151
|
Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A, Coadwell J, Davidson K, Eguinoa A, Ellson CD, Lipp P, Manifava M, Ktistakis N, Painter G, Thuring JW, Cooper MA, Lim ZY, Holmes AB, Dove SK, Michell RH, Grewal A, Nazarian A, Erdjument-Bromage H, Tempst P, Stephens LR, Hawkins PT. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell 2002; 9:95-108. [PMID: 11804589 DOI: 10.1016/s1097-2765(02)00434-3] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We show that matrices carrying the tethered homologs of natural phosphoinositides can be used to capture and display multiple phosphoinositide binding proteins in cell and tissue extracts. We present the mass spectrometric identification of over 20 proteins isolated by this method, mostly from leukocyte extracts: they include known and novel proteins with established phosphoinositide binding domains and also known proteins with surprising and unusual phosphoinositide binding properties. One of the novel PtdIns(3,4,5)P3 binding proteins, ARAP3, has an unusual domain structure, including five predicted PH domains. We show that it is a specific PtdIns(3,4,5)P3/PtdIns(3,4)P2-stimulated Arf6 GAP both in vitro and in vivo, and both its Arf GAP and Rho GAP domains cooperate in mediating PI3K-dependent rearrangements in the cell cytoskeleton and cell shape.
Collapse
Affiliation(s)
- S Krugmann
- Inositide Laboratory, The Babraham Institute, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Miura K, Jacques KM, Stauffer S, Kubosaki A, Zhu K, Hirsch DS, Resau J, Zheng Y, Randazzo PA. ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell 2002; 9:109-19. [PMID: 11804590 DOI: 10.1016/s1097-2765(02)00428-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have identified ARAP1 and ARAP2 and examined ARAP1 as a possible link between phosphoinositide-, Arf-, and Rho-mediated cell signaling. ARAP1 contains Arf GAP, Rho GAP, Ankyrin repeat, Ras-associating, and five PH domains. In vitro, ARAP1 had Rho GAP and phosphatidylinositol (3,4,5) trisphosphate (PIP3)-dependent Arf GAP activity. ARAP1 associated with the Golgi. The Rho GAP activity mediated cell rounding and loss of stress fibers when ARAP1 was overexpressed. The Arf GAP activity mediated changes in the Golgi apparatus and the formation of filopodia, the latter a consequence of increased cellular activity of Cdc42. The Arf GAP and Rho GAP activities both contributed to inhibiting cell spreading. Thus, ARAP1 is a PIP3-dependent Arf GAP that regulates Arf-, Rho-, and Cdc42-dependent cell activities.
Collapse
Affiliation(s)
- Koichi Miura
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Szafer E, Rotman M, Cassel D. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane. J Biol Chem 2001; 276:47834-9. [PMID: 11592960 DOI: 10.1074/jbc.m106000200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of the coatomer coat complex with the Golgi membrane is initiated by the active, GTP-bound state of the small GTPase ADP-ribosylation factor 1 (ARF1), whereas GTP hydrolysis triggers coatomer dissociation. The hydrolysis of GTP on ARF1 depends on the action of members of a family of ARF1-directed GTPase-activating proteins (GAPs). Previous studies in well defined systems indicated that the activity of a mammalian Golgi membrane-localized ARF GAP (GAP1) might be subjected to regulation by membrane lipids as well as by the coatomer complex. Coatomer was found to strongly stimulate GAP-dependent GTP hydrolysis on a membrane-independent mutant of ARF1, whereas we reported that GTP hydrolysis on wild type, myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles was coatomer-independent. To investigate the regulation of ARF1 GAPs under more physiological conditions, we studied GTP hydrolysis on Golgi membrane-associated ARF1. The activities at the Golgi of recombinant GAP1 as well as coatomer-depleted fractions from rat brain cytosol resembled those observed in the presence of liposomes; however, unlike in liposomes, GAP activities on Golgi membranes were approximately doubled upon addition of coatomer. By contrast, endogenous GAP activity in Golgi membrane preparations was unaffected by coatomer. Cytosolic GAP activity was partially reduced following immunodepletion of GAP1, indicating that GAP1 plays a significant although not exclusive role in the regulation of GTP hydrolysis at the Golgi. Unlike the activities of the mammalian proteins, the Saccharomyces cerevisiae Glo3 ARF GAP displayed activity at the Golgi that was highly dependent on coatomer. We conclude that ARF GAPs in themselves can efficiently stimulate GTP hydrolysis on ARF1 at the Golgi, and that coatomer may play an auxiliary role in this reaction, which would lead to an increased cycling rate of ARF1 in COPI-coated regions of the Golgi membrane.
Collapse
Affiliation(s)
- E Szafer
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
154
|
Matafora V, Paris S, Dariozzi S, de Curtis I. Molecular mechanisms regulating the subcellular localization of p95-APP1 between the endosomal recycling compartment and sites of actin organization at the cell surface. J Cell Sci 2001; 114:4509-20. [PMID: 11792816 DOI: 10.1242/jcs.114.24.4509] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration requires coordination between adhesion, actin organization and membrane traffic. Rac and ARF6 have been shown to cooperate for the organization of actin at the cell surface. Recently, the GIT family of ARF-GAPs has been identified, which includes proteins that can functionally interact with both ARF and Rac GTPases. The p95-APP1 protein is a member of this family, isolated as part of a multi-molecular complex interacting with GTP-Rac. Our previous work has indicated that this protein may be part of the machinery redirecting membrane recycling towards sites of protrusion during locomotion. By analyzing the distribution and the effects of truncated forms of p95-APP1, we show here that the lack of the ARF-GAP domain of p95-APP1 dramatically shifts its localization to large vesicles. The use of several markers of the endocytic pathway has revealed that the truncated p95-APP1 localizes specifically to a Rab11-, transferrin receptor-positive compartment. Other markers are excluded from the p95-APP1-positive vesicles, while known components of the multi-molecular complex colocalize with truncated p95-APP1 in this compartment. Coexpression of a constitutively active form of Rac induces the redistribution of the truncated constructs and of the associated PIX, PAK, and paxillin to peripheral sites of Rac-mediated actin organization, and the disassembly of the large Rab11-positive vesicles. Together, the data presented indicate that p95-APP1 is part of a complex that shuttles between the plasma membrane and the endocytic recycling compartment, and suggest that the dynamic redistribution of the p95-APP1-containing complex is mediated both by the ARF-GAP domain, and by the recruitment of the complex at the cell surface at sites of Rac activation.
Collapse
Affiliation(s)
- V Matafora
- Cell Adhesion Unit, DIBIT, S. Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | |
Collapse
|
155
|
Abstract
Several new families of ARF GTPase activating proteins (ARF GAPs) have been described recently that associate with paxillin and other cytoskeletal and signaling proteins. Important insights have been gained regarding their subcellular distribution, enzymatic specificity and protein scaffold function. Evidence suggests an important role for ARF GAPs in mediating changes in the cell's actin cytoskeleton in response to adhesion and growth factor stimulation.
Collapse
Affiliation(s)
- C E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA.
| | | | | |
Collapse
|
156
|
Palacios F, Price L, Schweitzer J, Collard JG, D’Souza-Schorey C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 2001; 20:4973-86. [PMID: 11532961 PMCID: PMC125602 DOI: 10.1093/emboj/20.17.4973] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe a novel role for the ARF6 GTPase in the regulation of adherens junction (AJ) turnover in MDCK epithelial cells. Expression of a GTPase-defective ARF6 mutant, ARF6(Q67L), led to a loss of AJs and ruffling of the lateral plasma membrane via mechanisms that were mutually exclusive. ARF6-GTP-induced AJ disassembly did not require actin remodeling, but was dependent on the internalization of E-cadherin into the cytoplasm via vesicle transport. ARF6 activation was accompanied by increased migratory potential, and treatment of cells with hepatocyte growth factor (HGF) induced the activation of endogenous ARF6. The effect of ARF6(Q67L) on AJs was specific since ARF6 activation did not perturb tight junction assembly or cell polarity. In contrast, dominant-negative ARF6, ARF6(T27N), localized to AJs and its expression blocked cell migration and HGF-induced internalization of cadherin-based junctional components into the cytoplasm. Finally, we show that ARF6 exerts its role downstream of v-Src activation during the disassembly of AJs. These findings document an essential role for ARF6- regulated membrane traffic in AJ disassembly and epithelial cell migration.
Collapse
Affiliation(s)
| | - Leo Price
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, IN 46556-0369 and
The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail: D’
| | | | - John G. Collard
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, IN 46556-0369 and
The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail: D’
| | - Crislyn D’Souza-Schorey
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, IN 46556-0369 and
The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail: D’
| |
Collapse
|
157
|
Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114:2375-82. [PMID: 11559746 DOI: 10.1242/jcs.114.13.2375] [Citation(s) in RCA: 323] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PTEN (also known as MMAC-1 or TEP-1) is one of the most frequently mutated tumor suppressors in human cancer. It is also essential for embryonic development. PTEN functions primarily as a lipid phosphatase to regulate crucial signal transduction pathways; a key target is phosphatidylinositol 3,4,5-trisphosphate. In addition, it displays weak tyrosine phosphatase activity, which may downmodulate signaling pathways that involve focal adhesion kinase (FAK) or Shc. Levels of PTEN are regulated in embryos and adult organisms, and gene-targeting studies demonstrate that it has a crucial role in normal development. Functions for PTEN have been identified in the regulation of many normal cell processes, including growth, adhesion, migration, invasion and apoptosis. PTEN appears to play particularly important roles in regulating anoikis (apoptosis of cells after loss of contact with extracellular matrix) and cell migration. Gene targeting and transient expression studies have provided insight into the specific signaling pathways that regulate these processes. Characterization of the diverse signaling networks modulated by PTEN, as well as the regulation of PTEN concentration, enzymatic activity, and coordination with other phosphatases, should provide intriguing new insight into the biology of normal and malignant cells.
Collapse
Affiliation(s)
- K M Yamada
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | |
Collapse
|
158
|
Abstract
During cell migration, coordination between membrane traffic, cell substrate adhesion and actin reorganization is required for protrusive activity to occur at the leading edge. Actin organization is regulated by Rho family GTPases and, with a contribution from the endocytic cycle, serves to extend the cell front. The details of the molecular mechanisms that direct membrane traffic at sites of adhesion and rearrange actin at the cell edge are still unknown. However, recent findings show that a number of multi-domain proteins characterized by an ArfGAP domain interact with both actin-regulating and integrin-binding proteins, as well as affecting Rac-mediated protrusive activity and cell migration. Some of these proteins have been shown to localize to endocytic compartments and to have a role in regulating endocytosis. Given the participation of Arf proteins in regulating membrane traffic, one appealing hypothesis is that the ArfGAPs act as molecular devices that coordinate membrane traffic and cytoskeletal reorganization during cell motility.
Collapse
Affiliation(s)
- I de Curtis
- Laboratory of Cell Adhesion, Department of Molecular Pathology and Medicine, DIBIT-San Raffaele Scientific Institute, Via Olgettina, 58, Milan 20132, Italy.
| |
Collapse
|
159
|
Randazzo PA, Miura K, Nie Z, Orr A, Theibert AB, Kearns BG. Cytohesins and centaurins: mediators of PI 3-kinase regulated Arf signaling. Trends Biochem Sci 2001; 26:220-1. [PMID: 11295547 DOI: 10.1016/s0968-0004(01)01806-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|