151
|
Kozjak-Pavlovic V, Ott C, Götz M, Rudel T. Neisserial Omp85 protein is selectively recognized and assembled into functional complexes in the outer membrane of human mitochondria. J Biol Chem 2011; 286:27019-26. [PMID: 21652692 DOI: 10.1074/jbc.m111.232249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a consequence of their bacterial origin, mitochondria contain β-barrel proteins in their outer membrane (OMM). These proteins require the translocase of the outer membrane (TOM) complex and the conserved sorting and assembly machinery (SAM) complex for transport and integration into the OMM. The SAM complex and the β-barrel assembly machinery (BAM) required for biogenesis of β-barrel proteins in bacteria are evolutionarily related. Despite this homology, we show that bacterial β-barrel proteins are not universally recognized and integrated into the OMM of human mitochondria. Selectivity exists both at the level of the TOM and the SAM complex. Of all of the proteins we tested, human mitochondria imported only β-barrel proteins originating from Neisseria sp., and only Omp85, the central component of the neisserial BAM complex, integrated into the OMM. PorB proteins from different Neisseria, although imported by the TOM, were not recognized by the SAM complex and formed membrane complexes only when functional Omp85 was present at the same time in mitochondria. Omp85 alone was capable of integrating other bacterial β-barrel proteins in human mitochondria, but could not substitute for the function of its mitochondrial homolog Sam50. Thus, signals and machineries for transport and assembly of β-barrel proteins in bacteria and human mitochondria differ enough to allow only a certain type of β-barrel proteins to be targeted and integrated in mitochondrial membranes in human cells.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Biozentrum, Department of Microbiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
152
|
Delage L, Leblanc C, Nyvall Collén P, Gschloessl B, Oudot MP, Sterck L, Poulain J, Aury JM, Cock JM. In silico survey of the mitochondrial protein uptake and maturation systems in the brown alga Ectocarpus siliculosus. PLoS One 2011; 6:e19540. [PMID: 21611166 PMCID: PMC3097184 DOI: 10.1371/journal.pone.0019540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/31/2011] [Indexed: 01/24/2023] Open
Abstract
The acquisition of mitochondria was a key event in eukaryote evolution. The aim of this study was to identify homologues of the components of the mitochondrial protein import machinery in the brown alga Ectocarpus and to use this information to investigate the evolutionary history of this fundamental cellular process. Detailed searches were carried out both for components of the protein import system and for related peptidases. Comparative and phylogenetic analyses were used to investigate the evolution of mitochondrial proteins during eukaryote diversification. Key observations include phylogenetic evidence for very ancient origins for many protein import components (Tim21, Tim50, for example) and indications of differences between the outer membrane receptors that recognize the mitochondrial targeting signals, suggesting replacement, rearrangement and/or emergence of new components across the major eukaryotic lineages. Overall, the mitochondrial protein import components analysed in this study confirmed a high level of conservation during evolution, indicating that most are derived from very ancient, ancestral proteins. Several of the protein import components identified in Ectocarpus, such as Tim21, Tim50 and metaxin, have also been found in other stramenopiles and this study suggests an early origin during the evolution of the eukaryotes.
Collapse
Affiliation(s)
- Ludovic Delage
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Catherine Leblanc
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Pi Nyvall Collén
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Bernhard Gschloessl
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| | - Marie-Pierre Oudot
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lieven Sterck
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Julie Poulain
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, Evry, France
- Centre National de la Recherche Scientifique, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | - J. Mark Cock
- Université Pierre et Marie Curie, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
153
|
Müller JEN, Papic D, Ulrich T, Grin I, Schütz M, Oberhettinger P, Tommassen J, Linke D, Dimmer KS, Autenrieth IB, Rapaport D. Mitochondria can recognize and assemble fragments of a beta-barrel structure. Mol Biol Cell 2011; 22:1638-47. [PMID: 21460184 PMCID: PMC3093317 DOI: 10.1091/mbc.e10-12-0943] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The signal that directs newly synthesized mitochondrial β-barrel proteins from the cytosol to the organelle is poorly defined. The findings of this study demonstrate that, rather than a linear sequence, the structural information in four β-strands is sufficient for the mitochondria to recognize and assemble β-barrel protein. β-barrel proteins are found in the outer membranes of eukaryotic organelles of endosymbiotic origin as well as in the outer membrane of Gram-negative bacteria. Precursors of mitochondrial β-barrel proteins are synthesized in the cytosol and have to be targeted to the organelle. Currently, the signal that assures their specific targeting to mitochondria is poorly defined. To characterize the structural features needed for specific mitochondrial targeting and to test whether a full β-barrel structure is required, we expressed in yeast cells the β-barrel domain of the trimeric autotransporter Yersinia adhesin A (YadA). Trimeric autotransporters are found only in prokaryotes, where they are anchored to the outer membrane by a single 12-stranded β-barrel structure to which each monomer is contributing four β-strands. Importantly, we found that YadA is solely localized to the mitochondrial outer membrane, where it exists in a native trimeric conformation. These findings demonstrate that, rather than a linear sequence or a complete β-barrel structure, four β-strands are sufficient for the mitochondria to recognize and assemble a β-barrel protein. Remarkably, the evolutionary origin of mitochondria from bacteria enables them to import and assemble even proteins belonging to a class that is absent in eukaryotes.
Collapse
Affiliation(s)
- Jonas E N Müller
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Dukanovic J, Rapaport D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:971-80. [DOI: 10.1016/j.bbamem.2010.06.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
155
|
Gebert N, Ryan MT, Pfanner N, Wiedemann N, Stojanovski D. Mitochondrial protein import machineries and lipids: A functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1002-11. [DOI: 10.1016/j.bbamem.2010.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/01/2023]
|
156
|
Jedelský PL, Doležal P, Rada P, Pyrih J, Šmíd O, Hrdý I, Šedinová M, Marcinčiková M, Voleman L, Perry AJ, Beltrán NC, Lithgow T, Tachezy J. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 2011; 6:e17285. [PMID: 21390322 PMCID: PMC3044749 DOI: 10.1371/journal.pone.0017285] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/26/2011] [Indexed: 11/18/2022] Open
Abstract
The mitosomes of Giardia intestinalis are thought to be mitochondria highly-reduced in response to the oxygen-poor niche. We performed a quantitative proteomic assessment of Giardia mitosomes to increase understanding of the function and evolutionary origin of these enigmatic organelles. Mitosome-enriched fractions were obtained from cell homogenate using Optiprep gradient centrifugation. To distinguish mitosomal proteins from contamination, we used a quantitative shot-gun strategy based on isobaric tagging of peptides with iTRAQ and tandem mass spectrometry. Altogether, 638 proteins were identified in mitosome-enriched fractions. Of these, 139 proteins had iTRAQ ratio similar to that of the six known mitosomal markers. Proteins were selected for expression in Giardia to verify their cellular localizations and the mitosomal localization of 20 proteins was confirmed. These proteins include nine components of the FeS cluster assembly machinery, a novel diflavo-protein with NADPH reductase activity, a novel VAMP-associated protein, and a key component of the outer membrane protein translocase. None of the novel mitosomal proteins was predicted by previous genome analyses. The small proteome of the Giardia mitosome reflects the reduction in mitochondrial metabolism, which is limited to the FeS cluster assembly pathway, and a simplicity in the protein import pathway required for organelle biogenesis.
Collapse
Affiliation(s)
- Petr L. Jedelský
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Laboratory of Mass Spectrometry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ondřej Šmíd
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Miroslava Šedinová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Marcinčiková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lubomír Voleman
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Andrew J. Perry
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne, Australia
| | - Neritza Campo Beltrán
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Trevor Lithgow
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne, Australia
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
157
|
Bennion D, Charlson ES, Coon E, Misra R. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol 2011; 77:1153-71. [PMID: 20598079 DOI: 10.1111/j.1365-2958.2010.07280.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BamA of Escherichia coli is an essential component of the hetero-oligomeric machinery that mediates β-barrel outer membrane protein (OMP) assembly. The C- and N-termini of BamA fold into trans-membrane β-barrel and five soluble POTRA domains respectively. Detailed characterization of BamA POTRA 1 missense and deletion mutants revealed two competing OMP assembly pathways, one of which is followed by the archetypal trimeric β-barrel OMPs, OmpF and LamB, and is dependent on POTRA 1. Interestingly, our data suggest that BamA also requires its POTRA 1 domain for proper assembly. The second pathway is independent of POTRA 1 and is exemplified by TolC. Site-specific cross-linking analysis revealed that the POTRA 1 domain of BamA interacts with SurA, a periplasmic chaperone required for the assembly of OmpF and LamB, but not that of TolC and BamA. The data suggest that SurA and BamA POTRA 1 domain function in concert to assist folding and assembly of most β-barrel OMPs except for TolC, which folds into a unique soluble α-helical barrel and an OM-anchored β-barrel. The two assembly pathways finally merge at some step beyond POTRA 1 but presumably before membrane insertion, which is thought to be catalysed by the trans-membrane β-barrel domain of BamA.
Collapse
Affiliation(s)
- Drew Bennion
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
158
|
Schleiff E, Maier UG, Becker T. Omp85 in eukaryotic systems: one protein family with distinct functions. Biol Chem 2011; 392:21-7. [DOI: 10.1515/bc.2011.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractOmp85-like proteins are evolutionary ancient components of bacterial outer membranes and their evolutionary offspring. As a consequence, proteins of this family can be found in the outer membrane systems of Gram-negative bacteria and endosymbiotically derived organelles. In the different membranes, they perform distinct functions such as catalyzing protein insertion into or protein transport across the bilayer. Here, the knowledge on the Omp85-like proteins in the eukaryotic system with regard to structural properties and physiological behavior is summarized.
Collapse
|
159
|
Imai K, Fujita N, Gromiha MM, Horton P. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins. BMC Genomics 2011; 12:79. [PMID: 21272379 PMCID: PMC3045335 DOI: 10.1186/1471-2164-12-79] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. RESULTS We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. CONCLUSIONS Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.
Collapse
Affiliation(s)
- Kenichiro Imai
- AIST, Computational Biology Research Center, Tokyo, Aomi 135-0064, Japan
| | | | | | | |
Collapse
|
160
|
Breuers FKH, Bräutigam A, Weber APM. The Plastid Outer Envelope - A Highly Dynamic Interface between Plastid and Cytoplasm. FRONTIERS IN PLANT SCIENCE 2011; 2:97. [PMID: 22629266 PMCID: PMC3355566 DOI: 10.3389/fpls.2011.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/29/2011] [Indexed: 05/09/2023]
Abstract
Plastids are the defining organelles of all photosynthetic eukaryotes. They are the site of photosynthesis and of a large number of other essential metabolic pathways, such as fatty acid and amino acid biosyntheses, sulfur and nitrogen assimilation, and aromatic and terpenoid compound production, to mention only a few examples. The metabolism of plastids is heavily intertwined and connected with that of the surrounding cytosol, thus causing massive traffic of metabolic precursors, intermediates, and products. Two layers of biological membranes that are called the inner (IE) and the outer (OE) plastid envelope membranes bound the plastids of Archaeplastida. While the IE is generally accepted as the osmo-regulatory barrier between cytosol and stroma, the OE was considered to represent an unspecific molecular sieve, permeable for molecules of up to 10 kDa. However, after the discovery of small substrate specific pores in the OE, this view has come under scrutiny. In addition to controlling metabolic fluxes between plastid and cytosol, the OE is also crucial for protein import into the chloroplast. It contains the receptors and translocation channel of the TOC complex that is required for the canonical post-translational import of nuclear-encoded, plastid-targeted proteins. Further, the OE is a metabolically active compartment of the chloroplast, being involved in, e.g., fatty acid metabolism and membrane lipid production. Also, recent findings hint on the OE as a defense platform against several biotic and abiotic stress conditions, such as cold acclimation, freezing tolerance, and phosphate deprivation. Moreover, dynamic non-covalent interactions between the OE and the endomembrane system are thought to play important roles in lipid and non-canonical protein trafficking between plastid and endoplasmic reticulum. While proteomics and bioinformatics has provided us with comprehensive but still incomplete information on proteins localized in the plastid IE, the stroma, and the thylakoids, our knowledge of the protein composition of the plastid OE is far from complete. In this article, we report on the recent progress in discovering novel OE proteins to draw a conclusive picture of the OE. A "parts list" of the plastid OE will be presented, using data generated by proteomics of plastids isolated from various plant sources.
Collapse
Affiliation(s)
| | - Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
- *Correspondence: Andreas P. M. Weber, Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
161
|
Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane. J Mol Biol 2011; 405:113-24. [DOI: 10.1016/j.jmb.2010.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 11/21/2022]
|
162
|
Kim KH, Paetzel M. Crystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex. J Mol Biol 2010; 406:667-78. [PMID: 21168416 DOI: 10.1016/j.jmb.2010.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/20/2023]
Abstract
In Gram-negative bacteria, the BAM (β-barrel assembly machinery) complex catalyzes the essential process of assembling outer membrane proteins. The BAM complex in Escherichia coli consists of five proteins: one β-barrel membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Despite their role in outer membrane protein biogenesis, there is currently a lack of functional and structural information on the lipoprotein components of the BAM complex. Here, we report the first crystal structure of BamB, the largest and most functionally characterized lipoprotein component of the BAM complex. The crystal structure shows that BamB has an eight-bladed β-propeller structure, with four β-strands making up each blade. Mapping onto the structure the residues previously shown to be important for BamA interaction reveals that these residues, despite being far apart in the amino acid sequence, are localized to form a continuous solvent-exposed surface on one side of the β-propeller. Found on the same side of the β-propeller is a cluster of residues conserved among BamB homologs. Interestingly, our structural comparison study suggests that other proteins with a BamB-like fold often participate in protein or ligand binding, and that the binding interface on these proteins is located on the surface that is topologically equivalent to where the conserved residues and the residues that are important for BamA interaction are found on BamB. Our structural and bioinformatic analyses, together with previous biochemical data, provide clues to where the BamA and possibly a substrate interaction interface may be located on BamB.
Collapse
Affiliation(s)
- Kelly H Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada
| | | |
Collapse
|
163
|
Abstract
Although the origin of mitochondria from the endosymbiosis of an α-proteobacterium is well established, the nature of the host cell, the metabolic complexity of the endosymbiont and the subsequent evolution of the proto-mitochondrion into all its current appearances are still the subject of discovery and sometimes debate. Here we review what has been inferred about the original composition and subsequent evolution of the mitochondrial proteome and essential mitochondrial systems. The evolutionary mosaic that currently constitutes mitochondrial proteomes contains (i) endosymbiotic proteins (15-45%), (ii) proteins without detectable orthologs outside the eukaryotic lineage (40%), and (iii) proteins that are derived from non-proteobacterial Bacteria, Bacteriophages and Archaea (15%, specifically multiple tRNA-modification proteins). Protein complexes are of endosymbiotic origin, but have greatly expanded with novel eukaryotic proteins; in contrast to mitochondrial enzymes that are both of proteobacterial and non-proteobacterial origin. This disparity is consistent with the complexity hypothesis, which argues that proteins that are a part of large, multi-subunit complexes are unlikely to undergo horizontal gene transfer. We observe that they neither change their subcellular compartments in the course of evolution, even when their genes do.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Radboud University Nijmegen Medical Centre, CMBI/NCMLS, Nijmegen, The Netherlands
| | | |
Collapse
|
164
|
Yamano K, Tanaka-Yamano S, Endo T. Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J Biol Chem 2010; 285:41222-31. [PMID: 21036907 DOI: 10.1074/jbc.m110.163238] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
β-barrel membrane proteins in the mitochondrial outer membrane use the TOM40 complex to enter mitochondria and then the TOB/SAM complex to be assembled into the outer membrane. Tom7, a subunit of the TOM40 complex, regulates association of Mdm10 with the TOB complex. Here, we analyzed the role of Tom7 in assembly of β-barrel proteins, including Tom40, a central channel subunit of the TOM40 complex, and porin. Depletion of Tom7 decreased transient accumulation of Tom40 at the level of the TOB complex and retarded assembly of porin in vitro. On the other hand, overexpression of Tom7 resulted in enhanced accumulation of in vitro imported Tom40 in the TOB complex, yet it did not affect the in vitro assembly of porin. Site-specific photocross-linking in vivo revealed that Tom7 directly interacts with Tom40 through its transmembrane segment and with Mdm10. These results collectively show that Tom7 recruits Mdm10, enhancing its association with the MMM1 complex, to regulate timing of the release of Tom40 from the TOB complex for subsequent assembly into the TOM40 complex.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
165
|
Delattre AS, Clantin B, Saint N, Locht C, Villeret V, Jacob-Dubuisson F. Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily. FEBS J 2010; 277:4755-65. [PMID: 20955520 DOI: 10.1111/j.1742-4658.2010.07881.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Gram-negative bacteria, the two-partner secretion pathway mediates the secretion of TpsA proteins with various functions. TpsB transporters specifically recognize their TpsA partners in the periplasm and mediate their transport through a hydrophilic channel. The filamentous haemagglutinin adhesin (FHA)/FhaC pair represents a model two-partner secretion system, with the structure of the TpsB transporter FhaC providing the bases to decipher the mechanism of action of these proteins. FhaC is composed of a β-barrel preceded by two periplasmic polypeptide-transport-associated (POTRA) domains in tandem. The barrel is occluded by an N-terminal helix and an extracellular loop, L6, folded back into the FhaC channel. In this article, we describe a functionally important motif of FhaC. The VRGY tetrad is highly conserved in the TpsB family and, in FhaC, it is located at the tip of L6 reaching the periplasm. Replacement by Ala of the invariant Arg dramatically affects the secretion efficiency, although the structure of FhaC and its channel properties remain unaffected. This substitution affects the secretion mechanism at a step beyond the initial TpsA-TpsB interaction. Replacement of the conserved Tyr affects the channel properties, but not the secretion activity, suggesting that this residue stabilizes the loop in the resting conformation of FhaC. Thus, the conserved motif at the tip of L6 represents an important piece of two-partner secretion machinery. This motif is conserved in a predicted loop between two β-barrel strands in more distant relatives of FhaC involved in protein transport across or assembly into the outer membranes of bacteria and organelles, suggesting a conserved function in the molecular mechanism of transport.
Collapse
|
166
|
Tommassen J. Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology (Reading) 2010; 156:2587-2596. [DOI: 10.1099/mic.0.042689-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobicα-helices, integral outer-membrane proteins (OMPs) formβ-barrels. Similarβ-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How theseβ-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly ofβ-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrialβ-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
167
|
Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 2010; 11:655-67. [PMID: 20729931 DOI: 10.1038/nrm2959] [Citation(s) in RCA: 508] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
168
|
Wang P, Dalbey RE. Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:866-75. [PMID: 20800571 DOI: 10.1016/j.bbamem.2010.08.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
The evolutionarily conserved YidC/Oxa1p/Alb3 family of proteins plays important roles in the membrane biogenesis in bacteria, mitochondria, and chloroplasts. The members in this family function as novel membrane protein insertases, chaperones, and assembly factors for transmembrane proteins, including energy transduction complexes localized in the bacterial and mitochondrial inner membrane, and in the chloroplast thylakoid membrane. In this review, we will present recent progress with this class of proteins in membrane protein biogenesis and discuss the structure/function relationships. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
169
|
Becker T, Guiard B, Thornton N, Zufall N, Stroud DA, Wiedemann N, Pfanner N. Assembly of the mitochondrial protein import channel: role of Tom5 in two-stage interaction of Tom40 with the SAM complex. Mol Biol Cell 2010; 21:3106-13. [PMID: 20668160 PMCID: PMC2938377 DOI: 10.1091/mbc.e10-06-0518] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tom40 forms the channel of the mitochondrial preprotein translocase. This beta-barrel protein assembles with alpha-helical proteins, however little is known about the mechanism of assembly. Becker et al identified a new intermediate in Tom40 assembly and show that small alpha-helical Tom proteins associate with Tom40 directly at the SAM complex. The preprotein translocase of the outer mitochondrial membrane (TOM) consists of a central β-barrel channel, Tom40, and six proteins with α-helical transmembrane segments. The precursor of Tom40 is imported from the cytosol by a pre-existing TOM complex and inserted into the outer membrane by the sorting and assembly machinery (SAM). Tom40 then assembles with α-helical Tom proteins to the mature TOM complex. The outer membrane protein Mim1 promotes membrane insertion of several α-helical Tom proteins but also affects the biogenesis of Tom40 by an unknown mechanism. We have identified a novel intermediate in the assembly pathway of Tom40, revealing a two-stage interaction of the precursor with the SAM complex. The second SAM stage represents assembly of Tom5 with the precursor of Tom40. Mim1-deficient mitochondria accumulate Tom40 at the first SAM stage like Tom5-deficient mitochondria. Tom5 promotes formation of the second SAM stage and thus suppresses the Tom40 assembly defect of mim1Δ mitochondria. We conclude that the assembly of newly imported Tom40 is directly initiated at the SAM complex by its association with Tom5. The involvement of Mim1 in Tom40 biogenesis can be largely attributed to its role in import of Tom5.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
170
|
Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:947-54. [PMID: 20659421 DOI: 10.1016/j.bbamem.2010.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
Abstract
Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy of this evolutionary tinkering can be seen in the homologies and structural similarities between mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
|
171
|
Koenig P, Mirus O, Haarmann R, Sommer MS, Sinning I, Schleiff E, Tews I. Conserved properties of polypeptide transport-associated (POTRA) domains derived from cyanobacterial Omp85. J Biol Chem 2010; 285:18016-24. [PMID: 20348103 PMCID: PMC2878563 DOI: 10.1074/jbc.m110.112649] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/22/2010] [Indexed: 01/14/2023] Open
Abstract
Proteins of the Omp85 family are conserved in all kingdoms of life. They mediate protein transport across or protein insertion into membranes and reside in the outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts. Omp85 proteins contain a C-terminal transmembrane beta-barrel and a soluble N terminus with a varying number of polypeptide-transport-associated or POTRA domains. Here we investigate Omp85 from the cyanobacterium Anabaena sp. PCC 7120. The crystallographic three-dimensional structure of the N-terminal region shows three POTRA domains, here named P1 to P3 from the N terminus. Molecular dynamics simulations revealed a hinge between P1 and P2 but in contrast show that P2 and P3 are fixed in orientation. The P2-P3 arrangement is identical as seen for the POTRA domains from proteobacterial FhaC, suggesting this orientation is a conserved feature. Furthermore, we define interfaces for protein-protein interaction in P1 and P2. P3 possesses an extended loop unique to cyanobacteria and plantae, which influences pore properties as shown by deletion. It now becomes clear how variations in structure of individual POTRA domains, as well as the different number of POTRA domains with both rigid and flexible connections make the N termini of Omp85 proteins versatile adaptors for a plentitude of functions.
Collapse
Affiliation(s)
- Patrick Koenig
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg and
| | - Oliver Mirus
- the Department of Biosciences, JWGU Frankfurt am Main, Center of Membrane Proteomics and Cluster of Excellence Macromolecular Complexes, Max-von-Laue Strasse 9, 60439 Frankfurt, Germany
| | - Raimund Haarmann
- the Department of Biosciences, JWGU Frankfurt am Main, Center of Membrane Proteomics and Cluster of Excellence Macromolecular Complexes, Max-von-Laue Strasse 9, 60439 Frankfurt, Germany
| | - Maik S. Sommer
- the Department of Biosciences, JWGU Frankfurt am Main, Center of Membrane Proteomics and Cluster of Excellence Macromolecular Complexes, Max-von-Laue Strasse 9, 60439 Frankfurt, Germany
| | - Irmgard Sinning
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg and
| | - Enrico Schleiff
- the Department of Biosciences, JWGU Frankfurt am Main, Center of Membrane Proteomics and Cluster of Excellence Macromolecular Complexes, Max-von-Laue Strasse 9, 60439 Frankfurt, Germany
| | - Ivo Tews
- From the Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg and
| |
Collapse
|
172
|
Endo T, Yamano K. Transport of proteins across or into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:706-14. [DOI: 10.1016/j.bbamcr.2009.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/11/2009] [Accepted: 11/17/2009] [Indexed: 11/30/2022]
|
173
|
Andrès C, Agne B, Kessler F. The TOC complex: preprotein gateway to the chloroplast. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:715-23. [PMID: 20226817 DOI: 10.1016/j.bbamcr.2010.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 01/22/2023]
Abstract
Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.
Collapse
Affiliation(s)
- Charles Andrès
- Institut de Biologie, Université de Neuchâtel, CH-2009 Neuchâtel, Switzerland
| | | | | |
Collapse
|
174
|
Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1292-9. [PMID: 20450883 DOI: 10.1016/j.bbabio.2010.04.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/25/2010] [Accepted: 04/27/2010] [Indexed: 11/22/2022]
Abstract
Gram-negative bacteria are the ancestors of mitochondrial organelles. Consequently, both entities contain two surrounding lipid bilayers known as the inner and outer membranes. While protein synthesis in bacteria is accomplished in the cytoplasm, mitochondria import 90-99% of their protein ensemble from the cytosol in the opposite direction. Three protein families including Sam50, VDAC and Tom40 together with Mdm10 compose the set of integral beta-barrel proteins embedded in the mitochondrial outer membrane in S. cerevisiae (MOM). The 16-stranded Sam50 protein forms part of the sorting and assembly machinery (SAM) and shows a clear evolutionary relationship to members of the bacterial Omp85 family. By contrast, the evolution of VDAC and Tom40, both adopting the same fold cannot be traced to any bacterial precursor. This finding is in agreement with the specific function of Tom40 in the TOM complex not existent in the enslaved bacterial precursor cell. Models of Tom40 and Sam50 have been developed using X-ray structures of related proteins. These models are analyzed with respect to properties such as conservation and charge distribution yielding features related to their individual functions.
Collapse
|
175
|
Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, Sedinová M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 2010; 6:e1000812. [PMID: 20333239 PMCID: PMC2841616 DOI: 10.1371/journal.ppat.1000812] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022] Open
Abstract
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica. All eukaryotic organisms have mitochondria, organelles cordoned by a double membrane, which are descendants of an ancestral bacterial endosymbiont. Nowadays, mitochondria are fully integrated into the context of diverse cellular processes and serve in providing energy, iron-containing prosthetic groups and some of the cellular building blocks like lipids and amino acids. In multi-cellular organisms, mitochondria play an additional vital role in cell signaling pathways and programmed cell death. In some unicellular eukaryotes which inhabit oxygen poor environments, intriguing mitochondrial adaptations have taken place resulting in the creation of specialized compartments known as mitosomes and hydrogenosomes. Several important human pathogens like Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis and microsporidia contain these organelles and in many cases the function and biogenesis of these organelles remain unknown. In this paper, we investigated the protein import pathways into the mitosomes of E. histolytica, which represent one of the simplest mitochondria-related compartment discovered yet. In accordance with the limited organellar proteome, we show that only core components of mitochondria-related protein import machines are present in E. histolytica to serve for the import of a small set of substrate proteins.
Collapse
Affiliation(s)
- Pavel Dolezal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 2010; 365:799-817. [PMID: 20124346 PMCID: PMC2817224 DOI: 10.1098/rstb.2009.0167] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
All eukaryotes require mitochondria for survival and growth. The origin of mitochondria can be traced down to a single endosymbiotic event between two probably prokaryotic organisms. Subsequent evolution has left mitochondria a collection of heterogeneous organelle variants. Most of these variants have retained their own genome and translation system. In hydrogenosomes and mitosomes, however, the entire genome was lost. All types of mitochondria import most of their proteome from the cytosol, irrespective of whether they have a genome or not. Moreover, in most eukaryotes, a variable number of tRNAs that are required for mitochondrial translation are also imported. Thus, import of macromolecules, both proteins and tRNA, is essential for mitochondrial biogenesis. Here, we review what is known about the evolutionary history of the two processes using a recently revised eukaryotic phylogeny as a framework. We discuss how the processes of protein import and tRNA import relate to each other in an evolutionary context.
Collapse
Affiliation(s)
- Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
| |
Collapse
|
177
|
Two Modular Forms of the Mitochondrial Sorting and Assembly Machinery Are Involved in Biogenesis of α-Helical Outer Membrane Proteins. J Mol Biol 2010; 396:540-9. [DOI: 10.1016/j.jmb.2009.12.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 11/19/2022]
|
178
|
Kozjak-Pavlovic V, Ross K, Götz M, Goosmann C, Rudel T. A tag at the carboxy terminus prevents membrane integration of VDAC1 in mammalian mitochondria. J Mol Biol 2010; 397:219-32. [PMID: 20117113 DOI: 10.1016/j.jmb.2010.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 11/26/2022]
Abstract
beta-Barrel proteins are found in the outer membranes of bacteria, chloroplasts and mitochondria. The evolutionary conserved sorting and assembly machinery (SAM complex) assembles mitochondrial beta-barrel proteins, such as voltage-dependent anion-selective channel 1 (VDAC1), into complexes in the outer membrane by recognizing a sorting beta-signal in the carboxy-terminal part of the protein. Here we show that in mammalian mitochondria, masking of the C-terminus of beta-barrel proteins by a tag leads to accumulation of soluble misassembled protein in the intermembrane space, which causes mitochondrial fragmentation and loss of membrane potential. A similar phenotype is observed if the beta-signal is shortened, removed or when the conserved hydrophobic residues in the beta-signal are mutated. The length of the tag at the C-terminus is critical for the assembly of VDAC1, as well as the amino acid residues at positions 130, 222, 225 and 251 of the protein. We propose that if the recognition of the beta-signal or the folding of the beta-barrel proteins is inhibited, the nonassembled protein will accumulate in the intermembrane space, aggregate and damage mitochondria. This effect offers easy tools for studying the requirements for the membrane assembly of beta-barrel proteins, but also advises caution when interpreting the outcome of the beta-barrel protein overexpression experiments.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
179
|
A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus. PLoS One 2010; 5:e8619. [PMID: 20062535 PMCID: PMC2797634 DOI: 10.1371/journal.pone.0008619] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.
Collapse
|
180
|
Abstract
I have tried to cover the minimal properties of the prolific number of protein secretion systems identified presently, particularly in Gram negative bacteria. New systems, however, are being reported almost by the month and certainly I have missed some. With the accumulating evidence one remains in awe of the complexity of some pathways, with the Type III, IV and VI especially fearsome and impressive. These systems illustrate that protein secretion from bacteria is not only about passage of large polypeptides across a bilayer but also through long tunnels, raising quite different questions concerning mechanisms. The mechanism of transport via the Sec-translocase-translocon is well on the way to full understanding, although a structure of a stuck intermediate would be very helpful. The understanding of the precise details of the mechanism of targeting specificity, and actual polypeptide translocation in other systems is, however, far behind. Groups willing to do the difficult (and risky) work to understand mechanism should therefore be more actively encouraged, perhaps to pursue multidisciplinary, collaborative studies. In writing this review I have become fascinated by the cellular regulatory mechanisms that must be necessary to orchestrate the complex flow of so many polypeptides, targeted by different signals to such a wide variety of transporters. I have tried to raise questions about how this might be managed but much more needs to be done in this area. Clearly, this field is very much alive and the future will be full of revealing and surprising twists in the story.
Collapse
Affiliation(s)
- I Barry Holland
- Institut de Genetique et Microbiologie, UMR 8621 CNRS, Universite de Paris-Sud, Orsay, France
| |
Collapse
|
181
|
Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E. Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 2009; 285:6848-56. [PMID: 20042599 DOI: 10.1074/jbc.m109.074807] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromalveolates are a diverse group of protists that include many ecologically and medically relevant organisms such as diatoms and apicomplexan parasites. They possess plastids generally surrounded by four membranes, which evolved by engulfment of a red alga. Today, most plastid proteins must be imported, but many aspects of protein import into complex plastids are still cryptic. In particular, how proteins cross the third outermost membrane has remained unexplained. We identified a protein in the third outermost membrane of the diatom Phaeodactylum tricornutum with properties comparable to those of the Omp85 family. We demonstrate that the targeting route of P. tricornutum Omp85 parallels that of the translocation channel of the outer envelope membrane of chloroplasts, Toc75. In addition, the electrophysiological properties are similar to those of the Omp85 proteins involved in protein translocation. This supports the hypothesis that P. tricornutum Omp85 is involved in precursor protein translocation, which would close a gap in the fundamental understanding of the evolutionary origin and function of protein import in secondary plastids.
Collapse
Affiliation(s)
- Lars Bullmann
- Cell Biology, Philipps-University Marburg, D-35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
182
|
Lenhart TR, Akins DR. Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol 2009; 75:692-709. [PMID: 20025662 DOI: 10.1111/j.1365-2958.2009.07015.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outer membrane (OM) of the pathogenic diderm spirochete, Borrelia burgdorferi, contains integral beta-barrel outer membrane proteins (OMPs) in addition to its numerous outer surface lipoproteins. Very few OMPs have been identified in B. burgdorferi, and the protein machinery required for OMP assembly and OM localization is currently unknown. Essential OM BamA proteins have recently been characterized in Gram-negative bacteria that are central components of an OM beta-barrel assembly machine and are required for proper localization and insertion of bacterial OMPs. In the present study, we characterized a putative B. burgdorferi BamA orthologue encoded by open reading frame bb0795. Structural model predictions and cellular localization data indicate that the B. burgdorferi BB0795 protein contains an N-terminal periplasmic domain and a C-terminal, surface-exposed beta-barrel domain. Additionally, assays with an IPTG-regulatable bb0795 mutant revealed that BB0795 is required for B. burgdorferi growth. Furthermore, depletion of BB0795 results in decreased amounts of detectable OMPs in the B. burgdorferi OM. Interestingly, a decrease in the levels of surface-exposed lipoproteins was also observed in the mutant OMs. Collectively, our structural, cellular localization and functional data are consistent with the characteristics of other BamA proteins, indicating that BB0795 is a B. burgdorferi BamA orthologue.
Collapse
Affiliation(s)
- Tiffany R Lenhart
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
183
|
Walther DM, Bos MP, Rapaport D, Tommassen J. The Mitochondrial Porin, VDAC, Has Retained the Ability to Be Assembled in the Bacterial Outer Membrane. Mol Biol Evol 2009; 27:887-95. [DOI: 10.1093/molbev/msp294] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
184
|
Abstract
The translocase of the outer mitochondrial membrane (TOM complex) is a multi-subunit complex that serves as the general entry site for newly synthesized proteins into the organelle. The assembly of this complex is a multi-step process that requires the coordinated action of several proteins. A central, but rather undefined role in this process is played by Mim1, a mitochondrial outer membrane protein. The deletion of MIM1 leads to severe defects in the biogenesis of TOM complex subunits and to altered mitochondrial morphology. The protein is built from an N-terminal cytosolic domain, a central transmembrane segment, and a C-terminal domain facing the intermembrane space. In this review we summarize our current knowledge on the structure-function relationship of Mim1 and discuss some possibilities for its molecular function.
Collapse
|
185
|
Abstract
Mitochondria possess a dedicated-chaperone system in the intermembrane space, the small Tims that are ubiquitous in all eukaryotes from yeast to man. They escort membrane proteins to the outer or the inner membrane for proper insertion. These mitochondrial chaperones do not require external energy to perform their function and have structural similarities to other ATP-independent chaperones. Here, we discuss their structural properties and how these relate to their chaperoning function in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- Nikos Petrakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | | | | |
Collapse
|
186
|
Volokhina EB, Beckers F, Tommassen J, Bos MP. The beta-barrel outer membrane protein assembly complex of Neisseria meningitidis. J Bacteriol 2009; 191:7074-85. [PMID: 19767435 PMCID: PMC2772484 DOI: 10.1128/jb.00737-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/09/2009] [Indexed: 11/20/2022] Open
Abstract
The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the beta-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysis of genome sequences revealed homologs of BamC, BamD (previously described as ComL), and BamE and a second BamE homolog, Mlp. No homolog of BamB was found. As in E. coli, ComL/BamD appeared essential for viability and for OMP assembly, and it could not be replaced by its E. coli homolog. BamE was not essential but was found to contribute to the efficiency of OMP assembly and to the maintenance of OM integrity. A bamC mutant showed only marginal OMP assembly defects, but the impossibility of creating a bamC bamE double mutant further indicated the function of BamC in OMP assembly. An mlp mutant was unaffected in OMP assembly. The results of copurification assays demonstrated the association of BamC, ComL, and BamE with Omp85. Semi-native gel electrophoresis identified the RmpM protein as an additional component of the Omp85 complex, which was confirmed in copurification assays. RmpM was not required for OMP folding but stabilized OMP complexes. Thus, the Bam complex in N. meningitidis consists of Omp85/BamA plus RmpM, BamC, ComL/BamD, and BamE, of which ComL/BamD and BamE appear to be the most important accessory components for OMP assembly.
Collapse
Affiliation(s)
- Elena B. Volokhina
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Frank Beckers
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Martine P. Bos
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
187
|
Patel GJ, Behrens-Kneip S, Holst O, Kleinschmidt JH. The Periplasmic Chaperone Skp Facilitates Targeting, Insertion, and Folding of OmpA into Lipid Membranes with a Negative Membrane Surface Potential. Biochemistry 2009; 48:10235-45. [DOI: 10.1021/bi901403c] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geetika J. Patel
- Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Susanne Behrens-Kneip
- Robert-Koch-Institute, P26 Nosocomial Infections of the Elderly, Nordufer 20, 13353 Berlin, Germany
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/c, D-23845 Borstel, Germany
| | - Jörg H. Kleinschmidt
- Fachbereich Biologie, Universität Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| |
Collapse
|
188
|
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell 2009; 138:628-44. [PMID: 19703392 DOI: 10.1016/j.cell.2009.08.005] [Citation(s) in RCA: 1039] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes. There is an amazingly versatile set of machineries and mechanisms, and at least four different pathways, for the importing and sorting of mitochondrial precursor proteins. The translocases that catalyze these processes are highly dynamic machines driven by the membrane potential, ATP, or redox reactions, and they cooperate with molecular chaperones and assembly complexes to direct mitochondrial proteins to their correct destinations. Here, we discuss recent insights into the importing and sorting of mitochondrial proteins and their contributions to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Agnieszka Chacinska
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
189
|
Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37. Mol Cell Biol 2009; 29:5975-88. [PMID: 19797086 DOI: 10.1128/mcb.00069-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TOM complex is the general mitochondrial entry site for newly synthesized proteins. Precursors of beta-barrel proteins initially follow this common pathway and are then relayed to the SAM/TOB complex, which mediates their integration into the outer membrane. Three proteins, Sam50 (Tob55), Sam35 (Tob38/Tom38), and Sam37 (Mas37), have been identified as the core constituents of the latter complex. Sam37 is essential for growth at elevated temperatures, but the function of the protein is currently unresolved. To identify interacting partners of Sam37 and thus shed light on its function, we screened for multicopy suppressors of sam37Delta. We identified the small subunit of the TOM complex, Tom6, as such a suppressor and found a tight genetic interaction between the two proteins. Overexpression of SAM37 suppresses the growth phenotype of tom6Delta, and cells lacking both genes are not viable. The ability of large amounts of Tom6 to suppress the sam37Delta phenotype can be linked to the capacity of Tom6 to stabilize Tom40, an essential beta-barrel protein which is the central component of the TOM complex. Our results suggest that Sam37 is required for growth at higher temperatures, since it enhances the biogenesis of Tom40, and this requirement can be overruled by improved stability of newly synthesized Tom40 molecules.
Collapse
|
190
|
Walther DM, Rapaport D, Tommassen J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 2009; 66:2789-804. [PMID: 19399587 PMCID: PMC2724633 DOI: 10.1007/s00018-009-0029-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 01/01/2023]
Abstract
Membrane-embedded beta-barrel proteins span the membrane via multiple amphipathic beta-strands arranged in a cylindrical shape. These proteins are found in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. This situation is thought to reflect the evolutionary origin of mitochondria and chloroplasts from Gram-negative bacterial endosymbionts. beta-barrel proteins fulfil a variety of functions; among them are pore-forming proteins that allow the flux of metabolites across the membrane by passive diffusion, active transporters of siderophores, enzymes, structural proteins, and proteins that mediate protein translocation across or insertion into membranes. The biogenesis process of these proteins combines evolutionary conservation of the central elements with some noticeable differences in signals and machineries. This review summarizes our current knowledge of the functions and biogenesis of this special family of proteins.
Collapse
Affiliation(s)
- Dirk M. Walther
- Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Doron Rapaport
- Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Jan Tommassen
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
191
|
Liao Y, Deng J, Zhang A, Zhou M, Hu Y, Chen H, Jin M. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiol 2009; 9:172. [PMID: 19695095 PMCID: PMC2741471 DOI: 10.1186/1471-2180-9-172] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 08/20/2009] [Indexed: 11/18/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia, a highly contagious respiratory infection in pigs, and all the 15 serotypes are able to cause disease. Current vaccines including subunit vaccines could not provide satisfactory protection against A. pleuropneumoniae. In this study, the immunoproteomic approach was applied to the analysis of extracellular and outer membrane proteins of A. pleuropneumoniae JL03 serotype 3 for the identification of novel immunogenic proteins for A. pleuropneumoniae. Results A total of 30 immunogenic proteins were identified from outer membrane and extracellular proteins of JL03 serotype 3, of which 6 were known antigens and 24 were novel immunogenic proteins for A. pleuropneumoniae. Conclusion These data provide information about novel immunogenic proteins for A. pleuropneumoniae serotype 3, and are expected to aid in development of novel vaccines against A. pleuropneumoniae.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Huazhong Agricultural University, Hubei, PR China.
| | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria in morphology, pigmentation and, especially, in the presence of a peptidoglycan wall situated between the inner and outer envelope membranes. However, it is now clear that cyanelles in fact are primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high plastid gene content of the Porphyra purpurea rhodoplast and the peptidoglycan wall of glaucocystophyte cyanelles. This means that the import apparatus of all primary plastids should be homologous. Indeed, heterologous in vitro import can now be shown in both directions, provided a phenylalanine residue essential for cyanelle import is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved explaining the efficient heterologous import of native precursors from C. paradoxa. With respect to conservative sorting in cyanelles, both the Sec and Tat pathways could be demonstrated. Another cyanobacterial feature, the dual location of the Sec translocase in thylakoid and inner envelope membranes, is also unique to cyanelles. For the first time, protease protection of internalized lumenal proteins could be shown for cyanobacteria-like, phycobilisome-bearing thylakoid membranes after import into isolated cyanelles.
Collapse
Affiliation(s)
- Jürgen M Steiner
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Biochemistry and Molecular Cell Biology, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | |
Collapse
|
193
|
Emelyanov VV. Mitochondrial Porin VDAC 1 Seems to Be Functional in Rickettsial Cells. Ann N Y Acad Sci 2009; 1166:38-48. [DOI: 10.1111/j.1749-6632.2009.04513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
194
|
Abstract
The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.
Collapse
Affiliation(s)
- Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | |
Collapse
|
195
|
Saier MH, Ma CH, Rodgers L, Tamang DG, Yen MR. Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles. ADVANCES IN APPLIED MICROBIOLOGY 2009; 65:141-97. [PMID: 19026865 DOI: 10.1016/s0065-2164(08)00606-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | |
Collapse
|
196
|
Lueder F, Lithgow T. The three domains of the mitochondrial outer membrane protein Mim1 have discrete functions in assembly of the TOM complex. FEBS Lett 2009; 583:1475-80. [PMID: 19345216 DOI: 10.1016/j.febslet.2009.03.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/18/2009] [Accepted: 03/27/2009] [Indexed: 11/28/2022]
Abstract
The assembly of mitochondrial outer membrane proteins is an essential process, mediated by the SAM complex and a set of additional protein modules. We show that one of these, Mim1, is anchored in the outer membrane with its N-terminus exposed to the cytosol and its C-terminus in the mitochondrial intermembrane space. Using an in vitro assay to measure the multi-step pathway for assembly of Tom40 into the TOM complex, we find that an "early reaction" mediated by the SAM complex is regulated by the N-terminal domain of Mim1. In addition, a "late reaction" catalysed by the Sam37 subunit of the SAM complex is also influenced by Mim1. Thus, Mim1 participates at multiple stages in the assembly of the TOM complex.
Collapse
Affiliation(s)
- Franziska Lueder
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | | |
Collapse
|
197
|
Gatzeva-Topalova PZ, Walton TA, Sousa MC. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 2009; 16:1873-81. [PMID: 19081063 DOI: 10.1016/j.str.2008.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 02/05/2023]
Abstract
The envelope of Gram-negative bacteria consists of inner and outer membranes surrounding the peptidoglycan wall. The outer membrane (OM) is rich in integral membrane proteins (OMPs), which have a characteristic beta barrel domain embedded in the OM. The Omp85 family of proteins, ubiquitous among Gram-negative bacteria and also present in chloroplasts and mitochondria, is required for folding and insertion of OMPs into the outer membrane. Bacterial Omp85 proteins are characterized by a periplasmic domain containing five repeats of polypeptide transport-associated (POTRA) motifs. Here we report the crystal structure of a periplasmic fragment of YaeT (the Escherichia coli Omp85) containing the first four POTRA domains in an extended conformation consistent with recent solution X-ray scattering data. Analysis of the YaeT structure reveals conformational flexibility around a hinge point between POTRA2 and 3 domains. The structure's implications for substrate binding and folding mechanisms are also discussed.
Collapse
Affiliation(s)
- Petia Z Gatzeva-Topalova
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
198
|
Nicolaisen K, Hahn A, Schleiff E. The cell wall in heterocyst formation byAnabaenasp. PCC 7120. J Basic Microbiol 2009; 49:5-24. [DOI: 10.1002/jobm.200800300] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
199
|
Signals in bacterial beta-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc Natl Acad Sci U S A 2009; 106:2531-6. [PMID: 19181862 DOI: 10.1073/pnas.0807830106] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts harbor beta-barrel proteins. The signals that allow precursors of such proteins to be targeted to mitochondria were not characterized so far. To better understand the mechanism by which beta-barrel precursor proteins are recognized and sorted within eukaryotic cells, we expressed the bacterial beta-barrel proteins PhoE, OmpA, Omp85, and OmpC in Saccharomyces cerevisiae and demonstrated that they were imported into mitochondria. A detailed investigation of the import pathway of PhoE revealed that it is shared with mitochondrial beta-barrel proteins. PhoE interacts initially with surface import receptors, and its further sorting depends on components of the TOB/SAM complex. The bacterial Omp85 and PhoE integrated into the mitochondrial outer membrane as native-like oligomers. For the latter protein this assembly depended on the C-terminal Phe residue, which is important also for the correct assembly of PhoE into the bacterial outer membrane. Collectively, it appears that mitochondrial beta-barrel proteins have not evolved eukaryotic-specific signals to ensure their import into mitochondria. Furthermore, the signal for assembly of beta-barrel proteins into the bacterial outer membrane is functional in mitochondria.
Collapse
|
200
|
The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains. Proc Natl Acad Sci U S A 2009; 106:1772-7. [PMID: 19181847 DOI: 10.1073/pnas.0809275106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Outer membrane proteins (OMPs) of gram-negative bacteria are synthesized in the cytosol and must cross the periplasm before insertion into the outer membrane. The 17-kDa protein (Skp) is a periplasmic chaperone that assists the folding and insertion of many OMPs, including OmpA, a model OMP with a membrane embedded beta-barrel domain and a periplasmic alphabeta domain. Structurally, Skp belongs to a family of cavity-containing chaperones that bind their substrates in the cavity, protecting them from aggregation. However, some substrates, such as OmpA, exceed the capacity of the chaperone cavity, posing a mechanistic challenge. Here, we provide direct NMR evidence that, while bound to Skp, the beta-barrel domain of OmpA is maintained in an unfolded state, whereas the periplasmic domain is folded in its native conformation. Complementary cross-linking and NMR relaxation experiments show that the OmpA beta-barrel is bound deep within the Skp cavity, whereas the folded periplasmic domain protrudes outside of the cavity where it tumbles independently from the rest of the complex. This domain-based chaperoning mechanism allows the transport of beta-barrels across the periplasm in an unfolded state, which may be important for efficient insertion into the outer membrane.
Collapse
|