151
|
Stan T, Brix J, Schneider-Mergener J, Pfanner N, Neupert W, Rapaport D. Mitochondrial protein import: recognition of internal import signals of BCS1 by the TOM complex. Mol Cell Biol 2003; 23:2239-50. [PMID: 12640110 PMCID: PMC150725 DOI: 10.1128/mcb.23.7.2239-2250.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BCS1, a component of the inner membrane of mitochondria, belongs to the group of proteins with internal, noncleavable import signals. Import and intramitochondrial sorting of BCS1 are encoded in the N-terminal 126 amino acid residues. Three sequence elements were identified in this region, namely, the transmembrane domain (amino acid residues 51 to 68), a presequence type helix (residues 69 to 83), and an import auxiliary region (residues 84 to 126). The transmembrane domain is not required for stable binding to the TOM complex. The Tom receptors (Tom70, Tom22 and Tom20), as determined by peptide scan analysis, interact with the presequence-like helix, yet the highest binding was to the third sequence element. We propose that the initial recognition of BCS1 precursor at the surface of the organelle mainly depends on the auxiliary region and does not require the transmembrane domain. This essential region represents a novel type of signal with targeting and sorting functions. It is recognized by all three known mitochondrial import receptors, demonstrating their capacity to decode various targeting signals. We suggest that the BCS1 precursor crosses the TOM complex as a loop structure and that once the precursor emerges from the TOM complex, all three structural elements are essential for the intramitochondrial sorting to the inner membrane.
Collapse
Affiliation(s)
- Tincuta Stan
- Institut für Physiologische Chemie der Universität München, D-81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
152
|
Murcha MW, Lister R, Ho AYY, Whelan J. Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. PLANT PHYSIOLOGY 2003; 131:1737-47. [PMID: 12692332 PMCID: PMC166929 DOI: 10.1104/pp.102.016808] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 11/25/2002] [Accepted: 12/31/2002] [Indexed: 05/20/2023]
Abstract
Characterization of components 17 and 23 of the inner mitochondrial membrane translocase (TIM17:23) from Arabidopsis indicated that there were three genes present for TIM17 and TIM23 and two for TIM44. AtTIM17 differed from the yeast (Saccharomyces cerevisiae) and mammalian homologs in that two genes encoded proteins that were longer and one gene encoded a shorter protein. All Arabidopsis TIM23 predicted proteins appeared to lack the first 34 amino acids compared with yeast TIM23. All AtTIM17 and AtTIM23 genes were expressed but displayed different tissue and developmental profiles. Complementation of deletion mutants in yeast indicated that for AtTIM17, the extension at the C terminus not present in yeast had to be removed to achieve complementation, whereas for TIM23, a preprotein and amino acid transporter domain had to be present for complementation. Import assays with AtTIM17 and AtTIM23 indicated that they both contained internal signals for integration into the inner mitochondrial membrane in a membrane potential-dependent manner. The C terminus of imported AtTIM17-2 was susceptible to degradation by externally added protease with intact mitochondria. Removal of the 85 C-terminal amino acids resulted in import and full protection of the truncated protein. This suggests that the novel extension at the C terminus of AtTIM17-2 links the outer and inner membrane in a manner analogous to yeast TIM23.
Collapse
Affiliation(s)
- Monika W Murcha
- Plant Molecular Biology Group, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | | | | | | |
Collapse
|
153
|
Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol 2003; 160:53-64. [PMID: 12515824 PMCID: PMC2172731 DOI: 10.1083/jcb.200210084] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is assumed that the survival factors Bcl-2 and Bcl-x(L) are mainly functional on mitochondria and therefore must contain mitochondrial targeting sequences. Here we show, however, that only Bcl-x(L) is specifically targeted to the mitochondrial outer membrane (MOM) whereas Bcl-2 distributes on several intracellular membranes. Mitochondrial targeting of Bcl-x(L) requires the COOH-terminal transmembrane (TM) domain flanked at both ends by at least two basic amino acids. This sequence is a bona fide targeting signal for the MOM as it confers specific mitochondrial localization to soluble EGFP. The signal is present in numerous proteins known to be directed to the MOM. Bcl-2 lacks the signal and therefore localizes to several intracellular membranes. The COOH-terminal region of Bcl-2 can be converted into a targeting signal for the MOM by increasing the basicity surrounding its TM. These data define a new targeting sequence for the MOM and propose that Bcl-2 acts on several intracellular membranes whereas Bcl-x(L) specifically functions on the MOM.
Collapse
Affiliation(s)
- Thomas Kaufmann
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
154
|
Doiguchi M, Mori T, Toshimori K, Shibata Y, Iida H. Spergen-1 might be an adhesive molecule associated with mitochondria in the middle piece of spermatozoa. Dev Biol 2002; 252:127-37. [PMID: 12453465 DOI: 10.1006/dbio.2002.0833] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spergen-1, a recently identified molecule specifically expressed in haploid spermatids in testis, is a small protein of 154 amino acids with a mitochondria-targeting signal at the N terminus. To examine the localization of spergen-1 protein in germ cells, we performed immunocytochemistry with the anti-spergen-1 antibody on frozen sections of rat testis and purified spermatozoa. Immunolabeling for spergen-1 was detected in mitochondria of elongating spermatids and of the middle pieces of matured spermatozoa. Immunoelectron microscopy revealed that spergen-1 was localized to the surface of mitochondria in the middle piece of spermatozoa. To investigate the properties of spergen-1, COS-7 cells were transfected with vectors encoding various spergen-1 mutants. The transfection experiments showed that spergen-1 expressed in the cells tended to agglutinate mitochondria and assemble them into aggregations and that the C-terminal region of spergen-1 as well as the N-terminal mitochondrial targeting signal was requisite for induction of mitochondrial aggregation. These results suggest that spergen-1, a mitochondria-associated molecule in spermatozoa, has a property to induce mitochondrial aggregation at least in cultured cells. We hypothesize that spergen-1 might function as an adhesive molecule to assemble mitochondria into the mitochondrial sheath around the outer dense fibers during spermiogenesis.
Collapse
Affiliation(s)
- Masamichi Doiguchi
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki 6-10-1, Fukuoka 812-8581 Japan
| | | | | | | | | |
Collapse
|
155
|
Kanki T, Sakaguchi M, Kitamura A, Sato T, Mihara K, Hamasaki N. The tenth membrane region of band 3 is initially exposed to the luminal side of the endoplasmic reticulum and then integrated into a partially folded band 3 intermediate. Biochemistry 2002; 41:13973-81. [PMID: 12437354 DOI: 10.1021/bi026619q] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Band 3 is a typical polytopic membrane protein that mediates anion exchange activity [anion exchanger 1 (AE1)]. Although the topology and topogenesis of approximately 40 residues just after transmembrane (TM) 9 have been extensively studied, the topogenesis of this region [tenth region (10thR)] has been unclear. Glycosylation sites created in the 10thR were efficiently glycosylated in a cell-free transcription/translation system, whereas the glycosylation efficiencies were quite low in a cultured cell system. When TM12-14 was deleted or when cycloheximide was added to the culture medium, however, the glycosylation efficiency in the cultured cells increased to the same level as in the cell-free system, indicating that TM12 is essential for the sequestration from oligosaccharyl transferase into membrane and that cycloheximide treatment of the cells can mimic the cell-free system by reducing the rate of chain elongation. The glycosylation efficiency in cultured cells also increased with deletion of TM1-3. These results suggest that the 10thR is transiently extruded into the lumen and then inserted into the membrane. Both TM12 and the distant TM1-3 affect the membrane insertion of the 10thR. This indicates that during the folding of the protein, the 10thR is inserted into the membrane after the TM1-12 segments are properly assembled.
Collapse
Affiliation(s)
- Tomotake Kanki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
156
|
Miller DJ, Ahlquist P. Flock house virus RNA polymerase is a transmembrane protein with amino-terminal sequences sufficient for mitochondrial localization and membrane insertion. J Virol 2002; 76:9856-67. [PMID: 12208963 PMCID: PMC136485 DOI: 10.1128/jvi.76.19.9856-9867.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Localization of RNA replication to intracellular membranes is a universal feature of positive-strand RNA viruses. Replication complexes of flock house virus (FHV), the best-studied alphanodavirus, are located on outer mitochondrial membranes in infected Drosophila melanogaster cells and are associated with the formation of membrane-bound spherules, similar to structures found for many other positive-strand RNA viruses. To further study FHV replication complex formation, we investigated the subcellular localization, membrane association, and membrane topology of protein A, the FHV RNA-dependent RNA polymerase, in the yeast Saccharomyces cerevisiae, a host able to support full FHV RNA replication and virion formation. Confocal immunofluorescence revealed that protein A localized to mitochondria in yeast, as in Drosophila cells, and that this mitochondrial localization was independent of viral RNA synthesis. Nycodenz gradient flotation and dissociation assays showed that protein A behaved as an integral membrane protein, a finding consistent with a predicted N-proximal transmembrane domain. Protease digestion and selective permeabilization after differential epitope tagging demonstrated that protein A was inserted into the outer mitochondrial membrane with the N terminus in the inner membrane space or matrix and that the C terminus was exposed to the cytoplasm. Flotation and immunofluorescence studies with deletion mutants indicated that the N-proximal region of protein A was important for both membrane association and mitochondrial localization. Gain-of-function studies with green fluorescent protein fusions demonstrated that the N-terminal 46 amino acids of protein A were sufficient for mitochondrial localization and membrane insertion. We conclude that protein A targets and anchors FHV RNA replication complexes to outer mitochondrial membranes, in part through an N-proximal mitochondrial localization signal and transmembrane domain.
Collapse
Affiliation(s)
- David J Miller
- Department of Medicine. Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
157
|
Wang Y, Lyu YL, Wang JC. Dual localization of human DNA topoisomerase IIIalpha to mitochondria and nucleus. Proc Natl Acad Sci U S A 2002; 99:12114-9. [PMID: 12209014 PMCID: PMC129407 DOI: 10.1073/pnas.192449499] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human TOP3alpha gene encoding DNA topoisomerase IIIalpha (hTop3alpha) has two potential start codons for the synthesis of proteins 1,001 and 976 aa residues in length. The sequence of the N-terminal region of the 1,001-residue form resembles signal peptide sequences for mitochondrial import, and fluorescence microscopy shows that the addition of as few as the first 34 aa of the 1,001-residue form of hTop3alpha to a green fluorescent protein can direct the chimeric protein to mitochondria. Biochemical analyses of subcellular fractions of HeLa cells further demonstrate that a distinctive fraction of hTop3alpha is present inside mitochondria, as evidenced by its resistance to proteinase K. This fraction constitutes several percent of the enzyme in the nuclear fraction, suggesting that the distribution of the mitochondrial and nuclear forms of hTop3alpha is roughly in proportion to the DNA contents of these cellular compartments. The presence of a type IA DNA topoisomerase in the mitochondria of other eukaryotes is supported by an examination of the amino acid sequences of mouse and Drosophila DNA topoisomerase IIIalpha and Schizosaccharomyces pombe DNA topoisomerase III. Given the presence of at least one type IA DNA topoisomerase in all forms of life examined to date, the finding of a type IA enzyme in mitochondria further supports the notion of a key role of such enzymes in DNA transactions.
Collapse
Affiliation(s)
- Yong Wang
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
158
|
Endo T, Kohda D. Functions of outer membrane receptors in mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:3-14. [PMID: 12191763 DOI: 10.1016/s0167-4889(02)00259-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins and are imported into mitochondria. The targeting signals for mitochondria are encoded in the presequences or in the mature parts of the precursor proteins, and are decoded by the receptor sites in the translocator complex in the mitochondrial outer membrane. The recently determined NMR structure of the general import receptor Tom20 in a complex with a presequence peptide reveals that, although the amphiphilicity and positive charges of the presequence is essential for the import ability of the presequence, Tom20 recognizes only the amphiphilicity, but not the positive charges. This leads to a new model that different features associated with the mitochondrial targeting sequence of the precursor protein can be recognized by the mitochondrial protein import system in different steps during the import.
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | | |
Collapse
|
159
|
Horie C, Suzuki H, Sakaguchi M, Mihara K. Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell 2002; 13:1615-25. [PMID: 12006657 PMCID: PMC111131 DOI: 10.1091/mbc.01-12-0570] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We analyzed the signal that directs the outer membrane protein with the C-terminal transmembrane segment (TMS) to mammalian mitochondria by using yeast Tom5 as a model and green fluorescent protein as a reporter. Deletions or mutations were systematically introduced into the TMS or the flanking regions and their intracellular localization in COS-7 cells was examined using confocal microscopy and cell fractionation. 1) Three basic amino acid residues within the C-terminal five-residue segment (C-segment) contained the information required for mitochondrial-targeting. Reduction of the net positive charge in this segment decreased mitochondrial specificity, and the mutants were distributed throughout the intracellular membranes. 2) Elongation of the TMS interfered with the function of the C-segment and the mutants were delivered to the intracellular membranes. 3) Separation of the TMS and C-segment by linker insertion severely impaired mitochondrial targeting function, leading to mislocalization to the cytoplasm. 4) Mutations or small deletions in the region of the TMS flanking the C-segment also impaired the mitochondrial targeting. Therefore, the moderate length of the TMS, the positive charges in the C-segment, and the distance between or context of the TMS and C-segment are critical for the targeting signal. The structural characteristics of the signal thus defined were also confirmed with mammalian C-tail-anchored protein OMP25.
Collapse
Affiliation(s)
- Chika Horie
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
160
|
Suzuki H, Maeda M, Mihara K. Characterization of rat TOM70 as a receptor of the preprotein translocase of the mitochondrial outer membrane. J Cell Sci 2002; 115:1895-905. [PMID: 11956321 DOI: 10.1242/jcs.115.9.1895] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned a ∼70 kDa rat mitochondrial outer membrane protein (OM70)with a sequence identity of 28.1% and 20.1% with N. crassa and S. cerevisiae Tom70, respectively. Even with this low sequence identity,however, the proteins share a remarkable structural similarity: they have 7-10 tetratricopeptide repeat motifs and are anchored to the outer membrane through the N-terminal transmembrane domain with the bulk portion located in the cytosol. Antibodies against OM70 inhibited import of preproteins, such as the ADP/ATP carrier and rTOM40, that use internal targeting signals but not the import of cleavable presequence-containing preproteins. Blue native gel electrophoresis and immunoprecipitation of digitoninsolubilized mitochondrial outer membranes revealed that OM70 was loosely associated with the ∼400 kDa translocase complex of the mitochondrial outer membrane, which contains rTOM22 and rTOM40. A yeast two-hybrid system demonstrated that OM70 interacted with rTOM20 and rTOM22 through the cytoplasmic domains. Thus, OM70 is a functional homologue of fungal Tom70 and functions as a receptor of the preprotein import machinery of the rat mitochondrial outer membrane. Furthermore, the N-terminal 66 residue region of OM70, which comprises a hydrophilic 41 residue N-terminal domain, a 22 residue transmembrane domain and three arginine residues, is sufficient to act as a mitochondria-targeting signal, and the arginine cluster is crucial for this function.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Bacterial Proteins
- Cell Compartmentation/physiology
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Escherichia coli Proteins/metabolism
- Eukaryotic Cells/cytology
- Eukaryotic Cells/enzymology
- Fungal Proteins/antagonists & inhibitors
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Intracellular Membranes/enzymology
- Intracellular Membranes/ultrastructure
- Macromolecular Substances
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Membrane Transport Proteins/metabolism
- Mitochondria, Liver/enzymology
- Mitochondria, Liver/ultrastructure
- Mitochondrial Precursor Protein Import Complex Proteins
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/isolation & purification
- Molecular Sequence Data
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- Rats
- Receptors, Cell Surface
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/isolation & purification
- SEC Translocation Channels
- SecA Proteins
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Subcellular Fractions/enzymology
- Subcellular Fractions/ultrastructure
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
161
|
Rojo M, Legros F, Chateau D, Lombès A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 2002; 115:1663-74. [PMID: 11950885 DOI: 10.1242/jcs.115.8.1663] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two human Fzo-homologs, mitofusins Mfn1 and Mfn2, are shown by RT-PCR and western blot to be ubiquitous mitochondrial proteins. Protease digestion experiments reveal that Mfn2 is an outer membrane protein with N-terminal and C-terminal domains exposed towards the cytosol. The transmembrane and C-terminal domains of Mfn2 (Mfn2-TMCT) are targeted to mitochondria and deletion of these domains leads to the cytosolic localization of truncated Mfn2 (Mfn2-NT). Mfn2 is targeted to the endoplasmic reticulum or to mitochondria when the C-terminal domain is replaced by short stretches of neutral/hydrophobic (Mfn2-IYFFT) or polar/basic (Mfn2-RRD) amino acids. The coiled-coil domains of Mfn2, upstream and downstream of the transmembrane domain, are also important for mitochondrial targeting: Mfn2-mutants deleted of any of its coiled-coil domains are only partially targeted to mitochondria and significant protein amounts remain cytosolic. We show that these coiled-coil domains interact with each other: mistargeted Mfn2-NT or Mfn2-IYFFT localize to mitochondria if co-expressed with Mfn2-TMCT. This relocalization is abolished when the coiled-coil domain is deleted in any of the co-transfected molecules. We also found that Mfn2 can cluster active mitochondria in the perinuclear region independently of the cytoskeleton,bring mitochondrial membranes into close contact and modify mitochondrial structure, without disturbing the integrity of the inner and outer membrane.
Collapse
Affiliation(s)
- Manuel Rojo
- INSERM U 523 - Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | | | | | | |
Collapse
|
162
|
Abstract
The translocase at the outer membrane of mitochondria (TOM complex) mediates the initial steps of the import of preproteins into the organelle, which are essential for mitochondrial biogenesis and, therefore, for eukaryotic cell viability. The TOM complex is a multisubunit molecular machine with a dynamic structure. The biogenesis of TOM is of special interest because the complex is required for its own biogenesis. This article describes the mechanisms by which Tom components are targeted to the mitochondria and inserted into the outer membrane. The assembly of newly synthesized subunits into the functional TOM complex might occur via assembly intermediates that are in equilibrium with the mature complex.
Collapse
Affiliation(s)
- Doron Rapaport
- Institut für Physiologische Chemie der Universität München Butenandtstr. 5, Haus B D-81377, München, Germany.
| |
Collapse
|
163
|
Ukaji K, Ariyoshi N, Sakaguchi M, Hamasaki N, Mihara K. Membrane topogenesis of the three amino-terminal transmembrane segments of glucose-6-phosphatase on endoplasmic reticulum. Biochem Biophys Res Commun 2002; 292:153-60. [PMID: 11890686 DOI: 10.1006/bbrc.2002.6632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the membrane topogenesis of glucose-6-phosphatase (G6Pase), a multispanning membrane protein, on the endoplasmic reticulum. In COS-7 cells, the first transmembrane segment (TM1) with weak hydrophobicity is inserted into the membrane in the N-terminus-out/C-terminus-cytoplasm orientation. The following TM2 is inserted depending on TM3. TM3 has the same orientation as TM1. In contrast to data from living cells, the full-length molecule and N-terminal fusion constructs were not inserted into the membrane in a cell-free system. Addition of a signal recognition particle did not improve G6Pase insertion. When the 37-residue N-terminal segment was deleted, however, TM2 and TM3 were correctly inserted. We concluded that the three N-terminal TM segments are inserted into the membrane dependent on the two signal-anchor sequences of TM1 and TM3. TM1 is likely to be an unconventional signal sequence that barely functions in vitro. The 37-residue N-terminal segment inhibits the signal function of the following TM3 in cell-free systems.
Collapse
Affiliation(s)
- Koutarou Ukaji
- Department of Molecular Biology, Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
164
|
Miyazaki E, Sakaguchi M, Wakabayashi S, Shigekawa M, Mihara K. NHE6 protein possesses a signal peptide destined for endoplasmic reticulum membrane and localizes in secretory organelles of the cell. J Biol Chem 2001; 276:49221-7. [PMID: 11641397 DOI: 10.1074/jbc.m106267200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NHE6 protein is a unique Na(+)/H(+) exchanger isoform believed to localize in mitochondria. It possesses a hydrophilic N-terminal portion that is rich in positively charged residues and many hydrophobic segments. In the present study, signal sequences in the NHE6 molecule were examined for organelle localization and membrane topogenesis. When the full-length protein was expressed in COS7 cells, it localized in the endoplasmic reticulum and on the cell surface. Furthermore, the protein was fully N-glycosylated. When green fluorescent protein was fused after the second (H2) or third (H3) hydrophobic segment, the fusion proteins were targeted to the endoplasmic reticulum (ER) membrane. The localization pattern was the same as that of fusion proteins in which green fluorescent protein was fused after H2 of NHE1. In an in vitro system, H1 behaved as a signal peptide that directs the translocation of the following polypeptide chain and is then processed off. The next hydrophobic segment (H2) halted translocation and eventually became a transmembrane segment. The N-terminal hydrophobic segment (H1) of NHE1 also behaved as a signal peptide. Cell fractionation studies using antibodies against the 15 C-terminal residues indicated that NHE6 protein localized in the microsomal membranes of rat liver cells. All of the NHE6 molecules in liver tissue possess an endoglycosidase H-resistant sugar chain. These findings indicate that NHE6 protein is targeted to the ER membrane via the N-terminal signal peptide and is sorted to organelle membranes derived from the ER membrane.
Collapse
Affiliation(s)
- E Miyazaki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
165
|
Lee YJ, Kim DH, Kim YW, Hwang I. Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. THE PLANT CELL 2001; 13:2175-2190. [PMID: 11595795 DOI: 10.1105/tpc.13.10.2175] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Certain small outer envelope membrane proteins of chloroplasts are encoded by the nuclear genome without a cleavable N-terminal transit peptide. We investigated in vivo the targeting mechanism of AtOEP7, an Arabidopsis homolog of the small outer envelope membrane protein. AtOEP7 was expressed as a fusion protein with the green fluorescent protein (GFP) either transiently in protoplasts or stably in transgenic plants. In either case, fluorescence microscopy of transformed cells and protein gel blot analysis of fractionated proteins confirmed that the AtOEP7:GFP fusion protein was targeted to the chloroplast outer envelope membrane. In vivo targeting experiments revealed that two regions, the transmembrane domain (TMD) and its C-terminal neighboring seven-amino acid region, were necessary and sufficient for targeting to the chloroplast outer membrane. Substitution of aspartic acid or lysine residues with glycine residues or scrambling of the amino acid sequence of the seven-amino acid region caused mistargeting to the plasma membrane. Although the amino acid sequence of the TMD is not important for targeting, amino acid residues with large side chains inhibited targeting to the chloroplasts and resulted in the formation of large aggregates in the protoplasts. In addition, introduction of a proline residue within the TMD resulted in inhibition of targeting. Finally, a fusion protein, AtOEP7:NLS:GFP, was targeted efficiently to the chloroplast envelope membranes despite the presence of a nuclear localization signal. On the basis of these results, we conclude that the seven-amino acid region and the TMD are determinants for targeting to the chloroplast outer envelope membrane. The seven-amino acid region plays a critical role in AtOEP7 evading the endomembrane system and entering the chloroplast pathway, and the TMD plays critical roles in migration to the chloroplasts and/or subsequent insertion into the membrane.
Collapse
Affiliation(s)
- Y J Lee
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
166
|
Huh KW, Siddiqui A. Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol 2001; 1:349-59. [PMID: 16120289 DOI: 10.1016/s1567-7249(01)00040-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2001] [Revised: 11/01/2001] [Accepted: 11/05/2001] [Indexed: 01/27/2023]
Abstract
Hepatitis B Virus (HBV) infection is one of the major causes of hepatocellular carcinoma (HCC). X protein (HBx) has been suspected to be oncogenic, although the precise role(s) remain uncertain. HBx is a multifunctional viral regulator that modulates transcription, cell responses to genotoxic stress, protein degradation, and signaling pathways. These modulations affect viral replication and viral proliferation, directly or indirectly. HBx also affects cell cycle checkpoints, cell death, and carcinogenesis. This article presents an overview of the progress in HBx research over the past several years.
Collapse
Affiliation(s)
- Kyung-Won Huh
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado, OH, USA
| | | |
Collapse
|
167
|
Lee YJ, Kim DH, Kim YW, Hwang I. Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. THE PLANT CELL 2001. [PMID: 11595795 DOI: 10.2307/3871501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Certain small outer envelope membrane proteins of chloroplasts are encoded by the nuclear genome without a cleavable N-terminal transit peptide. We investigated in vivo the targeting mechanism of AtOEP7, an Arabidopsis homolog of the small outer envelope membrane protein. AtOEP7 was expressed as a fusion protein with the green fluorescent protein (GFP) either transiently in protoplasts or stably in transgenic plants. In either case, fluorescence microscopy of transformed cells and protein gel blot analysis of fractionated proteins confirmed that the AtOEP7:GFP fusion protein was targeted to the chloroplast outer envelope membrane. In vivo targeting experiments revealed that two regions, the transmembrane domain (TMD) and its C-terminal neighboring seven-amino acid region, were necessary and sufficient for targeting to the chloroplast outer membrane. Substitution of aspartic acid or lysine residues with glycine residues or scrambling of the amino acid sequence of the seven-amino acid region caused mistargeting to the plasma membrane. Although the amino acid sequence of the TMD is not important for targeting, amino acid residues with large side chains inhibited targeting to the chloroplasts and resulted in the formation of large aggregates in the protoplasts. In addition, introduction of a proline residue within the TMD resulted in inhibition of targeting. Finally, a fusion protein, AtOEP7:NLS:GFP, was targeted efficiently to the chloroplast envelope membranes despite the presence of a nuclear localization signal. On the basis of these results, we conclude that the seven-amino acid region and the TMD are determinants for targeting to the chloroplast outer envelope membrane. The seven-amino acid region plays a critical role in AtOEP7 evading the endomembrane system and entering the chloroplast pathway, and the TMD plays critical roles in migration to the chloroplasts and/or subsequent insertion into the membrane.
Collapse
Affiliation(s)
- Y J Lee
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
168
|
Lee YJ, Kim DH, Kim YW, Hwang I. Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. THE PLANT CELL 2001; 13:2175-90. [PMID: 11595795 PMCID: PMC139152 DOI: 10.1105/tpc.010232] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Accepted: 08/03/2001] [Indexed: 05/18/2023]
Abstract
Certain small outer envelope membrane proteins of chloroplasts are encoded by the nuclear genome without a cleavable N-terminal transit peptide. We investigated in vivo the targeting mechanism of AtOEP7, an Arabidopsis homolog of the small outer envelope membrane protein. AtOEP7 was expressed as a fusion protein with the green fluorescent protein (GFP) either transiently in protoplasts or stably in transgenic plants. In either case, fluorescence microscopy of transformed cells and protein gel blot analysis of fractionated proteins confirmed that the AtOEP7:GFP fusion protein was targeted to the chloroplast outer envelope membrane. In vivo targeting experiments revealed that two regions, the transmembrane domain (TMD) and its C-terminal neighboring seven-amino acid region, were necessary and sufficient for targeting to the chloroplast outer membrane. Substitution of aspartic acid or lysine residues with glycine residues or scrambling of the amino acid sequence of the seven-amino acid region caused mistargeting to the plasma membrane. Although the amino acid sequence of the TMD is not important for targeting, amino acid residues with large side chains inhibited targeting to the chloroplasts and resulted in the formation of large aggregates in the protoplasts. In addition, introduction of a proline residue within the TMD resulted in inhibition of targeting. Finally, a fusion protein, AtOEP7:NLS:GFP, was targeted efficiently to the chloroplast envelope membranes despite the presence of a nuclear localization signal. On the basis of these results, we conclude that the seven-amino acid region and the TMD are determinants for targeting to the chloroplast outer envelope membrane. The seven-amino acid region plays a critical role in AtOEP7 evading the endomembrane system and entering the chloroplast pathway, and the TMD plays critical roles in migration to the chloroplasts and/or subsequent insertion into the membrane.
Collapse
Affiliation(s)
- Y J Lee
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
169
|
Borgese N, Gazzoni I, Barberi M, Colombo S, Pedrazzini E. Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol Biol Cell 2001; 12:2482-96. [PMID: 11514630 PMCID: PMC58608 DOI: 10.1091/mbc.12.8.2482] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b(5), a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.
Collapse
Affiliation(s)
- N Borgese
- Consiglio Nazionale delle Ricerche, Cellular and Molecular Pharmacology Center and Department of Medical Pharmacology, University of Milan, Milan, Italy.
| | | | | | | | | |
Collapse
|
170
|
Sinai AP, Joiner KA. The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J Cell Biol 2001; 154:95-108. [PMID: 11448993 PMCID: PMC2196872 DOI: 10.1083/jcb.200101073] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii replicates within a specialized vacuole surrounded by the parasitophorous vacuole membrane (PVM). The PVM forms intimate interactions with host mitochondria and endoplasmic reticulum (ER) in a process termed PVM-organelle association. In this study we identify a likely mediator of this process, the parasite protein ROP2. ROP2, which is localized to the PVM, is secreted from anterior organelles termed rhoptries during parasite invasion into host cells. The NH(2)-terminal domain of ROP2 (ROP2hc) within the PVM is exposed to the host cell cytosol, and has characteristics of a mitochondrial targeting signal. In in vitro assays, ROP2hc is partially translocated into the mitochondrial outer membrane and behaves like an integral membrane protein. Although ROP2hc does not translocate across the ER membrane, it does exhibit carbonate-resistant binding to this organelle. In vivo, ROP2hc expressed as a soluble fragment in the cytosol of uninfected cells associates with both mitochondria and ER. The 30-amino acid (aa) NH(2)-terminal sequence of ROP2hc, when fused to green fluorescent protein (GFP), is sufficient for mitochondrial targeting. Deletion of the 30-aa NH(2)-terminal signal from ROP2hc results in robust localization of the truncated protein to the ER. These results demonstrate a new mechanism for tight association of different membrane-bound organelles within the cell cytoplasm.
Collapse
Affiliation(s)
- A P Sinai
- Infectious Diseases Section, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | |
Collapse
|