear envelope breakdown. Thus, plants have adapted nuclear-cytoplasmic shuttling of TPX2 to maintain proper spindle assembly without centrosomes.
Collapse
Affiliation(s)
- Jan W Vos
- Laboratory of Plant Cell Biology, Wageningen University, 6703 BD Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Casanova CM, Rybina S, Yokoyama H, Karsenti E, Mattaj IW. Hepatoma up-regulated protein is required for chromatin-induced microtubule assembly independently of TPX2. Mol Biol Cell 2008; 19:4900-8. [PMID: 18799614 DOI: 10.1091/mbc.e08-06-0624] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The production of RanGTP around chromosomes is crucial for spindle microtubule assembly in mitosis. Previous work has shown that hepatoma up-regulated protein (HURP) is a Ran target, required for microtubule stabilization and spindle organization. Here we report a detailed analysis of HURP function in Xenopus laevis mitotic egg extracts. HURP depletion severely impairs bipolar spindle assembly around chromosomes: the few spindles that do form show a significant decrease in microtubule density at the spindle midzone. HURP depletion does not interfere with microtubule growth from purified centrosomes, but completely abolishes microtubule assembly induced by chromatin beads or RanGTP. Simultaneous depletion of the microtubule destabilizer MCAK with HURP does not rescue the phenotype, demonstrating that the effect of HURP is not to antagonize the destabilization activity of MCAK. Although the phenotype of HURP depletion closely resembles that reported for TPX2 depletion, we find no evidence that TPX2 and HURP physically interact or that they influence each other in their effects on spindle microtubules. Our data indicate that HURP and TPX2 have nonredundant functions essential for chromatin-induced microtubule assembly.
Collapse
|
182
|
Wang L, Zhu G, Yang D, Li Q, Li Y, Xu X, He D, Zeng C. The spindle function of CDCA4. ACTA ACUST UNITED AC 2008; 65:581-93. [PMID: 18498124 DOI: 10.1002/cm.20286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an attempt to discover novel proteins functioning in both interphase nucleus and mitotic spindle as NuMA does, we carried out cDNA library screening with pooled autoimmune antibodies. Among positive clones we found a recently identified transcription regulatory protein (CDCA4) with the distinctive nuclear-mitotic apparatus distribution. CDCA4 localizes at metaphase spindle poles and the midzone in later stages. Additionally, an intensive CDCA4 accumulation parallel to spindle was observed in half of metaphase cells but not in later stages, implying a transient form of CDCA4 binding to midzone from anaphase. Mitotic arrest dissolved CDCA4 from centrosomes but during the spindle recovery, CDCA4 invariably colocalized with the microtubule nucleation foci as a component of microtubule organization center. RNA interference of CDCA4 resulted in significant increase of multinuclei and multipolar spindles, suggesting impaired function in chromosome segregation or cytokinesis. However, the spindle checkpoint and the centrosome cycle appeared not to be affected by such interference. Furthermore, CDCA4 depletion resulted in accelerated cell proliferation, perhaps due to the disruption of CDCA4 nuclear function as a transcription suppressor. Interphase CDCA4 is localized in nucleoli by immunofluorescence, although GFP-CDCA4 expressed in the nucleoplasm. An N-terminal KRKC domain appears to be the nuclear localization signal as identified by sequence alignment and the expression of truncated mutants. Taken together, our results suggested that as a novel nuclearmitotic apparatus protein, CDCA4 is involved in spindle organization from prometaphase. When anaphase begins, CDCA4 may play a different role as a midzone factor involved in chromosome segregation or cytokinesis.
Collapse
Affiliation(s)
- Limin Wang
- Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing China
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Bird AW, Hyman AA. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. ACTA ACUST UNITED AC 2008; 182:289-300. [PMID: 18663142 PMCID: PMC2483532 DOI: 10.1083/jcb.200802005] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To assemble mitotic spindles, cells nucleate microtubules from a variety of sources including chromosomes and centrosomes. We know little about how the regulation of microtubule nucleation contributes to spindle bipolarity and spindle size. The Aurora A kinase activator TPX2 is required for microtubule nucleation from chromosomes as well as for spindle bipolarity. We use bacterial artificial chromosome–based recombineering to introduce point mutants that block the interaction between TPX2 and Aurora A into human cells. TPX2 mutants have very short spindles but, surprisingly, are still bipolar and segregate chromosomes. Examination of microtubule nucleation during spindle assembly shows that microtubules fail to nucleate from chromosomes. Thus, chromosome nucleation is not essential for bipolarity during human cell mitosis when centrosomes are present. Rather, chromosome nucleation is involved in spindle pole separation and setting spindle length. A second Aurora A–independent function of TPX2 is required to bipolarize spindles.
Collapse
Affiliation(s)
- Alexander W Bird
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | |
Collapse
|
184
|
Vader G, Lens SMA. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:60-72. [PMID: 18662747 DOI: 10.1016/j.bbcan.2008.07.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 12/15/2022]
Abstract
The Aurora protein kinase family (consisting of Aurora-A, -B and -C) is an important group of enzymes that controls several aspects of cell division in mammalian cells. Dysfunction of these kinases has been associated with a failure to maintain a stable chromosome content, a state that can contribute to tumourigenesis. Additionally, Aurora-A is frequently found amplified in a variety of tumour types and displays oncogenic activity. On the other hand, therapeutic inhibition of these kinases has shown great promise as potential anti-cancer treatment, most likely because of their essential roles during cell division. This review will focus on our present understanding of the different roles played by these kinases, their regulation throughout cell division, their deregulation in human cancers and on the progress that is made in targeting these important regulators in the treatment of cancer.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, Stratenum 2.125, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
185
|
Woolner S, O'Brien LL, Wiese C, Bement WM. Myosin-10 and actin filaments are essential for mitotic spindle function. J Cell Biol 2008; 182:77-88. [PMID: 18606852 PMCID: PMC2447898 DOI: 10.1083/jcb.200804062] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/06/2008] [Indexed: 01/05/2023] Open
Abstract
Mitotic spindles are microtubule-based structures responsible for chromosome partitioning during cell division. Although the roles of microtubules and microtubule-based motors in mitotic spindles are well established, whether or not actin filaments (F-actin) and F-actin-based motors (myosins) are required components of mitotic spindles has long been controversial. Based on the demonstration that myosin-10 (Myo10) is important for assembly of meiotic spindles, we assessed the role of this unconventional myosin, as well as F-actin, in mitotic spindles. We find that Myo10 localizes to mitotic spindle poles and is essential for proper spindle anchoring, normal spindle length, spindle pole integrity, and progression through metaphase. Furthermore, we show that F-actin localizes to mitotic spindles in dynamic cables that surround the spindle and extend between the spindle and the cortex. Remarkably, although proper anchoring depends on both F-actin and Myo10, the requirement for Myo10 in spindle pole integrity is F-actin independent, whereas F-actin and Myo10 actually play antagonistic roles in maintenance of spindle length.
Collapse
Affiliation(s)
- Sarah Woolner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
186
|
A survivin-ran complex regulates spindle formation in tumor cells. Mol Cell Biol 2008; 28:5299-311. [PMID: 18591255 DOI: 10.1128/mcb.02039-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aberrant cell division is a hallmark of cancer, but the molecular circuitries of this process in tumor cells are not well understood. Here, we used a high-throughput proteomics screening to identify novel molecular partners of survivin, an essential regulator of mitosis overexpressed in cancer. We found that survivin associates with the small GTPase Ran in an evolutionarily conserved recognition in mammalian cells and Xenopus laevis extracts. This interaction is regulated during the cell cycle, involves Ran-GTP, requires a discrete binding interface centered on Glu65 in survivin, and is independent of the Ran effector Crm1. Disruption of a survivin-Ran complex does not affect the assembly of survivin within the chromosomal passenger complex or its cytosolic accumulation, but it inhibits the delivery of the Ran effector molecule TPX2 to microtubules. In turn, this results in aberrant mitotic spindle formation and chromosome missegregation in tumor, but not normal, cells. Therefore, survivin is a novel effector of Ran signaling, and this pathway may be preferentially exploited for spindle assembly in tumor cells.
Collapse
|
187
|
Groen AC, Needleman D, Brangwynne C, Gradinaru C, Fowler B, Mazitschek R, Mitchison TJ. A novel small-molecule inhibitor reveals a possible role of kinesin-5 in anastral spindle-pole assembly. J Cell Sci 2008; 121:2293-300. [PMID: 18559893 DOI: 10.1242/jcs.024018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetrameric plus-end-directed motor, kinesin-5, is essential for bipolar spindle assembly. Small-molecule inhibitors of kinesin-5 have been important tools for investigating its function, and some are currently under evaluation as anti-cancer drugs. Most inhibitors reported to date are ;non-competitive' and bind to a specific site on the motor head, trapping the motor in an ADP-bound state in which it has a weak but non-zero affinity for microtubules. Here, we used a novel ATP-competitive inhibitor, FCPT, developed at Merck (USA). We found that it induced tight binding of kinesin-5 onto microtubules in vitro. Using Xenopus egg-extract spindles, we found that FCPT not only blocked poleward microtubule sliding but also selectively induced loss of microtubules at the poles of bipolar spindles (and not asters or monoasters). We also found that the spindle-pole proteins TPX2 and gamma-tubulin became redistributed to the spindle equator, suggesting that proper kinesin-5 function is required for pole assembly.
Collapse
Affiliation(s)
- Aaron C Groen
- Harvard Medical School, Department of Systems Biology, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
188
|
Eliscovich C, Peset I, Vernos I, Méndez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 2008; 10:858-65. [PMID: 18536713 DOI: 10.1038/ncb1746] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/22/2008] [Indexed: 12/31/2022]
|
189
|
Abstract
The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| | | |
Collapse
|
190
|
Nolte F, Hofmann WK. Myelodysplastic syndromes: molecular pathogenesis and genomic changes. Ann Hematol 2008; 87:777-95. [PMID: 18516602 DOI: 10.1007/s00277-008-0502-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis presenting with peripheral cytopenias in combination with a hyperplastic bone marrow and an increased risk of evolution to acute myeloid leukemia. The classification systems such as the WHO classification mainly rely on morphological criteria and are supplemented by the International Prognostic Scoring System which takes cytogenetical changes into consideration when determining the prognosis of MDS but wide intra-subtype variations do exist. The pathomechanisms causing primary MDS require further work. Development and progression of MDS is suggested to be a multistep alteration to hematopoietic stem cells. Different molecular alterations have been described, affecting genes involved in cell-cycle control, mitotic checkpoints, and growth factor receptors. Secondary signal proteins and transcription factors, which gives the cell a growth advantage over its normal counterpart, may be affected as well. The accumulation of such defects may finally cause the leukemic transformation of MDS.
Collapse
Affiliation(s)
- Florian Nolte
- Department of Hematology and Oncology, University Hospital Benjamin Franklin, Charité, Hindenburgdamm 30, 12203, Berlin, Germany.
| | | |
Collapse
|
191
|
Abstract
The gene encoding the Aurora-A protein kinase is located in the 20q13 breast cancer amplicon and is also overexpressed in colorectal, pancreatic and gastric tumours. Although Aurora-A may not be a bona fide oncoprotein in humans, it is a promising drug target in cancer therapy. Thus, it is surprising that so little is known of its role in normal cells. The primary function of Aurora-A is to promote bipolar spindle assembly, but the molecular details of this process remained obscure until recently. The discovery of several novel Aurora-A-binding proteins and substrates has implicated Aurora-A in centrosome maturation and separation, acentrosomal and centrosomal spindle assembly, kinetochore function, cytokinesis and in cell fate determination. Here we discuss recent advances in determining the early mitotic role of Aurora-A, with a strong emphasis on its function at the mitotic spindle poles.
Collapse
Affiliation(s)
- Alexis R Barr
- Cancer Research UK Cambridge Research Institute, Department of Oncology, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | |
Collapse
|
192
|
Eckerdt F, Eyers PA, Lewellyn AL, Prigent C, Maller JL. Spindle pole regulation by a discrete Eg5-interacting domain in TPX2. Curr Biol 2008; 18:519-25. [PMID: 18372177 PMCID: PMC2408861 DOI: 10.1016/j.cub.2008.02.077] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 11/30/2022]
Abstract
Targeting protein for Xklp2 (TPX2) activates the Ser/Thr kinase Aurora A in mitosis and targets it to the mitotic spindle [1, 2]. These effects on Aurora A are mediated by the N-terminal domain of TPX2, whereas a C-terminal fragment has been reported to affect microtubule nucleation [3]. Using the Xenopus system, we identified a novel role of TPX2 during mitosis. Injection of TPX2 or its C terminus (TPX2-CT) into blastomeres of two-cell embryos led to potent cleavage arrest. Despite cleavage arrest, TPX2-injected embryos biochemically undergo multiple rounds of DNA synthesis and mitosis, and arrested blastomeres have abnormal spindles, clustered centrosomes, and an apparent failure of cytokinesis. In Xenopus S3 cells, transfection of TPX2-FL causes spindle collapse, whereas TPX2-CT blocks pole segregation, resulting in apposing spindle poles with no evident displacement of Aurora A. Analysis of TPX2-CT deletion peptides revealed that only constructs able to interact with the class 5 kinesin-like motor protein Eg5 induce the spindle phenotypes. Importantly, injection of Eg5 into TPX2-CT-arrested blastomeres causes resumption of cleavage. These results define a discrete domain within the C terminus of TPX2 that exerts a novel Eg5-dependent function in spindle pole segregation.
Collapse
Affiliation(s)
- Frank Eckerdt
- Howard Hughes Medical Institute, Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
193
|
Du J, Jablonski S, Yen TJ, Hannon GJ. Astrin regulates Aurora-A localization. Biochem Biophys Res Commun 2008; 370:213-9. [PMID: 18361916 DOI: 10.1016/j.bbrc.2008.03.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
Alterations in the expression and activity of the centrosomal kinase, Aurora-A/STK15, affect genomic stability, disrupt the fidelity of centrosome duplication, and induce cellular transformation. A mitotic spindle-associated protein, astrin/DEEPEST, was identified as an Aurora-A interacting protein by a two-hybrid screen. Astrin and Aurora-A co-express at mitosis and co-localize to mitotic spindles. RNAi-mediated depletion of astrin abolishes the localization of Aurora-A on mitotic spindles and leads to a moderate mitotic cell cycle delay, which resembles the mitotic arrest phenotypes in siAurora-A treated cells. However, depletion of Aurora-A does not affect astrin localization, and co-depletion of both astrin and Aurora-A causes a mitotic arrest phenotype similar to depletion of siAurora-A alone. These results suggest that astrin acts upstream of Aurora-A to regulate its mitotic spindle localization.
Collapse
Affiliation(s)
- Jian Du
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
194
|
Hice1, a novel microtubule-associated protein required for maintenance of spindle integrity and chromosomal stability in human cells. Mol Cell Biol 2008; 28:3652-62. [PMID: 18362163 DOI: 10.1128/mcb.01923-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spindle integrity is critical for efficient mitotic progression and accurate chromosome segregation. Deregulation of spindles often leads to structural and functional aberrations, ultimately promoting segregation errors and aneuploidy, a hallmark of most human cancers. Here we report the characterization of a previously identified human sarcoma antigen (gene located at 19p13.11), Hice1, an evolutionarily nonconserved 46-kDa coiled-coil protein. Hice1 shows distinct cytoplasmic localization and associates with interphase centrosomes and mitotic spindles, preferentially at the spindle pole vicinity. Depletion of Hice1 by RNA interference resulted in abnormal and unstable spindle configurations, mitotic delay at prometaphase and metaphase, and elevated aneuploidy. Conversely, loss of Hice1 had minimal effects on interphase centrosome duplication. We also found that both full-length Hice1 and Hice1-N1, which is composed of 149 amino acids of the N-terminal region, but not the mutant lacking the N-terminal region, exhibited activities of microtubule bundling and stabilization at a near-physiological concentration. Consistently, overexpression of Hice1 rendered microtubule bundles in cells resistant to nocodazole- or cold-treatment-induced depolymerization. These results demonstrate that Hice1 is a novel microtubule-associated protein important for maintaining spindle integrity and chromosomal stability, in part by virtue of its ability to bind, bundle, and stabilize microtubules.
Collapse
|
195
|
Shanmugam M, Hernandez N. Mitotic functions for SNAP45, a subunit of the small nuclear RNA-activating protein complex SNAPc. J Biol Chem 2008; 283:14845-56. [PMID: 18356157 PMCID: PMC2386947 DOI: 10.1074/jbc.m800833200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The small nuclear RNA-activating protein complex SNAPc is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAPc contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF δ, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G2/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAPc subunit, leads to an accumulation of cells with a G0/G1 DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAPc and another as a factor required for proper mitotic progression.
Collapse
|
196
|
Yokoyama H, Gruss OJ, Rybina S, Caudron M, Schelder M, Wilm M, Mattaj IW, Karsenti E. Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. ACTA ACUST UNITED AC 2008; 180:867-75. [PMID: 18316407 PMCID: PMC2265385 DOI: 10.1083/jcb.200706189] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Production of Ran–guanosine triphosphate (GTP) around chromosomes induces local nucleation and plus end stabilization of microtubules (MTs). The nuclear protein TPX2 is required for RanGTP-dependent MT nucleation. To find the MT stabilizer, we affinity purify nuclear localization signal (NLS)–containing proteins from Xenopus laevis egg extracts. This NLS protein fraction contains the MT stabilization activity. After further purification, we used mass spectrometry to identify proteins in active fractions, including cyclin-dependent kinase 11 (Cdk11). Cdk11 localizes on spindle poles and MTs in Xenopus culture cells and egg extracts. Recombinant Cdk11 demonstrates RanGTP-dependent MT stabilization activity, whereas a kinase-dead mutant does not. Inactivation of Cdk11 in egg extracts blocks RanGTP-dependent MT stabilization and dramatically decreases the spindle assembly rate. Simultaneous depletion of TPX2 completely inhibits centrosome-dependent spindle assembly. Our results indicate that Cdk11 is responsible for RanGTP-dependent MT stabilization around chromosomes and that this local stabilization is essential for normal rates of spindle assembly and spindle function.
Collapse
Affiliation(s)
- Hideki Yokoyama
- European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Manning AL, Compton DA. Structural and regulatory roles of nonmotor spindle proteins. Curr Opin Cell Biol 2008; 20:101-6. [PMID: 18178073 DOI: 10.1016/j.ceb.2007.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/15/2007] [Accepted: 11/16/2007] [Indexed: 12/12/2022]
Abstract
Chromosome alignment and segregation during cell division rely on a highly ordered bipolar microtubule array called the mitotic spindle. The organization of microtubules into bipolar spindles with focused poles during mitosis requires numerous microtubule-associated proteins including both motor and nonmotor proteins. Nonmotor microtubule-associated proteins display extraordinary diversity in how they contribute to mitotic spindle organization. These mechanisms include regulation of microtubule nucleation and organization, direct and indirect influences on motor function, and control of cell cycle progression. Furthermore, many nonmotor spindle proteins display altered expression in cancer cells emphasizing their important roles in cell proliferation.
Collapse
Affiliation(s)
- Amity L Manning
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
198
|
Walczak CE, Heald R. Mechanisms of mitotic spindle assembly and function. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:111-58. [PMID: 18275887 DOI: 10.1016/s0074-7696(07)65003-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitotic spindle is the macromolecular machine that segregates chromosomes to two daughter cells during mitosis. The major structural elements of the spindle are microtubule polymers, whose intrinsic polarity and dynamic properties are critical for bipolar spindle organization and function. In most cell types, spindle microtubule nucleation occurs primarily at two centrosomes, which define the spindle poles, but microtubules can also be generated by the chromosomes and within the spindle itself. Many associated factors help organize the spindle, including molecular motors and regulators of microtubule dynamics. The past decade has provided a wealth of information on the molecular players that are critical for spindle assembly as well as a high-resolution view of the intricate movements and dynamics of the spindle microtubules and the chromosomes. In this chapter we provide a historical account of the key observations leading to current models of spindle assembly, as well as an up-to-date status report on this exciting field.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
199
|
Rajangam AS, Yang H, Teeri TT, Arvestad L. Evolution of a domain conserved in microtubule-associated proteins of eukaryotes. Adv Appl Bioinform Chem 2008; 1:51-69. [PMID: 21918606 PMCID: PMC3169935 DOI: 10.2147/aabc.s3211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The microtubule network, the major organelle of the eukaryotic cytoskeleton, is involved in cell division and differentiation but also with many other cellular functions. In plants, microtubules seem to be involved in the ordered deposition of cellulose microfibrils by a so far unknown mechanism. Microtubule-associated proteins (MAP) typically contain various domains targeting or binding proteins with different functions to microtubules. Here we have investigated a proposed microtubule-targeting domain, TPX2, first identified in the Kinesin-like protein 2 in Xenopus. A TPX2 containing microtubule binding protein, PttMAP20, has been recently identified in poplar tissues undergoing xylogenesis. Furthermore, the herbicide 2,6-dichlorobenzonitrile (DCB), which is a known inhibitor of cellulose synthesis, was shown to bind specifically to PttMAP20. It is thus possible that PttMAP20 may have a role in coupling cellulose biosynthesis and the microtubular networks in poplar secondary cell walls. In order to get more insight into the occurrence, evolution and potential functions of TPX2-containing proteins we have carried out bioinformatic analysis for all genes so far found to encode TPX2 domains with special reference to poplar PttMAP20 and its putative orthologs in other plants.
Collapse
Affiliation(s)
- Alex S Rajangam
- KTH Biotechnology, Swedish Center for Biomimetic Fiber Engineering, AlbaNova, Stockholm, Sweden
| | | | | | | |
Collapse
|
200
|
Abstract
IkappaB kinase 2 (IKK2 or IKKbeta) is a component of the IKK complex that coordinates the cellular response to a diverse set of extracellular stimuli, including cytokines, microbial infection, and stress. In response to an external stimulus, the complex is activated, resulting in the phosphorylation and subsequent proteasome-mediated degradation of IkappaB proteins. This event triggers the nuclear import of the NF-kappaB transcription factor, which activates the transcription of genes that regulate a variety of fundamental biological processes, including immune response, cell survival, and development. Here, we define an essential role for IKK2 in normal mitotic progression and the maintenance of spindle bipolarity. Chemical and genetic perturbation of IKK2 promotes the formation of multipolar spindles and chromosome missegregation. Depletion of IKK2 results in the deregulation of Aurora A protein stability and coincident hyperactivation of a putative Aurora A substrate, the mitotic motor KIF11. These data support a function for IKK2 as an antagonist of Aurora A signaling during mitosis. Additionally, our results indicate a direct role for IKK2 in the maintenance of genome stability and underscore the potential for oncogenic consequences in targeting this kinase for therapeutic intervention.
Collapse
|